首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An increasing number of folding studies of two-state proteins shows that point mutations sometimes change the kinetic m-values, leading to kinks and curves in the chevron plots. The molecular origin of these changes is yet unclear although it is speculated that they are linked to structural rearrangement of the transition state or to accumulation of meta-stable intermediates. To shed more light on this issue, we present here a combined m and phi-value analysis of the split beta-alpha-beta protein S6. Wild-type S6 displays classical two-state kinetics with v-shaped chevron plot, but a majority of its mutants display distinct m-value changes or curved chevrons. We observe that this kinetic aberration of S6 is linked to mutations that are clustered in distinct regions of the native structure. The most pronounced changes, i.e. decrease in the m-value for the unfolding rate constant, are seen upon truncation of interactions between the N and C termini, whereas mutations in the centre of the hydrophobic core show smaller or even opposed effects. As a consequence, the calculated phi-values display a systematic increase upon addition of denaturant. In the case of S6, the phenomenon seems to arise from a general plasticity of the different species on the folding pathway. That is, the structure of the denatured ensemble, the transition state, and the native ground-state for unfolding seem to change upon mutation. From these changes, it is concluded that interactions spanning the centre of the hydrophobic core form early in folding, whereas the entropically disfavoured interactions linking the N and C termini consolidate very late, mainly on the down-hill-side of the folding barrier.  相似文献   

2.
The interpretation of folding rates is often rationalized within the context of transition state theory. This means that the reaction rate is linked to an activation barrier, the height of which is determined by the free energy difference between a ground state (the starting point) and an apparent transition state. Changes in the folding kinetics are thus caused by effects on either the ground state, the transition state, or both. However, structural changes of the transition state are rarely discussed in connection with experimental data, and kinetic anomalies are commonly ascribed to ground state effects alone, e.g., depletion or accumulation of structural intermediates upon addition of denaturant. In this study, we present kinetic data which are best described by transition state changes. We also show that ground state effects and transition state effects are in general difficult to distinguish kinetically. The analysis is based on the structurally homologous proteins U1A and S6. Both proteins display two-state behavior, but there is a marked difference in their kinetics. S6 exhibits a classical V-shaped chevron plot (log observed rate constant vs denaturant concentration), whereas U1A's chevron plot is symmetrically curved, like an inverted bell curve. However, S6 is readily mutated to display U1A-like kinetics. The seemingly drastic effects of these mutations are readily ascribed to transition state movements where large kinetic differences result from relatively small alterations of a common free energy profile and broad activation barriers.  相似文献   

3.
The KIX domain of CREB binding protein (CBP) forms a small three-helix bundle which folds autonomously. Previous equilibrium unfolding experiments led to the suggestion that folding may not be strictly two-state. To investigate the folding mechanism in more detail, the folding kinetics of KIX have been studied by urea jump fluorescence-detected stopped-flow experiments. Clear evidence for an intermediate is obtained from the plot of the natural log of the observed rate constant versus denaturant concentration, the chevron plot, and from analysis of the initial fluorescence amplitudes of the stopped-flow experiments. The chevron plot exhibits a change in shape, rollover, at low denaturant concentrations, characteristic of the formation of an intermediate. The kinetic data can be fit to a three-state model involving a compact intermediate. An on-pathway model predicts that the position of the intermediate lies close to the native state. The folding rate in the absence of denaturant is 260 s(-)(1) at pH 7.5 and 25 degrees C. This is significantly slower than the rates of other helical proteins similar in size. The slow folding may be due to the necessity of forming a buried polar interaction in the native state. The potential functional significance of the folding intermediate is discussed.  相似文献   

4.
Apomyoglobin kinetic and equilibrium unfolding and folding processes were studied at pH 6.2, 11 degrees C by stopped-flow tryptophan fluorescence. There are two distinct consecutive processes in apomyoglobin folding process, namely, the protein fast transition between the unfolded (U) and an intermediate (I) states (U <----> I) and slow transition between the intermediate and the native (N) states (I <----> N). Accumulation of the intermediate state was observed in the wide range of urea concentrations. The presence of the intermediate state was shown even beyond the middle transition on the unfolding limb. The dependence of observed folding/unfolding rates on urea concentration (chevron plot) was obtained. The shape of this dependence was compared with that of two-state proteins, folding from the U to N state.  相似文献   

5.
6.
The equilibrium and kinetic folding/unfolding of apomyoglobin (ApoMb) were studied at pH 6.2, 11 °C by recording tryptophan fluorescence. The equilibrium unfolding of ApoMb in the presence of urea was shown to involve accumulation of an intermediate state, which had a higher fluorescence intensity as compared with the native and unfolded states. The folding proceeded through two kinetic phases, a rapid transition from the unfolded to the intermediate state and a slow transition from the intermediate to the native state. The accumulation of the kinetic intermediate state was observed in a wide range of urea concentrations. The intermediate was detected even in the region corresponding to the unfolding limb of the chevron plot. Urea concentration dependence was obtained for the observed folding/unfolding rate. The shape of the dependence was compared with that of two-state proteins characterized by a direct transition from the unfolded to the native state.  相似文献   

7.
Coincidental equilibrium unfolding transitions observed by multiple structural probes are taken to justify the modeling of protein unfolding as a two-state, N <==> U, cooperative process. However, for many of the large number of proteins that undergo apparently two-state equilibrium unfolding reactions, folding intermediates are detected in kinetic experiments. The small protein barstar is one such protein. Here the two-state model for equilibrium unfolding has been critically evaluated in barstar by estimating the intramolecular distance distribution by time-resolved fluorescence resonance energy transfer (TR-FRET) methods, in which fluorescence decay kinetics are analyzed by the maximum entropy method (MEM). Using a mutant form of barstar containing only Trp 53 as the fluorescence donor and a thionitrobenzoic acid moiety attached to Cys 82 as the fluorescence acceptor, the distance between the donor and acceptor has been shown to increase incrementally with increasing denaturant concentration. Although other probes, such as circular dichroism and fluorescence intensity, suggest that the labeled protein undergoes two-state equilibrium unfolding, the TR-FRET probe clearly indicates multistate equilibrium unfolding. Native protein expands progressively through a continuum of native-like forms that achieve the dimensions of a molten globule, whose heterogeneity increases with increasing denaturant concentration and which appears to be separated from the unfolded ensemble by a free energy barrier.  相似文献   

8.
S Manyusa  D Whitford 《Biochemistry》1999,38(29):9533-9540
The refolding and unfolding kinetics of a soluble domain of apocytochrome b5 extending from residue 1 to 104 have been characterized using stopped flow and equilibrium-based fluorescence methods. The isolated apoprotein unfolds reversibly in the presence of GuHCl. From cooperative unfolding curves, the conformational stability (Delta G(uw)), in the absence of denaturant, is estimated to be 11.6 +/- 1.5 kJ mol-1 at 10 degrees C. The stability of apocytochrome b5 is lower than that of the corresponding form of the holoprotein (Delta G approximately 25 kJ mol-1) and exhibits a transition midpoint at 1.6 M GuHCl. Kinetic studies support the concept of a two-state model with both unfolding and refolding rates showing an exponential dependence on denaturant concentration with no evidence of the formation of transient intermediates in either limb of the chevron plot. Apocytochrome b5 is therefore an example of a protein in which both kinetics and equilibria associated with folding are described by a two-state model. The values of mku and mkf obtained from kinetic analysis are an indication of a transition state (mku/meq of 0.29) that resembles the native form by retaining similar solvent accessibility and many of the noncovalent interactions found in the apoprotein. The changes in heat capacity support a transition state that resembles the apoprotein with a value for Delta Cpf of -3.6 kJ mol-1 K-1 estimated for the refolding reaction. From these measurements, a model of refolding that involves the rapid nucleation of hydrophobic residues around Trp26 is suggested as a major event in the formation of the native apoprotein.  相似文献   

9.
We present an experimental and computational analysis of the folding pathway of the 17th domain of chicken brain alpha-spectrin, R17. Wild-type R17 folds in a two-state manner and the chevron plot (plot of the logarithm of the observed rate constant against concentration of urea) shows essentially linear folding and unfolding arms. A number of mutant proteins, however, show a change in slope of the unfolding arm at high concentration of denaturant, hinting at complexity in the folding landscape. Through a combination of mutational studies and high temperature molecular dynamics simulations we show that the folding of R17 can be described by a model with two sequential transition states separated by an intermediate species. The rate limiting transition state for folding in water has been characterized both through experimental Phi-value analysis and by simulation. In contrast, a detailed analysis of the transition state predicted to dominate under highly denaturing conditions is only possible by simulation.  相似文献   

10.
Krantz BA  Sosnick TR 《Biochemistry》2000,39(38):11696-11701
Conflicting results exist regarding whether the folding of mammalian ubiquitin at 25 degrees C is a simple, two-state kinetic process or a more complex, three-state process with a defined kinetic intermediate. We have measured folding rate constants up to about 1000 s(-1) using conventional rapid mixing methods in single-jump, double-jump, and continuous-flow modes. The linear dependence of folding rates on denaturant concentration and the lack of an unaccounted "burst-phase" change for the fluorescence signal indicate that a two-state folding model is adequate to describe the folding pathway. This behavior also is seen for folding in the presence of the stabilizing additives 0.23 M sodium sulfate and 1 M sodium chloride. These results stress the need for caution in interpreting deviations from ideal two-state "chevron" behavior when folding is heterogeneous or folding rate constants are near the detection limit.  相似文献   

11.
To search for folding intermediates, we have examined the folding and unfolding kinetics of wild-type barnase and four representative mutants under a wide range of conditions that span two-state and multi-state kinetics. The choice of mutants and conditions provided in-built controls for artifacts that might distort the interpretation of kinetics, such as the non-linearity of kinetic and equilibrium data with concentration of denaturant. We measured unfolding rate constants over a complete range of denaturant concentration by using by 1H/2H-exchange kinetics under conditions that favour folding, conventional stopped-flow methods at higher denaturant concentrations and continuous flow. Under conditions that favour multi-state kinetics, plots of the rate constants for unfolding against denaturant concentration fitted quantitatively to the equation for three-state kinetics, with a sigmoid component for a change of rate determining step, as did the refolding kinetics. The position of the transition state on the reaction pathway, as measured by solvent exposure (the Tanford beta value) also moved with denaturant concentration, fitting quantitatively to the same equations with a change of rate determining step. The sigmoid behaviour disappeared under conditions that favoured two-state kinetics. Those data combined with direct structural observations and simulation support a minimal reaction pathway for the folding of barnase that involves two detectable folding intermediates. The first intermediate, I(1), is the denatured state under physiological conditions, D(Phys), which has native-like topology, is lower in energy than the random-flight denatured state U and is suggested by molecular dynamics simulation of unfolding to be on-pathway. The second intermediate, I(2), is high energy, and is proven by the change in rate determining step in the unfolding kinetics to be on-pathway. The change in rate determining step in unfolding with structure or environment reflects the change in partitioning of this intermediate to products or starting materials.  相似文献   

12.
ORF56 is a plasmid-encoded protein from Sulfolobus islandicus, which probably controls the copy number of the pRN1 plasmid by binding to its own promotor. The protein showed an extremely high stability in denaturant, heat, and pH-induced unfolding transitions, which can be well described by a two-state reaction between native dimers and unfolded monomers. The homodimeric character of native ORF56 was confirmed by analytical ultracentrifugation. Far-UV circular dichroism and fluorescence spectroscopy gave superimposable denaturant-induced unfolding transitions and the midpoints of both heat as well as denaturant-induced unfolding depend on the protein concentration supporting the two-state model. This model was confirmed by GdmSCN-induced unfolding monitored by heteronuclear 2D NMR spectroscopy. Chemical denaturation was accomplished by GdmCl and GdmSCN, revealing a Gibbs free energy of stabilization of -85.1 kJ/mol at 25 degrees C. Thermal unfolding was possible only above 1 M GdmCl, which shifted the melting temperature (t(m)) below the boiling point of water. Linear extrapolation of t(m) to 0 M GdmCl yielded a t(m) of 107.5 degrees C (5 microM monomer concentration). Additionally, ORF56 remains natively structured over a remarkable pH range from pH 2 to pH 12. Folding kinetics were followed by far-UV CD and fluorescence after either stopped-flow or manual mixing. All kinetic traces showed only a single phase and the two probes revealed coincident folding rates (k(f), k(u)), indicating the absence of intermediates. Apparent first-order refolding rates depend linearly on the protein concentration, whereas the unfolding rates do not. Both lnk(f) and lnk(u) depend linearly on the GdmCl concentration. Together, folding and association of homodimeric ORF56 are concurrent events. In the absence of denaturant ORF56 refolds fast (7.0 x 10(7)M(-1)s(-1)) and unfolds extremely slowly (5.7 year(-1)). Therefore, high stability is coupled to a slow unfolding rate, which is often observed for proteins of extremophilic organisms.  相似文献   

13.
We present the first single-molecule atomic force microscopy study on the effect of chemical denaturants on the mechanical folding/unfolding kinetics of a small protein GB1 (the B1 immunoglobulin-binding domain of protein G from Streptococcus). Upon increasing the concentration of the chemical denaturant guanidinium chloride (GdmCl), we observed a systematic decrease in the mechanical stability of GB1, indicating the softening effect of the chemical denaturant on the mechanical stability of proteins. This mechanical softening effect originates from the reduced free-energy barrier between the folded state and the unfolding transition state, which decreases linearly as a function of the denaturant concentration. Chemical denaturants, however, do not alter the mechanical unfolding pathway or shift the position of the transition state for mechanical unfolding. We also found that the folding rate constant of GB1 is slowed down by GdmCl in mechanical folding experiments. By combining the mechanical folding/unfolding kinetics of GB1 in GdmCl solution, we developed the “mechanical chevron plot” as a general tool to understand how chemical denaturants influence the mechanical folding/unfolding kinetics and free-energy diagram in a quantitative fashion. This study demonstrates great potential in combining chemical denaturation with single-molecule atomic force microscopy techniques to reveal invaluable information on the energy landscape underlying protein folding/unfolding reactions.  相似文献   

14.
Folding and stability of trp aporepressor from Escherichia coli   总被引:12,自引:0,他引:12  
Equilibrium and kinetic studies of the urea-induced unfolding of trp aporepressor from Escherichia coli were performed to probe the folding mechanism of this intertwined, dimeric protein. The equilibrium unfolding transitions at pH 7.6 and 25 degrees C monitored by difference absorbance, fluorescence, and circular dichroism spectroscopy are coincident within experimental error. All three transitions are well described by a two-state model involving the native dimer and the unfolded monomer; the free energy of folding in the absence of denaturant and under standard-state conditions is estimated to be 23.3 +/- 0.9 kcal/mol of dimer. The midpoint of the equilibrium unfolding transition increases with increasing protein concentration in the manner expected from the law of mass action for the two-state model. We find no evidence for stable folding intermediates. Kinetic studies reveal that unfolding is governed by a single first-order reaction whose relaxation time decreases exponentially with increasing urea concentration and also decreases with increasing protein concentration in the transition zone. Refolding involves at least three phases that depend on both the protein concentration and the final urea concentration in a complex manner. The relaxation time of the slowest of these refolding phases is identical with that for the single phase in unfolding in the transition zone, consistent with the results expected for a reaction that is kinetically reversible. The two faster refolding phases are presumed to arise from slow isomerization reactions in the unfolded form and reflect parallel folding channels.  相似文献   

15.
Sasahara K  Nitta K 《Proteins》2006,63(1):127-135
The equilibrium and kinetics of folding of hen egg-white lysozyme were studied by means of CD spectroscopy in the presence of varying concentrations of ethanol under acidic condition. The equilibrium transition curves of guanidine hydrochloride-induced unfolding in 13 and 26% (v/v) ethanol have shown that the unfolding significantly deviates from a two-state mechanism. The kinetics of denaturant-induced refolding and unfolding of hen egg-white lysozyme were investigated by stopped-flow CD at three ethanol concentrations: 0, 13, and 26% (v/v). Immediately after dilution of the denaturant, the refolding curves showed a biphasic time course in the far-UV region, with a burst phase with a significant secondary structure and a slower observable phase. However, when monitored by the near-UV CD, the burst phase was not observed and all refolding kinetics were monophasic. To clarify the effect of nonnative secondary structure induced by the addition of ethanol on the folding/unfolding kinetics, the kinetic m values were estimated from the chevron plots obtained for the three ethanol concentrations. The data indicated that the folding/unfolding kinetics of hen lysozyme in the presence of varying concentrations of ethanol under acidic condition is explained by a model with both on-pathway and off-pathway intermediates of protein folding.  相似文献   

16.
We exploit the availability of recent experimental data on a variety of proteins to develop a Web-based prediction algorithm (BPPred) to calculate several biophysical parameters commonly used to describe the folding process. These parameters include the equilibrium m-values, the length of proteins, and the changes upon unfolding in the solvent-accessible surface area, in the heat capacity, and in the radius of gyration. We also show that the knowledge of any one of these quantities allows an estimate of the others to be obtained, and describe the confidence limits with which these estimations can be made. Furthermore, we discuss how the kinetic m-values, or the Beta Tanford values, may provide an estimate of the solvent-accessible surface area and the radius of gyration of the transition state for protein folding. Taken together, these results suggest that BPPred should represent a valuable tool for interpreting experimental measurements, as well as the results of molecular dynamics simulations.  相似文献   

17.
The chemical unfolding transition of a protein was simulated, including the presence of an intermediate (I) in equilibrium with the native (N) and unfolded (U) states. The calculations included free energies of unfolding, DeltaGuw, in the range of 1.4 kcal/mol to 10 kcal/mol and three different global m-values. The simulations included a broad range of equilibrium constants for the N left arrow over right arrow I process. The dependence of the N <--> I equilibrium on the concentration of denaturant was also included in the simulations. Apparent DeltaGuw and m-values were obtained from the simulated unfolding transitions by fitting the data to a two-state unfolding process. The potential errors were calculated for two typical experimental situations: 1) the unfolding is monitored by a physical property that does not distinguish between native and intermediate states (case I), and 2) the physical property does not distinguish between intermediate and unfolded states (case II). The results obtained indicated that in the presence of an intermediate, and in both experimental situations, the free energy of unfolding and the m-values could be largely underestimated. The errors in DeltaGuw and m-values do not depend on the m-values that characterize the global N <--> U transition. They are dependent on the equilibrium constant for the N <--> I transition and its characteristic m1-value. The extent of the underestimation increases for higher energies of unfolding. Including no random error in the simulations, it was estimated that the underestimation in DeltaGuw could range between 25% and 35% for unfolding transitions of 3-10 kcal/mol (case I). In case II, the underestimation in DeltaGuw could be even larger than in case I. In the same energy range, a 50% error in the m-value could also take place. The fact that most of the mutant proteins are characterized by both a lower m-value and a lower stability than the wild-type protein suggests that in some cases the results could have been underestimated due to the application of the two-state assumption.  相似文献   

18.
We use two simple models and the energy landscape perspective to study protein folding kinetics. A major challenge has been to use the landscape perspective to interpret experimental data, which requires ensemble averaging over the microscopic trajectories usually observed in such models. Here, because of the simplicity of the model, this can be achieved. The kinetics of protein folding falls into two classes: multiple-exponential and two-state (single-exponential) kinetics. Experiments show that two-state relaxation times have “chevron plot” dependences on denaturant and non-Arrhenius dependences on temperature. We find that HP and HP+ models can account for these behaviors. The HP model often gives bumpy landscapes with many kinetic traps and multiple-exponental behavior, whereas the HP+ model gives more smooth funnels and two-state behavior. Multiple-exponential kinetics often involves fast collapse into kinetic traps and slower barrier climbing out of the traps. Two-state kinetics often involves entropic barriers where conformational searching limits the folding speed. Transition states and activation barriers need not define a single conformation; they can involve a broad ensemble of the conformations searched on the way to the native state. We find that unfolding is not always a direct reversal of the folding process. Proteins 30:2–33, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

19.
The helical bacterial immunity proteins Im7 and Im9 have been shown to fold via kinetic mechanisms of differing complexity, despite having 60 % sequence identity. At pH 7.0 and 10 degrees C, Im7 folds in a three-state mechanism involving an on-pathway intermediate, while Im9 folds in an apparent two-state transition. In order to examine the folding mechanisms of these proteins in more detail, the folding kinetics of both Im7 and Im9 (at 10 degrees C in 0.4 M sodium sulphate) have been examined as a function of pH. Kinetic modelling of the folding and unfolding data for Im7 between pH 5.0 and 8.0 shows that the on-pathway intermediate is stabilised by more acidic conditions, whilst the native state is destabilised. The opposing effect of pH on the stability of these states results in a significant population of the intermediate at equilibrium at pH 6.0 and below. At pH 7.0, the folding and unfolding kinetics for Im9 can be fitted adequately by a two-state model, in accord with previous results. However, under acidic conditions there is a clear change of slope in the plot of the logarithm of the folding rate constant versus denaturant concentration, consistent with the population of one or more intermediate(s) early during folding. The kinetic data for Im9 at these pH values can be fitted to a three-state model, where the intermediate ensemble is stabilised and the native state destabilised as the pH is reduced, rationalising previous results that showed that an intermediate is not observed experimentally at pH 7.0. The data suggest that intermediate formation is a general step in immunity protein folding and demonstrate that it is necessary to explore a wide range of refolding conditions in order to show that intermediates do not form in the folding of other small, single-domain proteins.  相似文献   

20.
Understanding the origins of cooperativity in proteins remains an important topic in protein folding. This study describes experimental folding/unfolding equilibrium and kinetic studies of the engineered protein Ubq-UIM, consisting of ubiquitin (Ubq) fused to the sequence of the ubiquitin interacting motif (UIM) via a short linker. Urea-induced folding/unfolding profiles of Ubq-UIM were monitored by far-UV circular dichroism and fluorescence spectroscopies and compared to those of the isolated Ubq domain. It was found that the equilibrium data for Ubq-UIM is inconsistent with a two-state model. Analysis of the kinetics of folding shows similarity in the folding transition state ensemble between Ubq and Ubq-UIM, suggesting that formation of Ubq domain is independent of UIM. The major contribution to the stabilization of Ubq-UIM, relative to Ubq, was found to be in the rates of unfolding. Moreover, it was found that the kinetic m-values for Ubq-UIM unfolding, monitored by different probes (far-UV circular dichroism and fluorescence spectroscopies), are different; thereby, further supporting deviations from a two-state behavior. A thermodynamic linkage model that involves four states was found to be applicable to the urea-induced unfolding of Ubq-UIM, which is in agreement with the previous temperature-induced unfolding study. The applicability of the model was further supported by site-directed variants of Ubq-UIM that have altered stabilities of Ubq/UIM interface and/or stabilities of individual Ubq- and UIM-domains. All variants show increased cooperativity and one variant, E43N_Ubq-UIM, appears to behave very close to an equilibrium two-state.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号