首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
Psoriasis is a chronic, inflammatory skin disease with a high incidence and recurrence; however, its exact pathogenesis and aetiology remain unclear. This study aimed to analyse the effect of the upstream negative regulator RAS-association domain family 1A (RASSF1A) on Yes-associated protein (YAP) in psoriasis. Skin lesions of 22 patients with psoriasis and 19 healthy controls were used. Human epidermal keratinocytes stimulated by M5 (IL-1α, IL-17, IL-22, TNF-α and oncostatin M) were used to establish a psoriatic cell model. BALB/c mice treated with topical imiquimod were used to establish a psoriatic mouse model. As the methylation level of RASSF1A increased, its expression in psoriatic patients and mice model decreased. Addition of the methylation inhibitor 5-Aza-CdR or RASSF1A-overexpressing lentivirus vector increased RASSF1A and reduced YAP expression; meanwhile improved skin lesions, reduced cell proliferation, induced cell cycle arrest in the G0/G1 phase, increased apoptosis, reduced inflammatory cytokines and activities of ERK, STAT3 and NF-κB signalling pathways. The results indicated that RASSF1A could play a role in the treatment of psoriasis by inhibiting YAP expression. Based on these findings, targeted drugs that can inhibit the methylation or increase the expression of RASSF1A may be useful for treating psoriasis.  相似文献   

5.
6.
肿瘤抑制因子Ras相关结构域家族成员1A(Ras association domain family 1A,RASSF1A)是Ras超家族蛋白重要的下游效应因子,具有调控自噬及凋亡的作用。自噬及凋亡是影响机体生存发育的重要生命过程,其调节紊乱与肿瘤的发生发展密切相关。本文针对RASSF1A对自噬及凋亡的调节机制及其与肿瘤发生发展之间的关系展开综述,分析翻译后修饰对于RASSF1A调节自噬及凋亡过程中功能切换的作用,探讨自噬及凋亡在肿瘤发生中的调节作用,以期为RASSF1A启动子高甲基化型肿瘤的治疗提供新思路。  相似文献   

7.
Ras association domain family protein 1A (RASSF1A) is a tumor suppressor gene silenced in cancer. Here we report that RASSF1A is a novel regulator of intestinal inflammation as Rassf1a+/−, Rassf1a−/− and an intestinal epithelial cell specific knockout mouse (Rassf1a IEC-KO) rapidly became sick following dextran sulphate sodium (DSS) administration, a chemical inducer of colitis. Rassf1a knockout mice displayed clinical symptoms of inflammatory bowel disease including: increased intestinal permeability, enhanced cytokine/chemokine production, elevated nuclear factor of kappa light polypeptide gene enhancer in B-cells (NFκB) activity, elevated colonic cell death and epithelial cell injury. Furthermore, epithelial restitution/repair was inhibited in DSS-treated Rassf1a−/− mice with reduction of several makers of proliferation including Yes associated protein (YAP)-driven proliferation. Surprisingly, tyrosine phosphorylation of YAP was detected which coincided with increased nuclear p73 association, Bax-driven epithelial cell death and p53 accumulation resulting in enhanced apoptosis and poor survival of DSS-treated Rassf1a knockout mice. We can inhibit these events and promote the survival of DSS-treated Rassf1a knockout mice with intraperitoneal injection of the c-Abl and c-Abl related protein tyrosine kinase inhibitor, imatinib/gleevec. However, p53 accumulation was not inhibited by imatinib/gleevec in the Rassf1a−/− background which revealed the importance of p53-dependent cell death during intestinal inflammation. These observations suggest that tyrosine phosphorylation of YAP (to drive p73 association and up-regulation of pro-apoptotic genes such as Bax) and accumulation of p53 are consequences of inflammation-induced injury in DSS-treated Rassf1a−/− mice. Mechanistically, we can detect robust associations of RASSF1A with membrane proximal Toll-like receptor (TLR) components to suggest that RASSF1A may function to interfere and restrict TLR-driven activation of NFκB. Failure to restrict NFκB resulted in the inflammation-induced DNA damage driven tyrosine phosphorylation of YAP, subsequent p53 accumulation and loss of intestinal epithelial homeostasis.  相似文献   

8.
Accumulation of amyloid-β-peptide (Aβ) in the brain is considered as a pathological hallmark of Alzheimer’s disease (AD). Previous studies show that p73 is vital for mediating the pathogenic process of AD. Yes-associated protein (YAP) has been shown to positively regulate p73 in promoting apoptosis induced by anti-cancer agents. However, the functional role of YAP and potential relationship between YAP and p73 in AD are unknown. In the present study, we found that YAP accelerated apoptosis in response to Aβ25–35 and the nuclear translocation of YAP was involved in cellular signals that regulated the apoptosis. Aβ25–35 induced YAP translocation from cytoplasm to nucleus accompanied with the increased phosphorylation on Y357, resulting in the enhancement of interaction between YAP and p73. Moreover, inhibition of YAP expression by small hairpin RNA (shRNA) suppressed apoptosis induced by Aβ25–35. More importantly, p73-mediated induction of Bax expression and activation were in a YAP-dependent manner. Overexpression of YAP accelerated Bax translocation, upregulated Bax expression and promoted caspase-3 activation. Taken together, our findings first demonstrated that YAP accelerated Aβ-induced apoptosis through nucleus translocation, leading to the induction of Bax expression and activation. Our results provided a potential therapeutic strategy for the treatment of AD through inhibiting YAP/p73/Bax pathway.  相似文献   

9.
Zhang H  Wu S  Xing D 《Cellular signalling》2012,24(1):224-232
Deposition of amyloid-β-peptide (Aβ) in the brain is considered a pathological hallmark of Alzheimer's disease (AD). Our previous studies show that Yes-associated protein (YAP) is involved in the regulation of apoptosis induced by Aβ25-35 through YAP nuclear translocation and its pro-apoptotic function is mediated by its interaction with p73. In the present study, we first found that Low-power laser irradiation (LPLI) promoted YAP cytoplasmic translocation and inhibited Aβ25-35-induced YAP nuclear translocation. Moreover, the cytoplasmic translocation was in an Akt-dependent manner. Activated Akt by LPLI phosphorylated YAP on ser127 (S127) and resulted in decreasing the interaction between YAP and p73, and in suppressing the proapoptotic gene bax expression following Aβ25-35 treatment. Inhibition of Akt expression by siRNA significantly abolished the effect of LPLI. More importantly, LPLI could inhibit Aβ25-35-induced cell apoptosis through activation of Akt/YAP/p73 signaling pathway. Therefore, our findings first suggest that YAP may be a therapeutic target and these results directly point to a potential therapeutic strategy for the treatment of AD through Akt/YAP/p73 signaling pathway with LPLI.  相似文献   

10.
11.
Oxidative stress serves as an important regulator of both apoptosis and metabolic reprogramming in tumor cells. Chaetocin, a histone methyltransferase inhibitor, is known to induce ROS generation. As elevating basal ROS level sensitizes glioma cells to apoptosis, the ability of Chaetocin in regulating apoptotic and metabolic adaptive responses in glioma was investigated. Chaetocin induced glioma cell apoptosis in a ROS-dependent manner. Increased intracellular ROS induced (i) Yes-associated protein 1 (YAP1) expression independent of the canonical Hippo pathway as well as (ii) ATM and JNK activation. Increased interaction of YAP1 with p73 and p300 induced apoptosis in an ATM-dependent manner. Chaetocin induced JNK modulated several metabolic parameters like glucose uptake, lactate production, ATP generation, and activity of glycolytic enzymes hexokinase and pyruvate kinase. However, JNK had no effect on ATM or YAP1 expression. Coherent with the in vitro findings, Chaetocin reduced tumor burden in heterotypic xenograft glioma mouse model. Chaetocin-treated tumors exhibited heightened ROS, pATM, YAP1 and pJNK levels. Our study highlights the coordinated control of glioma cell proliferation and metabolism by ROS through (i) ATM-YAP1-driven apoptotic pathway and (ii) JNK-regulated metabolic adaptation. The elucidation of these newfound connections and the roles played by ROS to simultaneously shift metabolic program and induce apoptosis could provide insights toward the development of new anti-glioma strategies.  相似文献   

12.
13.
Cardiomyocyte apoptosis is a common pathological injury in association with acute myocardial infarction (AMI). In the current study, the relationship between Ras-association domain family 1 (RASSF1) and cardiomyocyte apoptosis was investigated. RASSF1 was significantly over expressed in infarcted myocardial tissues as well as in cardiomyocytes induced by hypoxia. Inhibition of RASSF1 expression alleviated cardiomyocytes apoptosis induced by hypoxia in vitro and reduced cardiomyocytes apoptosis after AMI in vivo. RASSF1 expression was directly modulated by miR-125b, which was further confirmed by luciferase reporter assay. The current study verified that the miR-125b/RASSF1 axis was involved in cardiomyocytes apoptosis. To sum up, these results suggest that RASSF1 downregulation alleviated infarction-induced cardiomyocytes apoptosis and was regulated by miR-125b.  相似文献   

14.
15.
Ras association domain family (RASSF) 6 is a member of the C-terminal RASSF proteins such as RASSF1A and RASSF3. RASSF6 is involved in apoptosis in various cells under miscellaneous conditions, but it remains to be clarified how RASSF6 exerts tumor-suppressive roles. We reported previously that RASSF3 facilitates the degradation of MDM2, a major E3 ligase of p53, and stabilizes p53 to function as a tumor suppressor. In this study, we demonstrate that RASSF6 overexpression induces G1/S arrest in p53-positive cells. Its depletion prevents UV- and VP-16-induced apoptosis and G1/S arrest in HCT116 and U2OS cells. RASSF6-induced apoptosis partially depends on p53. RASSF6 binds MDM2 and facilitates its ubiquitination. RASSF6 depletion blocks the increase of p53 in response to UV exposure and up-regulation of p53 target genes. RASSF6 depletion delays DNA repair in UV- and VP-16-treated cells and increases polyploid cells after VP-16 treatment. These findings indicate that RASSF6 stabilizes p53, regulates apoptosis and the cell cycle, and functions as a tumor suppressor. Together with the previous reports regarding RASSF1A and RASSF3, the stabilization of p53 may be the common function of the C-terminal RASSF proteins.  相似文献   

16.
The tumor suppressor candidate gene Ras association domain family 1, isoform A (RASSF1A) encodes a microtubule-associated protein that is implicated in the regulation of cell proliferation, migration, and apoptosis. Several studies indicate that down-regulation of RASSF1A resulting from promoter hypermethylation is a frequent epigenetic abnormality in malignant melanoma. In this study, we report that compared with melanocytes in normal skins or benign skin lesions, RASSF1A is down-regulated in melanoma tissues as well as cell lines, and its expression negatively correlates with lymph node metastasis. Following ectopic expression in RASSF1A-deficient melanoma A375 cell line, RASSF1A reduces cell viability, suppresses cell-cycle progression but enhances apoptotic cell death. In vivo, RASSF1A expression inhibits the tumorigenic potential of A375 cells in nude mice, which also correlates with decreased cell proliferation and increased apoptosis. On the molecular level, ectopic RASSF1A expression leads to differential expression of 209 genes, including 26 down-regulated and 183 up-regulated ones. Among different signaling pathways, activation of the apoptosis signal-regulating kinase 1 (ASK1)/p38 MAP kinase signaling is essential for RASSF1A-induced mitochondrial apoptosis, and the inhibition of the Akt/p70S6 kinase/eIF4E signaling is also important for RASSF1A-mediated apoptosis and cell-cycle arrest. This is the first study exploring the biological functions and the underlying mechanisms of RASSF1A during melanoma development. It also identifies potential targets for further diagnosis and clinical therapy.  相似文献   

17.
18.
19.
Tumor cells typically resist programmed cell death (apoptosis) induced by death receptors. Activated death receptors evoke Bax conformational change, cytochrome c release, and cell death. We report that the tumor suppressor gene RASSF1A is required for death receptor-induced Bax conformational change and apoptosis. TNFalpha or TRAIL stimulation induced recruitment of RASSF1A and MAP-1 to receptor complexes and promoted complex formation between RASSF1A and the BH3-like protein MAP-1. Normally, MAP-1 is inhibited by an intramolecular interaction. RASSF1A/MAP-1 binding relieved this inhibitory interaction, resulting in MAP-1 association with Bax. Deletion of the RASSF1A gene or short hairpin silencing of either RASSF1A or MAP-1 expression blocked MAP-1/Bax interaction, Bax conformational change and mitochondrial membrane insertion, cytochrome c release, and apoptosis in response to death receptors. Our findings identify RASSF1A and MAP-1 as important components between death receptors and the apoptotic machinery and reveal a potential link between tumor suppression and death receptor signaling.  相似文献   

20.
Yes-associated protein (YAP) regulates DNA damage and chemosensitivity, as well as functioning as a pro-growth, cell size regulator. For both of its roles, regulation by phosphorylation is crucial. We undertook an in vitro screen to identify novel YAP kinases to discover new signaling pathways to better understand YAP''s function. We identified JNK1 and JNK2 as robust YAP kinases, as well as mapped multiple sites of phosphorylation. Using inhibitors and siRNA, we showed that JNK specifically phosphorylates endogenous YAP in a number of cell types. We show that YAP protects keratinocytes from UV irradiation but promotes UV-induced apoptosis in a squamous cell carcinoma. We defined the mechanism for this dual role to be YAP''s ability to bind and stabilize the pro-proliferative ΔNp63α isoform in a JNK-dependent manner. Our report indicates that an evaluation of the expression of the different isoforms of p63 and p73 is crucial in determining YAP''s function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号