首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The HZ5-feline sarcoma virus (FeSV) is a new acute transforming feline retrovirus which was isolated from a multicentric fibrosarcoma of a domestic cat. The HZ5-FeSV transforms fibroblasts in vitro and is replication defective. A biologically active integrated HZ5-FeSV provirus was molecularly cloned from cellular DNA of HZ5-FeSV-infected FRE-3A rat cells. The HZ5-FeSV has oncogene homology with the fms sequences of the SM-FeSV. The genome organization of the 8.6-kilobase HZ5-FeSV provirus is 5' delta gag-fms-delta pol-delta env 3'. The HZ5-and SM-FeSVs display indistinguishable in vitro transformation characteristics, and the structures of the gag-fms transforming genes in the two viruses are very similar. In the HZ5-FeSV and the SM-FeSV, identical c-fms and feline leukemia virus p10 sequences form the 5' gag-fms junction. With regard to v-fms the two viruses are homologous up to 11 amino acids before the C terminus of the SM-FeSV v-fms protein. In HZ5-FeSV a segment of 362 nucleotides then follows before the 3' recombination site with feline leukemia virus pol. The new 3' v-fms sequence encodes 27 amino acids before reaching a TGA termination signal. The relationship of this sequence with the recently characterized human c-fms sequence has been examined. The 3' HZ5-FeSV v-fms sequence is homologous with 3' c-fms sequences. A frameshift mutation (11-base-pair deletion) was found in the C-terminal fms coding sequence of the HZ5-FeSV. As a result, the HZ5-FeSV v-fms protein is predicted to be a C-terminally truncated version of c-fms. This frameshift mutation may determine the oncogenic properties of v-fms in the HZ5-FeSV.  相似文献   

2.
The nucleotide sequence of a 5' segment of the human genomic c-fms proto-oncogene suggested that recombination between feline leukemia virus and feline c-fms sequences might have occurred in a region encoding the 5' untranslated portion of c-fms mRNA. The polyprotein precursor gP180gag-fms encoded by the McDonough strain of feline sarcoma virus was therefore predicted to contain 34 v-fms-coded amino acids derived from sequences of the c-fms gene that are not ordinarily translated from the proto-oncogene mRNA. The (gP180gag-fms) polyprotein was cotranslationally cleaved near the gag-fms junction to remove its gag gene-coded portion. Determination of the amino-terminal sequence of the resulting v-fms-coded glycoprotein, gp120v-fms, showed that the site of proteolysis corresponded to a predicted signal peptidase cleavage site within the c-fms gene product. Together, these analyses suggested that the linked gag sequences may not be necessary for expression of a biologically active v-fms gene product. The gag-fms sequences of feline sarcoma virus strain McDonough and the v-fms sequences alone were inserted into a murine retroviral vector containing a neomycin resistance gene. Both constructs were biologically active when transfected into NIH 3T3 cells and produced morphologically transformed foci at equivalent efficiencies. When transfected into a cell line (psi 2) expressing complementary viral gene functions, G418-resistant (Neor) cells containing either of these vector DNAs produced high titers of transforming viruses. Analysis of proteins produced in cells containing the vector lacking gag gene sequences showed that gP180gag-fms was not synthesized, whereas normal levels of both immature gp120v-fms and mature gp140v-fms were detected. The glycoprotein was efficiently transported to the cell surface, and it retained wild-type tyrosine kinase activity. We conclude that a cryptic hydrophobic signal peptide sequence in v-fms was unmasked by gag deletion, thereby allowing the correct orientation and transport of the v-fms gene product within membranous organelles. It seems likely that the proteolytic cleavage of gP180gag-fms is mediated by signal peptidase and that the amino termini of gp140v-fms and the c-fms gene product are identical.  相似文献   

3.
The McDonough strain of feline sarcoma virus contains an oncogene called v-fms whose ultimate protein product (gp140v-fms) resembles a cell surface growth factor receptor. To identify and characterize the protein product of the proto-oncogene c-fms, antisera were prepared to the viral fms sequences and used to detect specific cross-reacting sequences in human choriocarcinoma cells (BeWo) known to express c-fms mRNA. Both tumor-bearing rat sera and a rabbit antiserum prepared to a segment of v-fms expressed in Escherichia coli detected a 140-kilodalton (kDa) glycoprotein in the BeWo cells. Tryptic fingerprint analysis of [35S]methionine-labeled proteins indicated that the viral fms proteins and the 140-kDa BeWo cell protein were highly related. This 140-kDa glycoprotein contained an associated tyrosine kinase activity in vitro and was labeled principally on serine after 32Pi metabolic labeling. These results suggest that the 140-kDa protein in BeWo cells is the protein product of the human c-fms proto-oncogene. This conclusion is supported by the finding that a similar protein is detectable only in other human cells that express c-fms mRNA. These other human cells include adherent monocytes and the cell line ML-1, which can be induced to differentiate along the monocyte-macrophage pathway. This is in agreement with current thought that the c-fms proto-oncogene product functions as the CSF-1 receptor specific to this pathway.  相似文献   

4.
Molecular clones of the retroviral oncogene v-fms were used to isolate recombinant bacteriophages containing c-fms proto-oncogene sequences from a human placental DNA library. Viral and cellular fms sequences were used in Southern blotting experiments with a panel of 32 human X mouse somatic cell hybrids to assign the human c-fms proto-oncogene to human chromosome 5.  相似文献   

5.
The genetic structure of the McDonough strain of feline sarcoma virus (SM-FeSV) was deduced by analysis of molecularly cloned, transforming proviral DNA. The 8.2-kilobase pair SM-FeSV provirus is longer than those of other feline sarcoma viruses and contains a transforming gene (v-fms) flanked by sequences derived from feline leukemia virus. The order of genes with respect to viral RNA is 5'-gag-fms-env-3', in which the entire feline leukemia virus env gene and an almost complete gag sequence are represented. Transfection of NIH/3T3 cells with cloned SM-FeSV proviral DNA induced foci of morphologically transformed cells which expressed SM-FeSV gene products and contained rescuable sarcoma viral genomes. Cells transformed by viral infection or after transfection with cloned proviral DNA expressed the polyprotein (P170gag-fms) characteristic of the SM-FeSV strain. Two proteolytic cleavage products (P120fms and pp55gag) were also found in immunoprecipitates from metabolically labeled, transformed cells. An additional polypeptide, detected at comparatively low levels in SM-FeSV transformants, was indistinguishable in size and antigenicity from the envelope precursor (gPr85env) of feline leukemia virus. The complexity of the v-fms gene (3.1 +/- 0.3 kilobase pairs) is approximately twofold greater than the viral oncogene sequences (v-fes) of Snyder-Theilen and Gardner-Arnstein FeSV. By heteroduplex, restriction enzyme, and nucleic acid hybridization analyses, v-fms and v-fes sequences showed no detectable homology to one another. Radiolabeled DNA fragments representing portions of the two viral oncogenes hybridized to different EcoRI and HindIII fragments of normal cat cellular DNA. Cellular sequences related to v-fms (designated c-fms) were much more complex than c-fes and were distributed segmentally over more than 40 kilobase pairs in cat DNA. Comparative structural studies of the molecularly cloned proviruses of Synder-Theilen, Gardner-Arnstein, and SM-FeSV showed that a region of the feline-leukemia virus genome derived from the pol-env junction is represented adjacent to v-onc sequences in each FeSV strain and may have provided sequences preferred for recombination with cellular genes.  相似文献   

6.
The Susan McDonough strain of feline sarcoma virus contains an oncogene, v-fms, which is capable of transforming fibroblasts in vitro. The mature protein product of the v-fms gene (gp140fms) is found on the surface of transformed cells; this glycoprotein has external, transmembrane, and cytoplasmic domains. To assess the functional role of these domains in transformation, we constructed a series of nine linker insertion mutations throughout the v-fms gene by using a dodecameric BamHI linker. The biological effects of these mutations on the function and intracellular localization of v-fms-encoded proteins were determined by transfecting the mutated DNA into Rat-2 cells. Most of the mutations within the external domain of the v-fms-encoded protein eliminated focus formation on Rat-2 cells; three of these mutations interfered with the glycosylation of the v-fms protein and interfered with formation of the mature gp140fms. One mutation in the external domain led to cell surface expression of v-fms protein even in the absence of complete glycosylational processing. Cell surface expression of mutated v-fms protein is probably necessary, but is not sufficient, for cell transformation since mutant v-fms protein was found on the surface of several nontransformed cell lines. Mutations that were introduced within the external domain had little effect on in vitro kinase activity, whereas mutations within the cytoplasmic domain all had strong inhibitory effects on this activity.  相似文献   

7.
The McDonough strain of feline sarcoma virus encodes a polyprotein that is cotranslationally glycosylated and proteolytically cleaved to yield transforming glycoproteins specified by the viral oncogene v-fms. The major form of the glycoprotein (gp120fms) contains endoglycosidase H-sensitive, N-linked oligosaccharide chains lacking fucose and sialic acid, characteristic of glycoproteins in the endoplasmic reticulum. Kinetic and steady-state measurements showed that most gp120fms molecules were not converted to mature forms containing complex carbohydrate moieties. Fixed-cell immunofluorescence confirmed that the majority of v-fms-coded antigens were internally sequestered in transformed cells. Dual-antibody fluorescence performed with antibodies to intermediate filaments (IFs) showed that the IFs of transformed cells were rearranged, and their distribution coincided with that of v-fms-coded antigens. No specific disruption of actin cables was observed. The v-fms gene products cofractionated with IFs isolated from virus-transformed cells and reassociated with IFs self-assembled in vitro. A minor population of v-fms-coded molecules (gp140fms) acquired endoglycosidase H-resistant, N-linked oligosaccharide chains containing fucose and sialic acid residues, characteristic of molecules processed in the Golgi complex. Some gp140fms molecules were detected at the plasma membrane and were radiolabeled by lactoperoxidase-catalyzed iodination of live transformed cells. We suggest that v-fms-coded molecules are translated as integral transmembrane glycoproteins, most of which are inhibited in transport through the Golgi complex to the plasma membrane.  相似文献   

8.
The v-fms oncogene product of the McDonough strain of feline sarcoma virus is a member of the receptor tyrosine kinase family. Its cellular counterpart, the c-fms product, is the receptor for colony-stimulating factor 1 (CSF-1) of macrophages. We have reanalyzed the v-fms gene by direct sequencing of a biologically active clone. An additional A nucleotide was detected in position 2810 of the published v-fms sequence. The frameshift changed the COOH-terminal sequence of the v-fms protein from -R-937-G-P-P-L-COOH to -Q-937-R-T-P-P-V-A-R-COOH. Antibodies against a synthetic peptide representing this new sequence precipitated the v-fms proteins from transformed NRK cells as well as from feline sarcoma virus (McDonough)-infected feline fibroblasts. We show by tryptic peptide mapping that threonine 939 present in the new sequence is phosphorylated by a yet unknown serine/threonine kinase in vivo. In chicken fibroblasts expressing the v-fms gene, this phosphorylation clearly depended on the addition of exogenous CSF-1. Furthermore, addition of CSF-1 appeared to activate the serine/threonine kinase, as judged by phosphorylation of the synthetic peptide QRTPPVAR.  相似文献   

9.
The receptors for colony stimulating factor-1 (CSF-1), platelet derived growth factor and the c-kit protein tyrosine kinase (PTK) contain within their catalytic domains a stretch of 60-100 residues, largely unrelated in sequence, with no counterpart in other PTKs. Of the 64 amino acids within this kinase insert, 58 were deleted from the mouse CSF-1 receptor by oligonucleotide-directed mutagenesis. The mutant CSF-1 receptor was not markedly affected in its kinase activity, post-translational processing or its ability to induce autocrine transformation of NIH 3T3 mouse fibroblasts. Similarly, retention of kinase and transforming activities were observed following deletion of part or all of the kinase insert from the v-fms oncoprotein. The c- and v-fms kinase inserts were probed using monoclonal and polyclonal antibodies and were found to be highly antigenic. Two monoclonal antibodies raised to the v-fms cytoplasmic domain both recognized epitopes within the insert, and bound enzymatically active v-fms glycoproteins. These results indicate that the fms kinase insert is located on the surface of the protein and folds separately from the rest of the catalytic domain, but is not required for the biological activity of fms PTKs ectopically expressed in mouse fibroblasts. The insert may therefore play a specific function in cells such as monocytes and trophoblasts that normally express the CSF-1 receptor.  相似文献   

10.
Chromosomal localization of the human c-fms oncogene   总被引:7,自引:0,他引:7       下载免费PDF全文
A molecular probe was prepared with specificity for the human cellular homologue of transforming sequences represented within the McDonough strain of feline sarcoma virus (v-fms). By analysis of a series of mouse-human somatic cell hybrids containing variable complements of human chromosomes it was possible to assign this human oncogene, designated c-fms, to chromosome 5. Regional localization of c-fms to band q34 on chromosome 5 was accomplished by analysis of Chinese hamster-human cell hybrids containing as their only human components, terminal and interstitial deleted forms of chromosome 5. The localization of c-fms to chromosome 5 (q34) is of interest in view of reports of a specific, apparently interstitial, deletion involving approximately two thirds of the q arm of chromosome 5 in acute myelogenous leukemia cells.  相似文献   

11.
The product of the c-fms proto-oncogene is related to, and possibly identical with, the receptor for the macrophage colony-stimulating factor, M-CSF (CSF-1). Unlike the product of the v-erbB oncogene, which is a truncated version of the EGF receptor, the glycoprotein encoded by the v-fms oncogene retains an intact extracellular ligand-binding domain so that cells transformed by v-fms express CSF-1 receptors at their surface. Although fibroblasts susceptible to transformation by v-fms generally produce CSF-1, v-fms-mediated transformation does not depend on an exogenous source of the growth factor, and neutralizing antibodies to CSF-1 do not affect the transformed phenotype. An alteration of the v-fms gene product at its extreme carboxyl-terminus represents the major structural difference between it and the c-fms-coded glycoprotein and may affect the tyrosine kinase activity of the v-fms-coded receptor. Consistent with this interpretation, tyrosine phosphorylation of the v-fms products in membranes was observed in the absence of CSF-1 and was not enhanced by addition of the murine growth factor. Cells transformed by v-fms have a constitutively elevated specific activity of a guanine nucleotide-dependent, phosphatidylinositol-4,5-diphosphate-specific phospholipase C. We speculate that the tyrosine kinase activity of the v-fms/c-fms gene products may be coupled to this phospholipase C, possibly through a G regulatory protein, thereby increasing phosphatidylinositol turnover and generating the intracellular second messengers diacylglycerol and inositol triphosphate.  相似文献   

12.
Colony-stimulating factor-1 receptor (c-fms)   总被引:2,自引:0,他引:2  
The macrophage colony-stimulating factor, CSF-1 (M-CSF), is a homodimeric glycoprotein required for the lineage-specific growth of cells of the mononuclear phagocyte series. Apart from its role in stimulating the proliferation of bone marrow-derived precursors of monocytes and macrophages, CSF-1 acts as a survival factor and primes mature macrophages to carry out differentiated functions. Each of the actions of CSF-1 are mediated through its binding to a single class of high-affinity receptors expressed on monocytes, macrophages, and their committed progenitors. The CSF-1 receptor (CSF-1R) is encoded by the c-fms proto-oncogene, and is one of a family of growth factor receptors that exhibits an intrinsic tyrosine-specific protein kinase activity. Transduction of c-fms sequences as a viral oncogene (v-fms) in the McDonough (SM) and HZ-5 strains of feline sarcoma virus has resulted in alterations in receptor coding sequences that affect its activity as a tyrosine kinase and provide persistent signals for cell growth in the absence of its ligand. The genetic alterations in the c-fms gene that unmask its latent transforming potential abrogate its lineage-specific activity and enable v-fms to transform a variety of cells that do not normally express CSF-1 receptors.  相似文献   

13.
The role of tyrosine-specific phosphorylation in v-fms-mediated transformation was examined by immunoblotting techniques together with a high-affinity antibody that is specific for phosphotyrosine. This antiphosphotyrosine antibody detected phosphorylated tyrosine residues on the gp140v-fms molecule, but not gP180v-fms or gp120v-fms, in v-fms-transformed cells. This antibody also identified a number of cellular proteins that were either newly phosphorylated on tyrosine residues or showed enhanced phosphorylation on tyrosine residues as a result of v-fms transformation. However, the substrates of the v-fms-induced tyrosine kinase activity were not the characterized pp60v-src substrates. The phosphorylation of some of these cellular proteins and of the gp140fms molecule was found to correlate with the ability of v-fms/c-fms hybrids to transform cells. In addition, immunoblotting with the phosphotyrosine antibody allowed a comparison to be made of the substrates phosphorylated on tyrosine residues in various transformed cell lines. This study indicates that the pattern of tyrosine phosphorylation in v-fms-transformed cells is strikingly similar to that in v-sis-transformed cells.  相似文献   

14.
The effect of glycosylational-processing inhibitors on the synthesis, cell surface expression, endocytosis, and transforming function of the v-fms oncogene protein (gp140fms) was examined in McDonough feline sarcoma virus-transformed Fischer rat embryo (SM-FRE) cells. Swainsonine (SW), a mannosidase II inhibitor, blocked complete processing, but an abnormal v-fms protein containing hybrid carbohydrate structures was expressed on the cell surface. SW-treated SM-FRE cells retained the transformed phenotype. In contrast, two glucosidase I inhibitors (castanospermine [CA] and N-methyl-1-deoxynojirimycin [MdN]) blocked carbohydrate remodeling at an early stage within the endoplasmic reticulum and prevented cell surface expression of v-fms proteins. CA-treated SM-FRE cells reverted to the normal phenotype. Neither SW, CA, nor MdN affected either endocytosis or the tyrosine kinase activity associated with the v-fms gene product in vitro. These results demonstrate the necessity of carbohydrate processing for cell surface expression of the v-fms gene product and illustrate the unique ability to modulate the transformed state of SM-FRE cells with the glycosylational-processing inhibitors CA and MdN.  相似文献   

15.
The organization of the human c-fms proto-oncogene has been determined and compared with an abnormal allele. The human v-fms homologous genetic sequences are dispersed discontinuously and colinearly with the viral oncogene over a DNA region of ca. 32 kilobase pairs. The abnormal c-fms locus contains a small deletion in its 3' portion. DNA sequencing analysis indicated that it was 426 base pairs in size and located in close proximity to a putative c-fms exon.  相似文献   

16.
The viral oncogene v-fms encodes a transforming glycoprotein with in vitro tyrosine-specific protein kinase activity. Although most v-fms-coded molecules remain internally sequestered in transformed cells, a minor population of molecules is transported to the cell surface. An engineered deletion mutant lacking 348 base pairs of the 3.0-kilobase-pair v-fms gene encoded a polypeptide that was 15 kilodaltons smaller than the wild-type v-fms gene product. The in-frame deletion of 116 amino acids was adjacent to the transmembrane anchor peptide located near the middle of the predicted protein sequence and 432 amino acids from the carboxyl terminus. The mutant polypeptide acquired N-linked oligosaccharide chains, was proteolytically processed in a manner similar to the wild-type glycoprotein, and exhibited an associated tyrosine-specific protein kinase activity in vitro. However, the N-linked oligosaccharides of the mutant glycoprotein were not processed to complex carbohydrate chains, and the glycoprotein was not detected at the cell surface. Cells expressing high levels of the mutant glycoprotein did not undergo morphological transformation and did not form colonies in semisolid medium. The transforming activity of the v-fms gene product therefore appears to be mediated through target molecules on the plasma membrane.  相似文献   

17.
The effects of castanospermine on various parameters associated with transformation were examined in cells expressing the viral oncogene v-fms. Fischer rat embryo (FRE) cells transformed by the oncogene v-fms and grown in the presence of castanospermine reverted to a more normal cell morphology and accumulated fms protein within the endoplasmic reticulum. Treated cells attained contact inhibition of cell growth at a much lower cell density compared to the untreated controls. No effect of castanospermine on cell growth was observed for FRE cells transformed by a different oncogene v-fgr. Castanospermine-treated SM-FRE (v-fms transformed) cells reexpressed extracellular matrix fibronectin and exhibited an extensive actin-containing cytoskeleton similar to that of normal nontransformed FRE cells. Castanospermine treatment of SM-FRE cells resulted in a sixfold decrease in [3H]deoxyglucose uptake compared to that of the nonreverted SM-FRE cells. Again, no effect was observed in FRE cells transformed by the oncogene v-fgr (GR-FRE). These results further characterize the reversion caused by castanospermine and indicate that cell surface expression coordinately controls anchorage independent growth, cell morphology, contact inhibition of growth, and hexose uptake.  相似文献   

18.
The McDonough strain of feline sarcoma virus (SM-FeSV) contains a viral oncogene, v-fms, transduced from cat cellular genetic sequences designated c-fms. Monoclonal antibodies reactive to antigenic determinants encoded by v-fms were prepared by immunizing rats with live, syngeneic SM-FeSV-transformed cells, and fusing splenic lymphocytes from a tumor-bearing animal with cultured rat myeloma cells. Culture supernatants from hybrids producing antibodies to epitopes encoded by v-fms were identified by immunoprecipitation of radiolabeled polypeptides from SM-FeSV-transformed mink cells. Four positive hybrids were cloned twice in soft agar, established as stable lines, and grown in defined serum-free medium to facilitate purification of homogeneous antibodies. The monoclonal antibodies were used to assay SM-FeSV-specific products by "immunoblotting" of electrophoretically separated proteins, and by fixed-cell immunofluorescence.  相似文献   

19.
Processing inhibitors of N-linked glycans were used to determine whether correct glycosylation of the oncogene product gp140v-fms, encoded by the McDonough strain of feline sarcoma virus (SM-FeSV), is required to maintain the oncogenic properties of v-fms. SM-FeSV-transformed cells treated with the glucosidase-I inhibitors N-methyldeoxynojirimycin (MdN) or castanospermine synthesized predominantly a gp125v-fms species which had a normal half life. The molecule was transported to the plasma membrane and exhibited normal kinase activity as determined by autophosphorylation. However, although no significant change in cell morphology of the SM-FeSV-transformed cells was observed in the presence of castanospermine, growth of these cells became strictly serum-dependent. In addition, growth in soft agar was drastically retarded despite the presence of 10% calf serum, indicating that the transformed properties of the cells were altered. In contrast, swainsonine, an inhibitor of the processing alpha-mannosidase-II, had no effect. Cells transformed by the Snyder Theilen strain of FeSV were used to demonstrate that the altered proliferative properties were directly linked to the modified structure of the fms gene product. Our data suggest that the extracellular domain of gp140v-fms plays a role in regulating cell proliferation.  相似文献   

20.
fms genes encoding either wild-type or constitutively activated colony-stimulating factor 1 receptors (CSF-1R) were introduced by retroviral infection into long-term mouse lymphoid cultures. Four early pre-B-cell lines transformed by the feline v-fms oncogene underwent spontaneous and irreversible differentiation to macrophages when transferred from RPMI 1640 to Iscove modified Dulbecco medium. Expression of wild-type human CSF-1R in early pre-B cells conferred no proliferative advantage unless human CSF-1 was added to the culture medium. A clonal, factor-dependent early pre-B-cell line (D1F9), selected for continuous growth on NIH 3T3 cell feeder layers producing human CSF-1, could be maintained in RPMI 1640 medium containing interleukin-7 (IL-7) but also differentiated to macrophages when grown in Iscove modified Dulbecco medium containing human CSF-1. The macrophages retained parental immunoglobulin gene rearrangements and proviral insertions, lost B-cell antigens, expressed butyrate esterase and MAC-1, were actively phagocytic, and no longer survived in IL-7. Unlike factor-independent v-fms transformants, the irreversible commitment of D1F9 cells to differentiate in the macrophage lineage could be suppressed by IL-7, depended on human (but not mouse) CSF-1, and was inhibited by an antibody to human CSF-1R. Signals mediated by transduced CSF-1R can therefore play a deterministic role in cell differentiation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号