首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Experimental evidence suggests that the biosynthetic activity of chondrocytes is regulated primarily by the mechanical environment. In order to study the mechanisms underlying remodeling, adaptation, and degeneration of articular cartilage in a joint subjected to changing loads, it is important to know the time-dependent fluid pressure and stress-strain state in chondrocytes. The purpose of the present study was to develop a theoretical model to simulate the mechanical behaviour of articular cartilage and to describe the time-dependent stress-strain state and fluid pressure distribution in chondrocytes during cartilage deformation. It was assumed that the volume occupied by the chondrocytes is small and that cartilage can be treated as a macroscopically homogenized material with effective material properties which depend on the material properties of the cells and matrix and the volumetric fraction of the cells. Model predictions on the time-dependent distribution of fluid pressure and stress and on the time-dependent cell deformation during confined and unconfined compression tests agree with previous theoretical predictions and experimental observations. The proposed model supplies the tools to study the mechanisms of degeneration, adaptation and remodelling of cartilage associated with cell loading and deformation.  相似文献   

2.
Experiments on articular cartilage have shown nonlinear stress-strain curves under finite deformations as well as intrinsic viscous effects of the solid phase. The aim of this study was to propose a nonlinear biphasic viscohyperelastic model that combines the intrinsic viscous effects of the proteoglycan matrix with a nonlinear hyperelastic constitutive equation. The proposed equation satisfies objectivity and reduces for uniaxial loading to a solid type viscous model in which the actions of the springs are represented by the hyperelastic function proposed by Holmes and Mow [1990. J. Biomechanics 23, 1145-1156.]. Results of the model, that were efficiently implemented in an updated Lagrangian algorithm, were compared with experimental infinitesimal data reported by DiSilverstro and Suh [2001. J. Biomechanics 34, 519-525.] and showed acceptable fitting for the axial force (R(2)=0.991) and lateral displacement (R(2)=0.914) curves in unconfined compression as well as a good fitting of the axial indentation force curve (R(2)=0.982). In addition, the model showed an excellent fitting of finite-deformation confined compression stress relaxation data reported by Ateshian et al. [1997. J. Biomechanics 30, 1157-1164.] and Huang et al. [2005. J. Biomechanics 38, 799-809.] (R(2)=0.993 and R(2)=0.995, respectively). The constitutive equation may be used to represent the mechanical behavior of the proteoglycan matrix in a fiber reinforced model of articular cartilage.  相似文献   

3.
4.
Osteoarthritis (OA) is a joint disease characterized by cartilage degeneration, a thickening of subchondral bone, and formation of marginal osteophytes. Previous mechanical characterization of cartilage in our laboratory suggests that energy storage and dissipation is reduced in osteoarthritis as the extent of fibrillation and fissure formation increases. It is not clear whether the loss of energy storage and dissipation characteristics is a result of biochemical and/or biophysical changes that occur to hyaline cartilage in joints. The purpose of this study is to present data, on the strain rate dependence of the elastic and viscous behaviors of cartilage, in order to further characterize changes that occur in the mechanical properties that are associated with OA. We have previously hypothesized that the changes seen in the mechanical properties of cartilage may be due to altered mechanochemical transduction by chondrocytes. Results of incremental tensile stress-strain tests at strain rates between 100%/min and 10,000%/min conducted on OA cartilage indicate that the slope of the elastic stress-strain curve increases with increasing strain rate, unlike the reported behavior of skin and self-assembled collagen fibers. It is suggested that the strain-rate dependence of the elastic stress-strain curve is due to the presence of large quantities of proteoglycans (PGs), which protect articular cartilage by increasing the apparent stiffness. The increased apparent stiffness of articular cartilage at high strain rates may limit the stresses borne and prolong the onset of OA. It is further hypothesized that increased compressive loading of chondrocytes in the intermediate zone of articular cartilage occurs as a result of normal wear to the superficial zone or from excessive impact loading. Once the superficial zone of articular cartilage is worn away, the tension is decreased throughout all cartilage zones leading to increased chondrocyte compressive loading and up-regulation of mechanochemical transduction processes that elaborate catabolic enzymes.  相似文献   

5.
Chondrocyte shape and volumetric concentration change as a function of depth in articular cartilage. A given chondrocyte shape produces different effects on the global material properties depending on the structure of the collagen fiber network. The shape and volumetric concentration of chondrocytes in articular cartilage appear to be related to the mechanical stability of the matrix. The present study was aimed to investigate, theoretically, the effects of the structural arrangement of the collagen fiber network, and the shape and distribution of chondrocytes, on the global material behavior of articular cartilage. Articular cartilage was assumed to be a four-phasic composite comprised of a matrix (associated with the properties of the proteoglycan structure), vertically and horizontally distributed collagen fibers, and spheroidal inclusions representing chondrocytes. A solution for composite materials was used to estimate the global, effective material properties of cartilage. Only the elasticity of the solid phase was investigated in the present study. Our simulations suggest that a soft, spheroidal cell inclusion in a fiber-reinforced proteoglycan matrix affects the material properties differently depending on the shape of the spheroidal inclusions. If the long axis of the inclusions is parallel to the collagen fibers, as in the deep zone, the soft inclusions increase the stiffness of the composite in the fiber direction, and reduce the stiffness of the composite in the direction normal to the fibers. Furthermore, we found that Young's modulus normal to the contact surface increases from the superficial to the deep zone in articular cartilage by a factor of 10-50, a finding that agrees well with experimental observations. Our analysis suggests that the combination of proteoglycan matrix, fiber orientation, and shape of chondrocytes are intimately related and are likely adapted to optimize the mechanical stability and load carrying capacity of the structure.  相似文献   

6.
A long-standing challenge in the biomechanics of connective tissues (e.g., articular cartilage, ligament, tendon) has been the reported disparities between their tensile and compressive properties. In general, the intrinsic tensile properties of the solid matrices of these tissues are dictated by the collagen content and microstructural architecture, and the intrinsic compressive properties are dictated by their proteoglycan content and molecular organization as well as water content. These distinct materials give rise to a pronounced and experimentally well-documented nonlinear tension-compression stress-strain responses, as well as biphasic or intrinsic extracellular matrix viscoelastic responses. While many constitutive models of articular cartilage have captured one or more of these experimental responses, no single constitutive law has successfully described the uniaxial tensile and compressive responses of cartilage within the same framework. The objective of this study was to combine two previously proposed extensions of the biphasic theory of Mow et al. [1980, ASME J. Biomech. Eng., 102, pp. 73-84] to incorporate tension-compression nonlinearity as well as intrinsic viscoelasticity of the solid matrix of cartilage. The biphasic-conewise linear elastic model proposed by Soltz and Ateshian [2000, ASME J. Biomech. Eng., 122, pp. 576-586] and based on the bimodular stress-strain constitutive law introduced by Curnier et al. [1995, J. Elasticity, 37, pp. 1-38], as well as the biphasic poroviscoelastic model of Mak [1986, ASME J. Biomech. Eng., 108, pp. 123-130], which employs the quasi-linear viscoelastic model of Fung [1981, Biomechanics: Mechanical Properties of Living Tissues, Springer-Verlag, New York], were combined in a single model to analyze the response of cartilage to standard testing configurations. Results were compared to experimental data from the literature and it was found that a simultaneous prediction of compression and tension experiments of articular cartilage, under stress-relaxation and dynamic loading, can be achieved when properly taking into account both flow-dependent and flow-independent viscoelasticity effects, as well as tension-compression nonlinearity.  相似文献   

7.
A method for numerical solution of the continuous spectrum linear biphasic poroviscoelastic (BPVE) model of articular cartilage is presented. The method is based on an alternate formulation of the continuous spectrum stress-strain law that is implemented using Gaussian quadrature integration combined with quadratic interpolation of the strain history. For N time steps, the cost of the method is O(N). The method is applied to a finite difference solution of the one-dimensional confined compression BPVE stress-relaxation problem. For a range of relaxation times that are representative of articular cartilage, accuracy of the method is demonstrated by direct comparison to a theoretical Laplace transform solution.  相似文献   

8.
A nonlinear biphasic fiber-reinforced porohyperviscoelastic (BFPHVE) model of articular cartilage incorporating fiber reorientation effects during applied load was used to predict the response of ovine articular cartilage at relatively high strains (20%). The constitutive material parameters were determined using a coupled finite element-optimization algorithm that utilized stress relaxation indentation tests at relatively high strains. The proposed model incorporates the strain-hardening, tension-compression, permeability, and finite deformation nonlinearities that inherently exist in cartilage, and accounts for effects associated with fiber dispersion and reorientation and intrinsic viscoelasticity at relatively high strains. A new optimization cost function was used to overcome problems associated with large peak-to-peak differences between the predicted finite element and experimental loads that were due to the large strain levels utilized in the experiments. The optimized material parameters were found to be insensitive to the initial guesses. Using experimental data from the literature, the model was also able to predict both the lateral displacement and reaction force in unconfined compression, and the reaction force in an indentation test with a single set of material parameters. Finally, it was demonstrated that neglecting the effects of fiber reorientation and dispersion resulted in poorer agreement with experiments than when they were considered. There was an indication that the proposed BFPHVE model, which includes the intrinsic viscoelasticity of the nonfibrillar matrix (proteoglycan), might be used to model the behavior of cartilage up to relatively high strains (20%). The maximum percentage error between the indentation force predicted by the FE model using the optimized material parameters and that measured experimentally was 3%.  相似文献   

9.
Thorough analyses of the mechano-electrochemical interaction between articular cartilage matrix and the chondrocytes are crucial to understanding of the signal transduction mechanisms that modulate the cell metabolic activities and biosynthesis. Attempts have been made to model the chondrocytes embedded in the collagen-proteoglycan extracellular matrix to determine the distribution of local stress-strain field, fluid pressure and the time-dependent deformation of the cell. To date, these models still have not taken into account a remarkable characteristic of the cartilage extracellular matrix given rise from organization of the collagen fiber architecture, now known as the tension-compression nonlinearity (TCN) of the tissue, as well as the effect of negative charges attached to the proteoglycan molecules, and the cell cytoskeleton that interacts with mobile ions in the interstitial fluid to create osmotic and electro-kinetic events in and around the cells. In this study, we proposed a triphasic, multi-scale, finite element model incorporating the Conewise Linear Elasticity that can describe the various known coupled mechanical, electrical and chemical events, while at the same time representing the TCN of the extracellular matrix. The model was employed to perform a detailed analysis of the chondrocytes' deformational and volume responses, and to quantitatively describe the mechano-electrochemical environment of these cells. Such a model describes contributions of the known detailed micro-structural and composition of articular cartilage. Expectedly, results from model simulations showed substantial effects of the matrix TCN on the cell deformational and volume change response. A low compressive Poisson's ratio of the cartilage matrix exhibiting TCN resulted in dramatic recoiling behavior of the tissue under unconfined compression and induced significant volume change in the cell. The fixed charge density of the chondrocyte and the pericellular matrix were also found to play an important role in both the time-dependent and equilibrium deformation of the cell. The pericellular matrix tended to create a uniform osmolarity around the cell and overall amplified the cell volume change. It is concluded that the proposed model can be a useful tool that allows detailed analysis of the mechano-electrochemical interactions between the chondrocytes and its surrounding extracellular matrix, which leads to more quantitative insights in the cell mechano-transduction.  相似文献   

10.
The purpose of this investigation is to develop an accurate experimental procedure to measure the elastic properties of articular cartilage in uniaxial tension. Standardized, dumbbell shaped specimens, 250–325 μm thick, were taken from the surface, middle, and deep zones of the articular cartilage at 0°, 45°, and 90° from axis of the cleavage line pattern for the study of the zonal and directional properties of articular cartilage. A total of 75 specimens were tested to failure in this study. The use of a video dimensional analyzer system in this study makes accurate monitoring of the deformation of articular cartilage specimens possible. Nonlinear stress-strain relationships of the articular cartilage samples were mathematically approximated by exponential law similar to Fung (1967). Higher stiffness for the 0° specimens in the surface and middle zones was found. The experimental findings are in general agreement with the interpretations of low magnification scanning electron microscopy.  相似文献   

11.
The transplantation of stored shell osteochondral allografts is a potentially useful alternative to total joint replacements for the treatment of joint ailments. The maintenance of normal cartilage properties of the osteochondral allografts during storage is important for the allograft to function properly and survive in the host joint. Since articular cartilage is normally under large physiological stresses, this study was conducted to investigate the biomechanical behavior under large strain conditions of cartilage tissue stored for various time periods (i.e., 3, 7, 28, and 60 days) in tissue culture media. A biphasic large strain theory developed for soft hydrated connective tissues was used to describe and determine the biomechanical properties of the stored cartilage. It was found that articular cartilage stored for up to 60 days maintained the ability to sustain large compressive strains of up to 40 percent or more, like normal articular cartilage. Moreover, the equilibrium stress-strain behavior and compressive modulus of the stored articular cartilage were unchanged after up to 60 days of storage.  相似文献   

12.
For improving the theory of gradient microstructure of cartilage/bone interface, human distal femurs were studied. Scanning Electron Microscope (SEM), histological sections and MicroCT were used to observe, measure and model the microstructure of cartilage/bone interface. The results showed that the cartilage/bone interface is in a hierarchical structure which is composed of four different tissue layers. The interlocking of hyaline cartilage and calcified cartilage and that of calcified cartilage and subchondral bone are in the manner of “protrusion-pore” with average diameter of 17.0 μm and 34.1 μm respectively. In addition, the cancellous bone under the cartilage is also formed by four layer hierarchical structure, and the adjacent layers are connected by bone trabecula in the shape of H, I and Y, forming a complex interwoven network structure. Finally, the simplified structure model of the cartilage/bone interface was proposed according to the natural articular cartilage/bone interface. The simplified model is a 4-layer gradient biomimetic structure, which corresponds to four different tissues of natural cartilage/bone interface. The results of this work would be beneficial to the design of bionic scaffold for the tissue engineering of articular cartilage/bone.  相似文献   

13.
Mixture models have been successfully used to describe the response of articular cartilage to various loading conditions. Mow et al. (J. Biomech. Eng. 102 (1980) 73) formulated a biphasic mixture model of articular cartilage where the collagen-proteoglycan matrix is modeled as an intrinsically incompressible porous-permeable solid matrix, and the interstitial fluid is modeled as an incompressible fluid. Lai et al. (J. Biomech. Eng. 113 (1991) 245) proposed a triphasic model of articular cartilage as an extension of their biphasic theory, where negatively charged proteoglycans are modeled to be fixed to the solid matrix, and monovalent ions in the interstitial fluid are modeled as additional fluid phases. Since both models co-exist in the cartilage literature, it is useful to show how the measured properties of articular cartilage (the confined and unconfined compressive and tensile moduli, the compressive and tensile Poisson's ratios, and the shear modulus) relate to both theories. In this study, closed-form expressions are presented that relate biphasic and triphasic material properties in tension, compression and shear. These expressions are then compared to experimental findings in the literature to provide greater insight into the measured properties of articular cartilage as a function of bathing solutions salt concentrations and proteoglycan fixed-charge density.  相似文献   

14.
Knowledge of the spatial and temporal distribution of cryoprotective agent (CPA) is necessary for the cryopreservation of articular cartilage. Cartilage dehydration and shrinkage, as well as the change in extracellular osmolality, may have a significant impact on chondrocyte survival during and after CPA loading, freezing, and thawing, and during CPA unloading. In the literature, Fick's law of diffusion is commonly used to predict the spatial distribution and overall concentration of the CPA in the cartilage matrix, and the shrinkage and stress-strain in the cartilage matrix during CPA loading are neglected. In this study, we used a previously described biomechanical model to predict the spatial and temporal distributions of CPA during loading. We measured the intrinsic inhomogeneities in initial water and fixed charge densities in the cartilage using magnetic resonance imaging and introduced them into the model as initial conditions. We then compared the prediction results with the results obtained using uniform initial conditions. The simulation results in this study demonstrate the presence of a significant mechanical strain in the matrix of the cartilage, within all layers, during CPA loading. The osmotic response of the chondrocytes to the cartilage dehydration during CPA loading was also simulated. The results reveal that a transient shrinking occurs to different levels, and the chondrocytes experience a significant decrease in volume, particularly in the middle and deep zones of articular cartilage, during CPA loading.  相似文献   

15.
Articular cartilage is a biological weight-bearing tissue covering the bony ends of articulating joints. Negatively charged proteoglycan (PG) in articular cartilage is one of the main factors that govern its compressive mechanical behavior and swelling phenomenon. PG is nonuniformly distributed throughout the depth direction, and its amount or distribution may change in the degenerated articular cartilage such as osteoarthritis. In this paper, we used a 50 MHz ultrasound system to study the depth-dependent strain of articular cartilage under the osmotic loading induced by the decrease of the bathing saline concentration. The swelling-induced strains under the osmotic loading were used to determine the layered material properties of articular cartilage based on a triphasic model of the free-swelling. Fourteen cylindrical cartilage-bone samples prepared from fresh normal bovine patellae were tested in situ in this study. A layered triphasic model was proposed to describe the depth distribution of the swelling strain for the cartilage and to determine its aggregate modulus H(a) at two different layers, within which H(a) was assumed to be linearly dependent on the depth. The results showed that H(a) was 3.0+/-3.2, 7.0+/-7.4, 24.5+/-11.1 MPa at the cartilage surface, layer interface, and deep region, respectively. They are significantly different (p<0.01). The layer interface located at 70%+/-20% of the overall thickness from the uncalcified-calcified cartilage interface. Parametric analysis demonstrated that the depth-dependent distribution of the water fraction had a significant effect on the modeling results but not the fixed charge density. This study showed that high-frequency ultrasound measurement together with triphasic modeling is practical for quantifying the layered mechanical properties of articular cartilage nondestructively and has the potential for providing useful information for the detection of the early signs of osteoarthritis.  相似文献   

16.
The determination of valid stress-strain relations for articular cartilage under finite deformation conditions is a prerequisite for constructing models for synovial joint lubrication. Under physiological conditions of high strain rates and/or high stresses in the joint, large strains occur in cartilage. A finite deformation theory valid for describing cartilage, as well as other soft hydrated connective tissues under large loads, has been developed. This theory is based on the choice of a specific Helmholtz energy function which satisfies the generalized Coleman-Noll (GCN0) condition and the Baker-Ericksen (B-E) inequalities established in finite elasticity theory. In addition, the finite deformation biphasic theory includes the effects of strain-dependent porosity and permeability. These nonlinear effects are essential for properly describing the biomechanical behavior of articular cartilage, even when strain rates are low and strains are infinitesimal. The finite deformation theory describes the large strain behavior of cartilage observed in one-dimensional confined compression experiments at equilibrium, and it reduces to the linear biphasic theory under infinitesimal strain and slow strain rate conditions. Using this theory, we have determined the material coefficients of both human and bovine articular cartilages under large strain conditions at equilibrium. The theory compares very well with experimental results.  相似文献   

17.
In articular cartilage, chondrocytes are surrounded by a pericellular matrix (PCM), which together with the chondrocyte have been termed the "chondron." While the precise function of the PCM is not know there has been considerable speculation that it plays a role in regulating the biomechanical environment of the chondrocyte. In this study, we measured the Young's modulus of the PCM from normal and osteoarthritic cartilage using the micropipette aspiration technique, coupled with a newly developed axisymmetric elastic layered half-space model of the experimental configuration. Viable, intact chondrons were extracted from human articular cartilage using a new microaspiration-based isolation technique. In normal cartilage, the Young's modulus of the PCM was similar in chondrons isolated from the surface zone (68.9 +/- 18.9 kPa) as compared to the middle and deep layers (62.0 +/- 30.5 kPa). However, the mean Young's modulus of the PCM (pooled for the two zones) was significantly decreased in osteoarthritic cartilage (66.5 +/- 23.3 kPa versus 41.3 +/- 21.1 kPa, p < 0.001). In combination with previous theoretical models of cell-matrix interactions in cartilage, these findings suggest that the PCM has an important influence on the stress-strain environment of the chondrocyte that potentially varies with depth from the cartilage surface. Furthermore, the significant loss of PCM stiffness that was observed in osteoarthritic cartilage may affect the magnitude and distribution of biomechanical signals perceived by the chondrocytes.  相似文献   

18.
The function of articular cartilage is to support and distribute loads and to provide lubrication in the diarthrodial joints. Cartilage function is described by proper mechanical and rheological properties, strain and depth-dependent, which are not completely assessed. Unconfined and confined compression are commonly used to evaluate the Young's modulus (E) and the aggregate modulus (H(A)), respectively. The Poisson's ratio (nu) can be calculated indirectly from the equilibrium compression data, or using the biphasic indentation technique; it has recently been optically evaluated by using video microscopy during unconfined compression. The transient response of articular cartilage during confined compression depends on its permeability k; a constant value of k can be easily identified by a simple analytical model of confined compression tests, whereas more complex models or direct measurements (permeation tests) are needed to study the permeability dependence on deformation. A poroelastic finite element model of articular cartilage was developed for this purpose. The elastic parameters (E,nu) of the model were evaluated performing unconfined compression creep tests on human articular cartilage disks, whereas k was identified from the confined test response. Our combined experimental and computational method can be used to identify the parameters that define the permeability dependence on deformation, as a function of depth from articular surface.  相似文献   

19.
A strain energy function for finite deformations is developed that has the capability to describe the nonlinear, anisotropic, and asymmetric mechanical response that is typical of articular cartilage. In particular, the bimodular feature is employed by including strain energy terms that are only mechanically active when the corresponding fiber directions are in tension. Furthermore, the strain energy function is a polyconvex function of the deformation gradient tensor so that it meets material stability criteria. A novel feature of the model is the use of bimodular and polyconvex "strong interaction terms" for the strain invariants of orthotropic materials. Several regression analyses are performed using a hypothetical experimental dataset that captures the anisotropic and asymmetric behavior of articular cartilage. The results suggest that the main advantage of a model employing the strong interaction terms is to provide the capability for modeling anisotropic and asymmetric Poisson's ratios, as well as axial stress-axial strain responses, in tension and compression for finite deformations.  相似文献   

20.
For this study, we hypothesized that the depth-dependent compressive equilibrium properties of articular cartilage are the inherent consequence of its depth-dependent composition, and not the result of depth-dependent material properties. To test this hypothesis, our recently developed fibril-reinforced poroviscoelastic swelling model was expanded to include the influence of intra- and extra-fibrillar water content, and the influence of the solid fraction on the compressive properties of the tissue. With this model, the depth-dependent compressive equilibrium properties of articular cartilage were determined, and compared with experimental data from the literature. The typical depth-dependent behavior of articular cartilage was predicted by this model. The effective aggregate modulus was highly strain-dependent. It decreased with increasing strain for low strains, and increases with increasing strain for high strains. This effect was more pronounced with increasing distance from the articular surface. The main insight from this study is that the depth-dependent material behavior of articular cartilage can be obtained from its depth-dependent composition only. This eliminates the need for the assumption that the material properties of the different constituents themselves vary with depth. Such insights are important for understanding cartilage mechanical behavior, cartilage damage mechanisms and tissue engineering studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号