共查询到12条相似文献,搜索用时 0 毫秒
1.
We describe here an alanine scanning mutational analysis of the Abeta(1-40) amyloid fibril monitored by fibril elongation thermodynamics derived from critical concentration values for fibril growth. Alanine replacement of most residues in the amyloid core region, residues 15-36, leads to destabilization of the elongation step, compared to wild-type, by about 1kcal/mol, consistent with a major role for hydrophobic packing in Abeta(1-40) fibril assembly. Where comparisons are possible, the destabilizing effects of Ala replacements are generally in very good agreement with the effects of Ala replacements of the same amino acid residues in an element of parallel beta-sheet in the small, globular protein Gbeta1. We utilize these Ala-WT DeltaDeltaG values to filter previously described Pro-WT DeltaDeltaG values, creating Pro-Ala DeltaDeltaG values that specifically assess the sensitivity of a sequence position, in the structural context of the Abeta fibril, to replacement by proline. The results provide a conservative view of the energetics of Abeta(1-40) fibril structure, indicating that positions 18-21, 25-26, and 32-33 within amyloid structure are particularly sensitive to the main-chain disrupting effects of Pro replacements. In contrast, residues 14-17, 22, 24, 27-31, and 34-39 are relatively insensitive to Pro replacements; most N-terminal residues were not tested. The results are discussed in terms of amyloid fibril structure and folding energetics, in particular focusing on how the data compare to those from other structural studies of Abeta(1-40) amyloid fibrils grown in phosphate-buffered saline at 37 degrees C under unstirred ("quiescent") conditions. 相似文献
2.
A general method to analyze the structure of a supramolecular complex of amyloid fibrils at amino acid residue resolution has been developed. This method combines the NMR-detected hydrogen/deuterium (H/D) exchange technique to detect hydrogen-bonded amide groups and the ability of the aprotic organic solvent dimethylsulfoxide (DMSO) to dissolve amyloid fibrils into NMR-observable, monomeric components while suppressing the undesired H/D exchange reaction. Moreover, this method can be generally applied to amyloid fibrils to elucidate the distribution of hydrogen-bonded amino acid residues in the three-dimensional molecular organization in the amyloid fibrils. In this study, we describe theoretical considerations in the H/D exchange method to obtain the structural information of proteins, and the DMSO-quenched H/D exchange method to study a supramolecular complex of amyloid fibrils. A possible application of this method to study the interaction of a protein/peptide with phospholipid membrane is also discussed. 相似文献
3.
Hydrogen-deuterium (H/D) exchange mapping of Abeta 1-40 amyloid fibril secondary structure using nuclear magnetic resonance spectroscopy 总被引:1,自引:0,他引:1
Whittemore NA Mishra R Kheterpal I Williams AD Wetzel R Serpersu EH 《Biochemistry》2005,44(11):4434-4441
We describe here details of the hydrogen-deuterium (H/D) exchange behavior of the Alzheimer's peptide Abeta(1)(-)(40), while it is a resident in the amyloid fibril, as determined by high-resolution solution NMR. Kinetics of H/D exchange in Abeta(1)(-)(40) fibrils show that about half the backbone amide protons exchange during the first 25 h, while the other half remain unexchanged because of solvent inaccessibility and/or hydrogen-bonded structure. After such a treatment for 25 h with D(2)O, fibrils of (15)N-enriched Abeta were dissolved in a mixture of 95% dimethyl sulfoxide (DMSO) and 5% dichloroacetic acid (DCA) and successive heteronuclear (1)H-(15)N HSQC spectra were collected to identify the backbone amides that did not exchange in the fibril. These studies showed that the N and C termini of the peptide are accessible to the solvent in the fibril state and the backbone amides of these residues are readily exchanged with bulk deuterium. In contrast, the residues in the middle of the peptide (residues 16-36) are mostly protected, suggesting that that many of the residues in this segment of the peptide are involved in a beta structure in the fibril. Two residues, G25 and S26, exhibit readily exchangeable backbone amide protons and therefore may be located on a turn or a flexible part of the peptide. Overall, the data substantially supports current models for how the Abeta peptide folds when it engages in the amyloid fibril structure, while also addressing some discrepancies between models. 相似文献
4.
Chewook Lee Lajos Kalmar Bin Xue Peter Tompa Gary W. Daughdrill Vladimir N. Uversky Kyou-Hoon Han 《Biochimica et Biophysica Acta (BBA)/General Subjects》2014
Background
IDPs function without relying on three-dimensional structures. No clear rationale for such a behavior is available yet. PreSMos are transient secondary structures observed in the target-free IDPs and serve as the target-binding “active” motifs in IDPs. Prolines are frequently found in the flanking regions of PreSMos. Contribution of prolines to the conformational stability of the helical PreSMos in IDPs is investigated.Methods
MD simulations are performed for several IDP segments containing a helical PreSMo and the flanking prolines. To measure the influence of flanking-prolines on the structural content of a helical PreSMo calculations were done for wild type as well as for mutant segments with Pro → Asp, His, Lys, or Ala. The change in the helicity due to removal of a proline was measured both for the PreSMo region and for the flanking regions.Results
The α-helical content in ~ 70% of the helical PreSMos at the early stage of simulation decreases due to replacement of an N-terminal flanking proline by other residues whereas the helix content in nearly all PreSMos increases when the same replacements occur at the C-terminal flanking region. The helix destabilizing/terminating role of the C-terminal flanking prolines is more pronounced than the helix promoting effect of the N-terminal flanking prolines.General significance
This work represents a novel example demonstrating that a proline is encoded in an IDP with a defined purpose. The helical PreSMos presage their target-bound conformations. As they most likely mediate IDP-target binding via conformational selection their helical content can be an important feature for IDP function. 相似文献5.
Gorski SA Le Duff CS Capaldi AP Kalverda AP Beddard GS Moore GR Radford SE 《Journal of molecular biology》2004,337(1):183-193
The four-helical immunity protein Im7 folds through an on-pathway intermediate that has a specific, but partially misfolded, hydrophobic core. In order to gain further insight into the structure of this species, we have identified the backbone hydrogen bonds formed in the ensemble by measuring the amide exchange rates (under EX2 conditions) of the wild-type protein and a variant, I72V. In this mutant the intermediate is significantly destabilised relative to the unfolded state (deltadeltaG(ui) = 4.4 kJ/mol) but the native state is only slightly destabilised (deltadeltaG(nu) = 1.8 kJ/mol) at 10 degrees C in 2H2O, pH* 7.0 containing 0.4 M Na2SO4, consistent with the view that this residue forms significant non-native stabilising interactions in the intermediate state. Comparison of the hydrogen exchange rates of the two proteins, therefore, enables the state from which hydrogen exchange occurs to be identified. The data show that amides in helices I, II and IV in both proteins exchange slowly with a free energy similar to that associated with global unfolding, suggesting that these helices form highly protected hydrogen-bonded helical structure in the intermediate. By contrast, amides in helix III exchange rapidly in both proteins. Importantly, the rate of exchange of amides in helix III are slowed substantially in the Im7* variant, I72V, compared with the wild-type protein, whilst other amides exchange more rapidly in the mutant protein, in accord with the kinetics of folding/unfolding measured using chevron analysis. These data demonstrate, therefore, that local fluctuations do not dominate the exchange mechanism and confirm that helix III does not form stable secondary structure in the intermediate. By combining these results with previously obtained Phi-values, we show that the on-pathway folding intermediate of Im7 contains extensive, stable hydrogen-bonded structure in helices I, II and IV, and that this structure is stabilised by both native and non-native interactions involving amino acid side-chains in these helices. 相似文献
6.
Proline and prolylproline dipeptide derived surfactants promote the asymmetric hydrogenation of (Z)-methyl α-acetamidocinnamate in water in the presence of the catalytic system [Rh(cod)2]BF4 + BPPM. Activity and enantioselectivity are enhanced significantly and the results in water are similar to those obtained with organic solvents. The possibility of a chiral induction was investigated in the presence of the optically active amino acid and peptide amphiphiles and an achiral rhodium catalyst [Rh(bdpb)(cod)]BF4. The analysis of the low optical induction gave some indications of the site where the reaction takes place within the micelle. Selected critical micelle concentrations (cmc) of the new prepared surfactants were determined by surface tension measurements. Chirality 10:754–759, 1998. © 1998 Wiley-Liss, Inc. 相似文献
7.
The misfolding and aggregation of proteins to form amyloid fibrils are associated with a number of debilitating, age-related diseases. Many of the proteins that form amyloid in vivo are lipid-binding proteins, accounting for the significant impact of lipids on the rate of formation and morphology of amyloid fibrils. To systematically investigate the effect of lipid-like compounds, we screened a range of amphipathic lipids and detergents for their effect on amyloid fibril formation by human apolipoprotein (apo) C-II. The initial screen, conducted using a set of amphiphiles at half critical micelle concentration, identified several activators and inhibitors that were selected for further analysis. Sedimentation analysis and circular dichroism studies of apoC-II at low, non-fibril-forming concentrations (0.05 mg/ml) revealed that all of the inhibitors induced the formation of apoC-II dimers enriched in α-helical content while the activators promoted the formation of stable apoC-II tetramers with increased β-structure. Kinetic analysis identified modulators of apoC-II fibril formation that were effective at concentrations as low as 10 μM, corresponding to a modulator-to-apoC-II ratio of approximately 1:10. Delayed addition of the test compounds after fibril formation had commenced allowed the effects of selected amphiphiles on fibril elongation to be determined separately from their effects on fibril nucleation. The results indicated that specific amphiphiles induce structural changes in apoC-II that cause separate and independent effects on fibril nucleation and elongation. Low-molecular-weight amphipathic lipids and detergents may serve as useful, stage-specific modulators of protein self-assembly and fibril formation in disease-prevention strategies. 相似文献
8.
Effect of different salt ions on the propensity of aggregation and on the structure of Alzheimer's abeta(1-40) amyloid fibrils 总被引:1,自引:0,他引:1
Klement K Wieligmann K Meinhardt J Hortschansky P Richter W Fändrich M 《Journal of molecular biology》2007,373(5):1321-1333
The formation of amyloid fibrils and other polypeptide aggregates depends strongly on the physico-chemical environment. One such factor affecting aggregation is the presence and concentration of salt ions. We have examined the effects of salt ions on the aggregation propensity of Alzheimer's Abeta(1-40) peptide and on the structure of the dissolved and of the fibrillar peptide. All salts examined promote aggregation strongly. The most pronounced effect is seen within the cationic series, i.e. for MgCl2. Evaluation of different possible explanations suggests that Abeta(1-40) aggregation depends on direct interaction between ions and Abeta(1-40) peptide, and correlates with ion-induced changes of the surface tension. Salts have profound effects on the fibril structure. In the presence of salts, fibrils are associated with smaller diameters, narrower crossover distances and lower amide I maxima. Since Abeta(1-40) aggregation responds to salts in a manner unlike that for other polypeptides, such as glucagon, beta2-microglobulin or alpha-synuclein; these data argue that there is no fully uniform way in which salts affect aggregation of different polypeptide chains. These observations are important for understanding and predicting aggregation on the basis of simple physico-chemical properties. 相似文献
9.
Yamaguchi K Katou H Hoshino M Hasegawa K Naiki H Goto Y 《Journal of molecular biology》2004,338(3):559-571
Dialysis-related amyloidosis, which occurs in the patients receiving a long-term hemodialysis with high frequency, accompanies the deposition of amyloid fibrils composed of beta(2)-microglobulin (beta2-m). In vitro, beta2-m forms two kinds of fibrous structures at acidic pH. One is a rigid "mature fibril", and the other is a flexible thin filament often called an "immature fibril". In addition, a 22-residue peptide (K3 peptide) corresponding to Ser20 to Lys41 of intact beta2-m forms rigid amyloid-like fibrils similar to mature fibrils. We compared the core of these three fibrils at single-residue resolution using a recently developed hydrogen/deuterium (H/D) exchange method with the dissolution of fibrils by dimethylsulfoxide (DMSO). The exchange time-course of these fibrils showed large deviations from a single exponential curve showing that, because of the supramolecular structures, the same residue exists in different environments from molecule to molecule, even in a single fibril. The exchange profiles revealed that the core of the immature fibril is restricted to a narrow region compared to that of the mature fibril. In contrast, all residues were protected from exchange in the K3 fibril, indicating that a whole region of the peptide is engaged in the beta-sheet network. These results suggest the mechanism of amyloid fibril formation, in which the core beta-sheet formed by a minimal sequence propagates to form a rigid and extensive beta-sheet network. 相似文献
10.
Repeat proteins contain tandem arrays of a simple structural motif. In contrast to globular proteins, repeat proteins are stabilized only by interactions between residues that are relatively close together in the sequence, with no ”long-range” interactions. Our work focuses on the tetratricopeptide repeat (TPR), a 34 amino acid helix-turn-helix motif found in tandem arrays in many natural proteins. Earlier, we reported the design and characterization of a series of consensus TPR (CTPR) proteins, which are built as arrays of multiple tandem copies of a 34 amino acid consensus sequence. Here, we present the results of extensive hydrogen exchange (HX) studies of the folding-unfolding behavior of two CTPR proteins (CTPR2 and CTPR3). We used HX to detect and characterize partially folded species that are populated at low frequency in the nominally folded state. We show that for both proteins the equilibrium folding-unfolding transition is non-two-state, but sequential, with the outermost helices showing a significantly higher probability than inner helices of being unfolded. We show that the experimentally observed unfolding behavior is consistent with the predictions of a simple Ising model, in which individual helices are treated as ”spin-equivalents”. The results that we present have general implications for our understanding of the thermodynamic properties of repeat proteins. 相似文献
11.
Rojsajjakul T Wintrode P Vadrevu R Robert Matthews C Smith DL 《Journal of molecular biology》2004,341(1):241-253
The urea-induced unfolding of the alpha subunit of tryptophan synthase (alphaTS) from Escherichia coli, an eight-stranded (beta/alpha)(8) TIM barrel protein, has been shown to involve two stable equilibrium intermediates, I1 and I2, well populated at approximately 3 M and 5 M urea, respectively. The characterization of the I1 intermediate by circular dichroism (CD) spectroscopy has shown that I1 retains a significant fraction of the native ellipticity; the far-UV CD signal for the I2 species closely resembles that of the fully unfolded form. To obtain detailed insight into the disruption of secondary structure in the urea-induced unfolding process, a hydrogen exchange-mass spectrometry study was performed on alphaTS. The full-length protein was destabilized in increasing concentration of urea, the amide hydrogen atoms were pulse-labeled with deuterium, the labeled samples were quenched in acid and the products were analyzed by electrospray ionization mass spectrometry. Consistent with the CD results, the I1 intermediate protects up to approximately 129 amide hydrogen atoms against exchange while the I2 intermediate offers no protection. Electrospray ionization mass spectrometry analysis of the peptic fragments derived from alphaTS labeled at 3 M urea indicates that most of the region between residues 12-130, which constitutes the first four beta strands and three alpha helices, (beta/alpha)(1-3)beta(4), is structured. The (beta/alpha)(1-3)beta(4) module appears to represent the minimum sub-core of stability of the I1 intermediate. A 4+2+2 folding model is proposed as a likely alternative to the earlier 6+2 folding mechanism for alphaTS. 相似文献
12.
Wilson LM Mok YF Binger KJ Griffin MD Mertens HD Lin F Wade JD Gooley PR Howlett GJ 《Journal of molecular biology》2007,366(5):1639-1651
Plasma apolipoproteins show alpha-helical structure in the lipid-bound state and limited conformational stability in the absence of lipid. This structural instability of lipid-free apolipoproteins may account for the high propensity of apolipoproteins to aggregate and accumulate in disease-related amyloid deposits. Here, we explore the properties of amyloid fibrils formed by apolipoproteins using human apolipoprotein (apo) C-II as a model system. Hydrogen-deuterium exchange and NMR spectroscopy of apoC-II fibrils revealed core regions between residues 19-37 and 57-74 with reduced amide proton exchange rates compared to monomeric apoC-II. The C-terminal core region was also identified by partial proteolysis of apoC-II amyloid fibrils using endoproteinase GluC and proteinase K. Complete tryptic hydrolysis of apoC-II fibrils followed by centrifugation yielded a single peptide in the pellet fraction identified using mass spectrometry as apoC-II(56-76). Synthetic apoC-II(56-76) readily formed fibrils, albeit with a different morphology and thioflavinT fluorescence yield compared to full-length apoC-II. Studies with smaller peptides narrowed this fibril-forming core to a region within residues 60-70. We postulate that the ability of apoC-II(60-70) to independently form amyloid fibrils drives fibril formation by apoC-II. These specific amyloid-forming regions within apolipoproteins may underlie the propensity of apolipoproteins and their peptide derivatives to accumulate in amyloid deposits in vivo. 相似文献