首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
1. The trimethylamine dehydrogenase of bacterium 4B6 was purified to homogeneity as judged by analytical polyacrylamide-gel electrophoresis. The specific activity of the purified enzyme is 30-fold higher than that of crude sonic extracts. 2. The molecular weight of the enzyme is 161000. 3. The kinetic properties of the purified enzyme were studied by using an anaerobic spectrophotometric assay method allowing the determination of trimethylamine dehydrogenase activity at pH8.5, the optimum pH. The apparent K(m) for trimethylamine is 2.0+/-0.3mum and the apparent K(m) for the primary hydrogen acceptor, phenazine methosulphate, is 1.25mm. 4. Of 13 hydrogen acceptors tested, only Brilliant Cresyl Blue and Methylene Blue replace phenazine methosulphate. 5. A number of secondary and tertiary amines with N-methyl and/or N-ethyl groups are oxidized by the purified enzyme; primary amines and quaternary ammonium salts are not oxidized. Of the compounds that are oxidized by the purified enzyme, only trimethylamine and ethyldimethylamine support the growth of bacterium 4B6. 6. Trimethylamine dehydrogenase catalyses the anaerobic oxidative N-demethylation of trimethylamine with the formation of stoicheiometric amounts of dimethylamine and formaldehyde. Ethyldimethylamine is also oxidatively N-demethylated yielding ethylmethylamine and formaldehyde; diethylamine is oxidatively N-de-ethylated. 7. The activity of the purified enzyme is unaffected by chelating agents and carbonyl reagents, but is inhibited by some thiol-binding reagents and by Cu(2+), Co(2+), Ni(2+), Ag(+) and Hg(2+). Trimethylamine dehydrogenase activity is potently inhibited by trimethylsulphonium chloride, by tetramethylammonium chloride and other quaternary ammonium salts, and by monoamine oxidase inhibitors of the substituted hydrazine and the non-hydrazine types. 8. Inhibition by the substituted hydrazines is time-dependent, is prevented by the presence of trimethylamine or trimethylamine analogues and in some cases requires the presence of the hydrogen acceptor phenazine methosulphate. The inhibition was irreversible with the four substituted hydrazines that were tested.  相似文献   

2.
1. An improved procedure is reported for purification of the amine dehydrogenase from methylamine-grown Pseudomonas AM1 which yielded a product homogeneous by sedimentation and disc-electrophoretic analysis, with molecular weight of 133000. 2. The purified enzyme had absorption maxima at 280 and 430nm. On aging, a third peak appeared at 325nm, and the 430nm peak decreased in intensity. This spectrum was independent of pH. 3. Addition of 2.5mm-semicarbazide, phenylhydrazine, hydrazine or hydroxylamine produced modified spectra with maxima respectively at 400, 440, 395 and 425nm. 4. Aerobic addition of methylamine resulted in a bleaching of the 430nm peak and the appearance of a new one at 325nm. This spectral change was retained after removal of the methylamine by dialysis. The original spectrum could be restored on addition of phenazine methosulphate. 5. Addition of borohydride partially inactivated the enzyme and produced spectral changes similar to those observed with methylamine. Pre-treatment with methylamine prevented the inactivation by borohydride. The degree of inactivation could be increased by alternate phenazine methosulphate and borohydride treatments. 6. The addition of methylamine or borohydride each caused shifts in the fluorescence emission maximum from 348 to 380nm. 7. Lineweaver-Burk plots of reciprocal activity against reciprocal concentration of either of the substrates n-butylamine or phenazine methosulphate were consistent with a mechanism that involves interconversion of two free forms of the enzyme by the two substrates. 8. The enzyme, although spectrally modified, was not inactivated by dialysis against diethyldithiocarbamate, and contained about 0.27 g-atom of copper/mol, with small traces of cobalt, iron and zinc. 9. Conventional methods of resolution did not release the prosthetic group. Heat denaturation after treatment of the enzyme with methylamine liberated a yellow chromophore which did not reactivate resolved aspartate aminotransferase, and whose spectral, electrophoretic and fluorescence properties did not agree with any recognizable pyridoxal derivatives. 10. Despite the inconclusive results with the isolated chromophore, the observations on the enzyme suggest that it may contain a pyridoxal derivative bound as a Schiff's base which is converted into the pyridoxamine form on aerobic treatment with methylamine and reconverted into the pyridoxal form with phenazine methosulphate. 11. The copper detected is probably not involved in the enzyme mechanism, since most copper-chelating agents are not inhibitory, and since the enzyme does not react with oxygen.  相似文献   

3.
Methylamine dehydrogenase from Paracoccus denitrificans was purified to homogeneity in two steps from the periplasmic fraction of methylamine-grown cells. The enzyme exhibited a pI value of 4.3 and was composed of two 46,700-dalton subunits and two 15,500-dalton subunits. Each small subunit possessed a covalently bound pyrrolo-quinoline quinone prosthetic group. The amino acid compositions of the large and small subunits are very similar to those of other methylamine dehydrogenases which have been isolated from taxonomically different sources. The enzyme was able to catalyze the oxidation of a wide variety of primary aliphatic amines and diamines, but it did not react with secondary, tertiary, or aromatic amines. The enzyme exhibited optimal activity at pH 7.5, with Km values of 12.5 microM for methylamine and 156 microM for phenazine ethosulfate and a Vmax of 16.9 mumol/min per mg of protein. No loss of enzyme activity was observed after incubation for 48 h at pH values ranging from 3.0 to 10.5, and the enzyme was very stable to thermal denaturation. Enzyme activity and immunological detection of each subunit were only observed with cells which had been grown on methylamine as a carbon source.  相似文献   

4.
Trimethylamine metabolism in obligate and facultative methylotrophs   总被引:13,自引:6,他引:7  
1. Twelve bacterial isolates that grow with trimethylamine as sole source of carbon and energy were obtained in pure culture. All the isolates grow on methylamine, dimethylamine and trimethylamine. One isolate, bacterium 4B6, grows only on these methylamines whereas another isolate, bacterium C2A1, also grows on methanol but neither grows on methane; these two organisms are obligate methylotrophs. The other ten isolates grow on a variety of C(i) and other organic compounds and are therefore facultative methylotrophs. 2. Washed suspensions of the obligate methylotrophs bacteria 4B6 and C2A1, and of the facultative methylotrophs bacterium 5B1 and Pseudomonas 3A2, all grown on trimethylamine, oxidize trimethylamine, dimethylamine, formaldehyde and formate; only bacterium 5B1 and Ps. 3A2 oxidize trimethylamine N-oxide; only bacterium 4B6 does not oxidize methylamine. 3. Cell-free extracts of trimethylamine-grown bacteria 4B6 and C2A1 contain a trimethylamine dehydrogenase that requires phenazine methosulphate as primary hydrogen acceptor, and evidence is presented that this enzyme is important for the growth of bacterium 4B6 on trimethylamine. 4. Cell-free extracts of eight facultative methylotrophs, including bacterium 5B1 and Ps. 3A2, do not contain trimethylamine dehydrogenase but contain instead a trimethylamine monooxygenase and trimethylamine N-oxide demethylase. It is concluded that two different pathways for the oxidation of trimethylamine occur amongst the isolates.  相似文献   

5.
1. Extracts of amine-grown Pseudomonas aminovorans contained a particle-bound N-methylglutamate dehydrogenase (EC 1.5.99.5). The enzyme was not present in succinate-grown cells, and activity appeared before growth began in succinate-grown cells which had been transferred to methylamine growth medium. 2. Membrane-containing preparations from methylamine-grown cells catalysed an N-methylglutamate-dependent uptake of O2 or reduction of cytochrome c, which was sensitive to inhibitors of the electron-transport chain. 3. N-Methylglutamate dehydrogenase activity with phenazine methosulphate or 2,6-dichlorophenol-indophenol as electron acceptor could be solubilized with 1% (w/v) Triton X-100. The solubilized enzyme was much less active with cytochrome c as electron acceptor and did not sediment in 1 h at 150000g. Solubilization was accompanied by a change in the pH optimum for activity. 4. The solubilized enzyme was partially purified by Sepharose 4B and hydroxyapatite chromatograpy to yield a preparation 22-fold increased in specific activity over the crude extract. 5. The partially-purified enzyme was active with sarcosine, N-methylalanine and N-methylaspartate as well as with N-methylglutamate. Evidence suggesting activity with N-methyl D-amino acids as well as with the L-forms was obtained. 6. The enzyme was inhibited by p-chloromercuribenzoate, iodoacetamide and by both ionic and non-ionic detergents. 2-Oxoglutarate and formaldehyde were also inhibitors. 7. Kinetic analysis confirmed previous workers' observations of a group transfer (Ping Pong) mechanism. 8. Spectral observations suggested that the partially purified preparation contained flavoprotein and a b-type cytochrome. 9. The role of the enzyme in the oxidation of methylamine is discussed.  相似文献   

6.
A steady-state kinetic analysis was performed of the reaction of methylamine and phenazine ethosulphate (PES) with the quinoprotein methylamine dehydrogenase from Paracoccus denitrificans. Experiments with methylamine and PES as varied-concentration substrates produced a series of parallel reciprocal plots, and when the concentrations of these substrates were varied in a constant ratio a linear reciprocal plot of initial velocity against PES concentration was obtained. Nearly identical values of V/Km of PES were obtained with four different n-alkylamines. These data suggest that this reaction proceeds by a ping-pong type of mechanism. The enzyme reacted with a variety of n-alkylamines but not with secondary, tertiary or aromatic amines or amino acids. The substrate specificity was dictated primarily by the Km value exhibited by the particular amine. A deuterium kinetic isotope effect was observed with deuterated methylamine as a substrate. The enzyme exhibited a pH optimum for V at pH 7.5. The absorbance spectrum of the pyrroloquinoline quinone prosthetic group of this enzyme was also effected by pH at values greater than 7.5. The enzyme was relatively insensitive to changes in ionic strength, and exhibited a linear Arrhenius plot over a range of temperatures from 10 degrees C to 50 degrees C with an energy of activation 46 kJ/mol (11 kcal/mol).  相似文献   

7.
It had been previously reported that aromatic amines were not substrates for the bacterial quinoprotein methylamine dehydrogenase. In this study, benzylamine-dependent activity was also not observed in the steady-state assay of this enzyme with the artificial electron acceptor phenazine ethosulfate (PES). Benzylamines did, however, stoichiometrically reduce the protein-bound tryptophan tryptophylquinone (TTQ) prosthetic group and acted as reversible competitive inhibitors of methylamine oxidation when the enzyme was assayed with PES. When methylamine dehydrogenase activity was monitored using a steady-state assay which employed its physiological electron acceptor amicyanin instead of PES, very low but detectable benzylamine-dependent activity was observed. The reactions of a series of para-substituted benzylamines with methylamine dehydrogenase were examined. A Hammett plot of the log of Ki values for the competitive inhibition by these amines against sigma p exhibited a negative slope. Rapid kinetic measurements allowed the determination of values of k3 and Ks for the reduction of TTQ by each of these amines. A Hammett plot of log k3 versus sigma p exhibited a positive slope, which suggests that the oxidation of these amines by methylamine dehydrogenase proceeds through a carbanionic reaction intermediate. A negative slope was observed for the correlation between log Ks and sigma p. Plots of log k3 and log Ks against substituent constants which reflected either resonance or field/inductive parameters for each para substituent indicated that the magnitude of k3 was primarily influenced by field/inductive effects while Ks was primarily influenced by resonance effects. No correlation was observed between either k3 or Ks and the relative hydrophobicity of the para-substituted benzylamines or steric parameters.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
1. The effects of 2-oxo-4-methylpentanoate, 2-oxo-3-methylbutanoate and 2-oxo-3-methylpentanoate on the activity of pyruvate dehydrogenase (EC 1.2.4.1), citrate synthase (EC 4.1.3.7), acetyl-CoA carboxylase, (EC 6.4.1.2) and fatty acid synthetase derived from the brains of 14-day-old rats were investigated. 2. The pyruvate dehydrogenase enzyme activity was competitively inhibited by 2-oxo-3-methylbutanoate with respect to pyruvate with a K(i) of 2.04mm but was unaffected by 2-oxo-4-methylpentanoate or 2-oxo-3-methylpentanoate. 3. The citrate synthase activity was inhibited competitively (with respect to acetyl-CoA) by 2-oxo-4-methylpentanoate (K(i)~7.2mm) and 2-oxo-3-methylbutanoate (K(i)~14.9mm) but not by 2-oxo-3-methylpentanoate. 4. The acetyl-CoA carboxylase activity was not inhibited significantly by any of the 2-oxo acids investigated. 5. The fatty acid synthetase activity was competitively inhibited (with respect to acetyl-CoA) by 2-oxo-4-methylpentanoate (K(i)~930mum) and 2-oxo-3-methylpentanoate (K(i)~3.45mm) but not by 2-oxo-3-methylbutanoate. 6. Preliminary experiments indicate that 2-oxo-4-methylpentanoate and 2-oxo-3-phenylpropionate (phenylpyruvate) significantly inhibit the ability of intact brain mitochondria from 14-day-old rats to oxidize pyruvate. 7. The results are discussed with reference to phenylketonuria and maple-syrup-urine disease. A biochemical mechanism is proposed to explain the characteristics of these diseases.  相似文献   

9.
V L Davidson  L H Jones 《Biochemistry》1991,30(7):1924-1928
Cyclopropylamine acted as a mechanism-based inhibitor of the quinoprotein methylamine dehydrogenase from Paracoccus denitrificans. The protein-bound quinone cofactor of this enzyme was rapidly reduced by addition of a stoichiometric amount of cyclopropylamine, but this compound did not serve as a substrate for the enzyme in the steady-state kinetic assay. Time-dependent inactivation of the enzyme by cyclopropylamine was observed only in the presence of a reoxidant. Saturation behavior was observed, and values of KI of 3.9 microM and K(inact) of 1.7 min-1 were determined. Enzyme inactivation was irreversible, as no restoration of activity was evident after gel filtration of methylamine dehydrogenase which had been incubated with cyclopropylamine in the presence of a reoxidant. The inactivated enzyme exhibited an altered absorption spectrum. Electrophoretic analysis of inactivated methylamine dehydrogenase indicated that covalent cross-linking of the alpha and beta subunits of this alpha 2 beta 2 oligomeric enzyme had occurred and that the quinone cofactor had been modified. A mechanism for this inhibition is proposed which is based upon the data presented and is consistent with the available structural information on methylamine dehydrogenase.  相似文献   

10.
A novel, pyridine-nucleotide-inducible formaldehyde dehydrogenase activity was detected in cells ofPseudomonas sp. (RJ) propagated on methylamine and oxalate. The pH optimum of the dehydrogenase was 7.0. Dichlorophenol-indophenol or potassium ferricyanide served as an electron acceptor. The rate of reduction of these electron acceptors was shown to be stimulated by phenazine methosulfate. The dehydrogenase was inhibited by parahydroxymercuric benzoate and iodoacetamide. This inhibition suggests that the enzyme contains sulfhydryl groups. The stoichiometry of the reaction in terms of oxygen uptake to formate formation was 0.5, which agrees with the theoretical value.  相似文献   

11.
1. Crude extracts of Pseudomonas aminovorans grown on methylamine, di-methylamine, trimethylamine or trimethylamine N-oxide contain an enzyme or enzyme system catalysing the NADH- or NADPH- and oxygen-dependent oxidation of dimethylamine to methylamine and formaldehyde. 2. The enzyme has been partially purified about five-fold. It is unstable, but can be stabilized by addition of 5% (v/v) ethanol. 3. The partially purified enzyme will utilize either NADH (K(m) 6.5mum) or NADPH (K(m) 13.2mum): The following secondary amines have been shown to be substrates: dimethylamine, ethylmethylamine, diethylamine, methyl-n-propylamine, ethyl-n-propylamine, n-butylmethylamine and N-methylethanolamine. The K(m) values and comparative reaction rates for each substrate have been determined. Where the alkyl groups are different, the aldehyde products are derived from both groups. 4. The enzyme system has a pH optimum of 6.8 and is inhibited by mercurials, thiol compounds, cyanide and carbon monoxide. 5. The partially purified preparation had a spectral maximum at 412nm with shoulders at 427 and 550nm. Reduction with dithionite or NAD(P)H bleached the 412nm peak, and the shoulder at 427nm became a peak. Additional peaks appeared at 550 and 580-588nm. Reduction of a preparation bubbled with carbon monoxide enhanced and sharpened the Soret peak and caused it to shift to 422nm. 6. Analysis of the preparation showed the presence of flavin, acid-extractable iron and non-acid-extractable iron in the proportion 1.1:1.9:1. On reduction with dithionite or NADPH the preparation showed an electron-paramagnetic-resonance signal at around g=1.946.  相似文献   

12.
1. No primary hydrogen acceptor other than phenazine methosulphate has been found for the alcohol dehydrogenase from Pseudomonas sp. M27. 2. None of a wide range of vitamins or cofactors has any effect on the activity of the enzyme. 3. The enzyme is far less sensitive to metal-chelating agents and thiol reagents than are other alcohol dehydrogenases. 4. Methanol is oxidized at least as fast as other alcohols by this enzyme and its well-defined substrate specificity is different from that of other alcohol dehydrogenases. Only primary alcohols are oxidized; the general formula for an oxidizable substrate is R.CH(2).OH, where R may be H or [Formula: see text] 5. Whole organisms oxidize only those alcohols that are oxidized by the isolated enzyme.  相似文献   

13.
An extracellular enzyme from culture filtrates of Sporotrichum (Chrysosporium) thermophile (A.T.C.C. 42 464) after growth on cellulose or cellobiose was shown to oxidize cellobiose to cellobionic acid in vitro. Lactose and cellodextrins were also efficiently oxidized, but the enzyme was not active against most mono- and di-saccharides. Several redox substances could act as electron acceptors, but molecular oxygen, tetrazolium salts and NAD(P) were not reduced. Activity was stimulated up to 2-fold in the presence of 0.05 M-Mg2+. The pH optimum of the enzymic reaction was acidic when the activity was tested with dichlorophenol-indophenol or Methylene Blue, but was neutral to alkaline for 3,5-di-t-butyl-1,2-benzoquinone or phenazine methosulphate as electron acceptors. As the enzyme was formed inductively in parallel with the endocellulase, its possible function in relation to cellulolysis is discussed.  相似文献   

14.
Intermediate electron-acceptors in quantitative cytochemistry   总被引:1,自引:0,他引:1  
Summary The efficacy of Meldola Blue (MB), a new intermediate electronacceptor, has been compared with that of phenazine methosulphate (PMS) in the assay of oxidoreductase activity in cryostat sections; various tetrazolium salts have been used as the final electron-acceptors. Three enzymes: succinate dehydrogenase, glucose 6-phosphate dehydrogenase and lactate dehydrogenase were investigated, the activity in sections being quantitated by scanning and integrating microdensitometry. Phenazine methosulphate was superior to Meldola Blue in transferring reducing equivalents from reduced coenzyme to all the tetrazolium salts examined.  相似文献   

15.
1. The choline dehydrogenase (EC 1.1.99.1) WAS SOLUBILIZED FROM ACETONE-DRIED POWDERS OF RAT LIVER MITOCHONDRIA BY TREATMENT WITH Naja naja venom. 2. The kinetics of the reaction of enzyme with phenazine methosulphate and ubiquinone-2 as electron acceptors were investigated. 3. With both electron acceptors the reaction mechanism appears to involve a free, modified-enzyme intermediate. 4. With some electron acceptors the maximum velocity of the reaction is independent of the nature of the acceptor. With phenazine methosulphate and ubiquinone-2 as acceptors the Km value for choline is also independent of the nature of the acceptor molecule. 5. The mechanism of the Triton X-100-solubilized enzyme is apparently the smae as that for the snake venom solubilized enzyme.  相似文献   

16.
1. Kinetic experiments suggested the possible existence of at least two different NAD(+)-dependent aldehyde dehydrogenases in rat liver. Distribution studies showed that one enzyme, designated enzyme I, was exclusively localized in the mitochondria and that another enzyme, designated enzyme II, was localized in both the mitochondria and the microsomal fraction. 2. A NADP(+)-dependent enzyme was also found in the mitochondria and the microsomal fraction and it is suggested that this enzyme is identical with enzyme II. 3. The K(m) for acetaldehyde was apparently less than 10mum for enzyme I and 0.9-1.7mm for enzyme II. The K(m) for NAD(+) was similar for both enzymes (20-30mum). The K(m) for NADP(+) was 2-3mm and for acetaldehyde 0.5-0.7mm for the NADP(+)-dependent activity. 4. The NAD(+)-dependent enzymes show pH optima between 9 and 10. The highest activity was found in pyrophosphate buffer for both enzymes. In phosphate buffer there was a striking difference in activity between the two enzymes. Compared with the activity in pyrophosphate buffer, the activity of enzyme II was uninfluenced, whereas the activity of enzyme I was very low. 5. The results are compared with those of earlier investigations on the distribution of aldehyde dehydrogenase and with the results from purified enzymes from different sources.  相似文献   

17.
1. Isolated outer membranes from rat spleen mitochondria can be stored in liquid N(2) for several weeks without significant loss of ATPase (adenosine triphosphatase) activity. 2. The ATPase reaction has a broad pH optimum centering on neutral pH, with little significant activity above pH9.0 or below pH5.5. 3. A sigmoidal response of the ATPase activity to temperature is observed between 0 and 55 degrees C, with complete inactivation at 60 degrees C. The Arrhenius plot shows that the activation energy above the transition temperature (22 degrees C) (E(a)=144kJ/mol) is one-third of that calculated for below the transition temperature (E'(a)=408kJ/mol). 4. The outer-membrane ATPase (K(m) for MgATP=50mum) is inactive unless Mg(2+) is added, whereas the inner-membrane ATPase (K(m) for ATP=11mum) is active without added Mg(2+) unless the mitochondria have been depleted of all endogenous Mg(2+) (by using ionophore A23187). 5. The substrate for the outer-membrane ATPase is a bivalent metal ion-nucleoside triphosphate complex in which Mg(2+) (K(m)=50mum) can be replaced effectively by Ca(2+) (K(m)=6.7mum) or Mn(2+), and ATP by ITP. Cu(2+), Co(2+), Sr(2+), Ba(2+), Ni(2+), Cd(2+) and Zn(2+) support very little ATP hydrolysis. 6. Univalent metal ions (Na(+), K(+), Rb(+), Cs(+) and NH(4) (+), but not Li(+)) stimulate the MgATPase activity (<10%) at low concentrations (50mm), but, except for K(+), are slightly inhibitory (20-30%) at higher concentrations (500mm). 7. The Mg(2+)-stimulated ATPase activity is significantly inhibited by Cu(2+) (K(i)=90mum), Ni(2+) (K(i)=510mum), Zn(2+) (K(i)=680mum) and Co(2+) (K(i)=1020mum), but not by Mg(2+), Ca(2+), Ba(2+) or Sr(2+). 8. The outer-membrane ATPase is insensitive to the inhibitors oligomycin, NN'-dicyclohexylcarbodiimide, NaN(3), ouabain and thiol-specific reagents. A significant inhibition is observed at high concentrations of AgNO(3) (0.5mm) and NaF (10mm). 9. The activity towards MgATP is competitively inhibited by the product MgADP (K(i)=0.7mm) but not by the second product P(i) or by 5'-AMP.  相似文献   

18.
1. Some properties of succinate dehydrogenase [succinate-(acceptor) oxidoreductase, EC 1.3.99.1] in membrane preparations from Micrococcus lysodeikticus (N.C.T.C. 2665) were investigated. 2. In the spectrophotometric assay system adopted the reaction velocity was shown to be proportional to the amount of membrane added. Dichlorophenol-indophenol, reduced photochemically in the presence of phenazine methosulphate, or enzymically by the membrane-bound enzyme, was shown to undergo reoxidation in the dark. 3. The membrane-bound enzyme was found to be inactivated at temperatures above 10 degrees C. 4. The specific activity of membrane-bound succinate dehydrogenase was found to increase between two- and three-fold in diluted membrane preparations equilibrated at 0 degrees C for 6h. Membranes treated with sodium deoxycholate showed no enzyme activation on dilution but displayed maximal activity, all activity being sedimentable at 103000g. The increase in specific activity observed on dilution could be partially inhibited by fixation with glutaraldehyde, or by the presence of bovine serum albumin. 5. The addition of Mg(2+) or Ca(2+) ions to membrane suspensions caused an overall depression of enzyme activity. 6. The results suggest the presence of an ;inhibitor' that affects the expression of membrane bound succinate dehydrogenase activity.  相似文献   

19.
Aldehyde dehydrogenase from Pseudomonas testosteroni was purified to homogeneity. The enzyme has a pH optimum of 8.2, uses a wide range of aldehydes as substrates and cationic dyes (Wurster's blue, phenazine methosulphate and thionine), but not anionic dyes (ferricyanide and 2.6-dichloroindophenol), NAD(P)+ or O2, as electron acceptors. Haem c and pyrroloquinoline quinone appeared to be absent but the common cofactors of molybdenum hydroxylases were present. Xanthine was not a substrate and allopurinol was not an inhibitor. Alcohols were inhibitors only when turnover of the enzyme occurred in aldehyde conversion. The enzyme has a relative molecular mass of 186,000, consists of two subunits of equal size (Mr 92,000), and 1 enzyme molecule contains 1 FAD, 1 molybdopterin cofactor, 4 Fe and 4 S. It is a novel type of NAD(P)+-independent aldehyde dehydrogenase since its catalytic and physicochemical properties are quite different from those reported for already known aldehyde-converting enzymes like haemoprotein aldehyde dehydrogenase (EC 1.2.99.3), quino-protein alcohol dehydrogenases (EC 1.1.99.8) and molybdenum hydroxylases.  相似文献   

20.
1. The 120-fold purification of ethanolamine ammonia-lyase from Escherichia coli extracts, to apparent homogeneity, is described. Ethanolamine, dithiothreitol, glycerol and KCl protected the apoenzyme from inactivation. 2. At the optimum pH7.5, K(m) values for ethanolamine and coenzyme B(12) were 44mum and 0.42mum respectively. The K(m) for ethanolamine was markedly affected by pH, transitions occurring at pH7.0 and 8.35. 3. The enzyme was specific for ethanolamine as substrate, none of the 18 analogues tested being active. l-2-Aminopropan-l-ol (K(i) 0.86mum), dl-1-aminopropan-2-ol (K(i) 2.2mum) and dl-1,3-diaminopropan-2-ol (K(i) 88.0mum) inhibited competitively. 4. Enzyme activity was inhibited, irreversibly and non-competitively, by the coenzyme analogues methylcobalamin (K(i) 1.4nm), hydroxocobalamin (K(i) 2.1nm) and cyanocobalamin (K(i) 4.8nm). 5. Iodoacetamide inhibited in the absence of ethanolamine, but only slightly in its presence. p-Hydroxymercuribenzoate inhibited markedly even in the presence of ethanolamine. Dithiothreitol and 2-mercaptoethanol (less effectively) restored activity to the enzyme dialysed against buffer containing ethanolamine. 6. Although K(+) ions stabilized the enzyme during dialysis or storage, they were not necessary for activity. 7. Gel filtration showed the enzyme to be of high molecular weight, ultracentrifugal studies giving s(20,w) of 16.4 and an estimated mol.wt. 560400. The isoelectric point for the apoenzyme was approx. pH5.0. inhibited enzyme activity at concentrations above 1m (95% inhibition at 3m) and sodium dodecyl sulphate/polyacrylamide-gel electrophoresis indicated protein subunits of mol.wt. 61400. 8. Immunological studies showed that the E.coli enzyme was closely related to those of other enterobacteria, but only distantly to that of Clostridium sp. A double precipitin band suggested that the apoenzyme may be made up of two protein components.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号