首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Myelin damage can lead to the loss of axonal conduction and paralysis in multiple sclerosis and spinal cord injury. Here, we show that acrolein, a lipid peroxidation product, can cause significant myelin damage in isolated guinea pig spinal cord segments. Acrolein-mediated myelin damage is particularly conspicuous in the paranodal region in both a calcium dependent (nodal lengthening) and a calcium-independent manner (paranodal myelin splitting). In addition, paranodal protein complexes can dissociate with acrolein incubation. Degraded myelin basic protein is also detected at the paranodal region. Acrolein-induced exposure and redistribution of paranodal potassium channels and the resulting axonal conduction failure can be partially reversed by 4-AP, a potassium channel blocker. From this data, it is clear that acrolein is capable of inflicting myelin damage as well as axonal degeneration, and may represent an important factor in the pathogenesis in multiple sclerosis and spinal cord injury.  相似文献   

2.
3.
4.
Vaying degrees of testicular dysfunction are found in men with traumatic spinal cord damage. Eighteen paraplegic men have been studied and the gonadotropin response to luteinizing hormone-releasing hormone (LRH) measured. Basal serum testosterone estimations were made and in eight of the patients testicular testosterone reserve was assessed by the testosterone response to human chorionic gonadotropin (HCG). Testicular biopsies were performed in seven cases. In three of these patients, the testicular biopsies were abnormal. Five of the patients had elevated Follicle stimulating hormone levels and abnormalities of Luteinizing hormone kinetics were found in the same five patients. There was no significant difference between the plasma testosterone levels of the paraplegic patients when compared to the control group. In all the patients tested, there was an adequate testosterone reserve, and this included the three patients with the abnormal testicular biopsies. No relationship was found between the level of cord lesion and any of the hormonal parameters measured. This study confirms the primary nature of the seminiferous tubular damage which occurs in some patients with paraplegia.  相似文献   

5.
Peroxynitrite (PN)-mediated mitochondrial dysfunction has been implicated in the secondary injury process after traumatic spinal cord injury (SCI). This study investigated the detrimental effects of the PN donor SIN-1 (3-morpholinosydnonimine) on isolated healthy spinal cord mitochondria and the protective effects of tempol, a catalytic scavenger of PN-derived radicals. A 5 min exposure of the mitochondria to SIN-1 caused a dose-dependent decrease in the respiratory control ratio (RCR) that was accompanied by significant increases in complex I-driven states II and IV respiration rates and decreases in states III and V. These impairments occurred together with an increase in mitochondrial protein 3-nitrotyrosine (3-NT), but not in lipid peroxidation (LP)-related 4-hydroxynonenal (4-HNE). Tempol significantly antagonized the respiratory effects of SIN-1 in parallel with an attenuation of 3-NT levels. These results show that the exogenous PN donor, SIN-1, rapidly causes mitochondrial oxidative damage and complex I dysfunction identical to traumatic spinal cord mitochondrial impairment and that this is mainly due to tyrosine nitration. Consistent with that, the protection of mitochondrial respiratory function by tempol is associated with a decrease in 3-NT levels in mitochondrial proteins also similar to the previously reported antioxidant actions of tempol in traumatically-injured spinal cord mitochondria.  相似文献   

6.
Peroxynitrite (PON, ONOO(-)), formed by nitric oxide synthase-generated nitric oxide radical ( NO) and superoxide radical (O(2) (-)), is a crucial player in post-traumatic oxidative damage. In the present study, we determined the spatial and temporal characteristics of PON-derived oxidative damage after a moderate contusion injury in rats. Our results showed that 3-nitrotyrosine (3-NT), a specific marker for PON, rapidly accumulated at early time points (1 and 3 h) and a significant increase compared with sham rats was sustained to 1 week after injury. Additionally, there was a coincident and maintained increase in the levels of protein oxidation-related protein carbonyl and lipid peroxidation-derived 4-hydroxynonenal (4-HNE). The peak increases of 3-NT and 4-HNE were observed at 24 h post-injury. In our immunohistochemical results, the co-localization of 3-NT and 4-HNE results indicates that PON is involved in lipid peroxidative as well as protein nitrative damage. One of the consequences of oxidative damage is an exacerbation of intracellular calcium overload, which activates the cysteine protease calpain leading to the degradation of several cellular targets including cytoskeletal protein (alpha-spectrin). Western blot analysis of alpha-spectrin breakdown products showed that the 145-kDa fragments of alpha-spectrin, which are specifically generated by calpain, were significantly increased as soon as 1 h following injury although the peak increase did not occur until 72 h post-injury. The later activation of calpain is most likely linked to PON-mediated secondary oxidative impairment of calcium homeostasis. Scavengers of PON, or its derived free radical species, may provide an improved antioxidant neuroprotective approach for the treatment of post-traumatic oxidative damage in the injured spinal cord.  相似文献   

7.
8.
9.
Spinal cord injury (SCI) is a devastating condition with important functional and psychological consequences. However, the underlying mechanisms by which these alterations occur are still not fully understood. The aim of this study was to analyze genomic instability in multiple organs in the acute phase of SCI by means of single cell gel (comet) assay. Rats were randomly distributed into two groups (n = 5): a SHAM and a SCI group killed 24 h after cord transection surgery. The results pointed out genetic damage in blood cells as depicted by the tail moment results. DNA breakage was also detected in liver and kidney cells after SCI. Taken together, our results suggest that SCI induces genomic damage in multiple organs of Wistar rats.  相似文献   

10.
N E Naftchi 《Peptides》1982,3(3):235-247
Cats were used as models of traumatic spinal cord injury. Each experimental animal received a 500 g-cm force to the exposed dura at the level of thoracic fourth vertebra. Somatosensory evoked potentials (SEPs), carotid arterial blood pressure (BP), and abdominal aorta blood flow in the treated groups were compared with those of the control group. The three treated groups received naloxone (5 mg/kg), TRH (5 mg/kg), and a combination of methyl-prednisolone sodium succinate (MP, 35 mg/kg) and epsilon-aminocaproic acid (EACA, 350 mg/kg). The SEPs which were done only in the naloxone treated group approached "normalcy" 24-26 hours after trauma as compared with the absence of SEPs in traumatized untreated group. In all three groups, the treatment increased the blood flow in abdominal aorta significantly. Morphine sulfate increased substance P (SP) immunoreactivity in the dorsal and ventral gray matter. Naloxone not only reversed this effect, it depleted SP below the saline control level. In order to establish that lipid free radicals are responsible for damage to biological membranes, their effects were also investigated in vitro: 14C-GABA uptake by mouse cortical slices which had decreased by 33% in the presence of superoxide (. O-2) generating system, horseradish peroxidase (HRP), was reduced only by 9% when superoxide dismutase was added to the medium. The latter also protected the nerve endings from damage by (. O-2) as examined by electron microscopy. It is concluded that the agents used in this study produce their ameliorating effects by virtue of their anti-inflammatory, anti-oxidant, and membrane stabilizing properties in addition to their effect on enhancing the regional microcirculation. The release of SP by naloxone may be responsible for the increase in blood flow. The consequences of traumatic injury as depicted in Fig. 1 are discussed at length.  相似文献   

11.
12.
13.
S Kwak  H Aizawa  M Ishida  H Shinozaki 《Life sciences》1991,49(14):PL91-PL96
A single systemic administration of acromelic acid A (ACRO), a novel kainate analogue (kainoid), induces a series of characteristic behavioral changes in association with selective damage of interneurons in the caudal spinal cord in adult rats. When ACRO (5 mg/kg) was systemically administered, rats displayed forced extension of hindlimbs followed by frequent cramps and generalized convulsion. Most rats died during the convulsions without neuropathological change. Two rats developed long-lasting spastic paraparesis which persisted at least 3 months. Neuropathological changes were observed only in the rats with persistent paraparesis, in which neuron damage was identified selectively in small interneurons in the lumbosacral cord. The regional difference between kainate- and ACRO-induced neuron damage suggests the existence of plural kinds of kainate receptor subtypes.  相似文献   

14.
New spinal cord injury (SCI) cases are frequently due to non-traumatic causes, including vascular disorders. To develop mechanism-based neuroprotective strategies for acute SCI requires full understanding of the early pathophysiological changes to prevent disability and paralysis. The aim of our study was to identify the molecular and cellular mechanisms of cell death triggered by a pathological medium (PM) mimicking ischemia in the rat spinal cord in vitro. We previously showed that extracellular Mg2+ (1 mM) worsened PM-induced damage and inhibited locomotor function. The present study indicated that 1 h of PM+Mg2+ application induced delayed pyknosis chiefly in the spinal white matter via overactivation of poly (ADP-ribose) polymerase 1 (PARP1), suggesting cell death mediated by the process of parthanatos that was largely suppressed by pharmacological block of PARP-1. Gray matter damage was less intense and concentrated in dorsal horn neurons and motoneurons that became immunoreactive for the mitochondrial apoptosis-inducing factor (the intracellular effector of parthanatos) translocated into the nucleus to induce chromatin condensation and DNA fragmentation. Immunoreactivity to TRPM ion channels believed to be involved in ischemic brain damage was also investigated. TRPM2 channel expression was enhanced 24 h later in dorsal horn and motoneurons, whereas TRPM7 channel expression concomitantly decreased. Conversely, TRPM7 expression was found earlier (3 h) in white matter cells, whereas TRPM2 remained undetectable. Simulating acute ischemic-like damage in vitro in the presence of Mg2+ showed how, during the first 24 h, this divalent cation unveiled differential vulnerability of white matter cells and motoneurons, with distinct changes in their TRPM expression.  相似文献   

15.
Tamoxifen has been found to be neuroprotective in both transient and permanent experimental ischemic stroke. However, it remains unknown whether this agent shows a similar beneficial effect after spinal cord injury (SCI), and what are its underlying mechanisms. In this study, we investigated the efficacy of tamoxifen treatment in attenuating SCI-induced pathology. Blood–spinal cord barrier (BSCB) permeability, tissue edema formation, microglial activation, neuronal cell death and myelin loss were determined in rats subjected to spinal cord contusion. The results showed that tamoxifen, administered at 30 min post-injury, significantly decreased interleukin-1β (IL-1β) production induced by microglial activation, alleviated the amount of Evans blue leakage and edema formation. In addition, tamoxifen treatment clearly reduced the number of apoptotic neurons post-SCI. The myelin loss and the increase in production of myelin-associated axonal growth inhibitors were also found to be significantly attenuated at day 3 post-injury. Furthermore, rats treated with tamoxifen scored much higher on the locomotor rating scale after SCI than did vehicle-treated rats, suggesting improved functional outcome after SCI. Together, these results demonstrate that tamoxifen provides neuroprotective effects for treatment of SCI-related pathology and disability, and is therefore a potential neuroprotectant for human spinal cord injury therapy.  相似文献   

16.
17.
Motorizing the spinal cord   总被引:1,自引:0,他引:1  
A Lumsden 《Cell》1991,64(3):471-473
  相似文献   

18.
19.
20.
The effect of the calcium channel blocker (KB-2796) on metabolic and functional recovery in rabbit spinal cord after 20, 30, and 40 min ischemia and 4 days of recovery was investigated. The drug was given intraperitoneally in three different doses, 10, 20, or 50 mg/kg pre-or post-ischemia of 20, 30, or 40 min duration. Both higher doses 20 and 30 mg/kg completely recovered energy state and significantly improved neurological functions in the spinal cord following 20 and 30 min ischemia. Partial protection was observed even after 40 min ischemia. The protective effect of KB-2796 exceeds the effect of calcium blockers previously used in experimental spinal cord ischemia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号