首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
Cellulosomes are multi-enzyme complexes produced by certain anaerobic bacteria that exhibit efficient degradation of plant cell wall polysaccharides. To understand their enhanced levels of hydrolysis, we are investigating the effects of converting a free-cellulase system into a cellulosomal one. To achieve this end, we are replacing the cellulose-binding module of the native cellulases, produced by the aerobic bacterium Thermobifida fusca, with a cellulosome-derived dockerin module of established specificity, to allow their incorporation into defined "designer cellulosomes". In this communication, we have attached divergent dockerins to the two exoglucanases produced by T. fusca exoglucanase, Cel6B and Cel48A. The resultant fusion proteins were shown to bind efficiently and specifically to their matching cohesins, and their activities on several different cellulose substrates were compared. The lack of a cellulose-binding module in Cel6B had a deleterious effect on its activity on crystalline substrates. In contrast, the dockerin-bearing family-48 exoglucanase showed increased levels of hydrolytic activity on carboxymethyl cellulose and on both crystalline substrates tested, compared to the wild-type enzyme. The marked difference in the response of the two exoglucanases to incorporation into a cellulosome, suggests that the family-48 cellulase is more appropriate than the family-6 enzyme as a designer cellulosome component.  相似文献   

2.
Defined chimeric cellulosomes were produced in which selected enzymes were incorporated in specific locations within a multicomponent complex. The molecular building blocks of this approach are based on complementary protein modules from the cellulosomes of two clostridia, Clostridium thermocellum and Clostridium cellulolyticum, wherein cellulolytic enzymes are incorporated into the complexes by means of high-affinity species-specific cohesin-dockerin interactions. To construct the desired complexes, a series of chimeric scaffoldins was prepared by recombinant means. The scaffoldin chimeras were designed to include two cohesin modules from the different species, optionally connected to a cellulose-binding domain. The two divergent cohesins exhibited distinct specificities such that each recognized selectively and bound strongly to its dockerin counterpart. Using this strategy, appropriate dockerin-containing enzymes could be assembled precisely and by design into a desired complex. Compared with the mixture of free cellulases, the resultant cellulosome chimeras exhibited enhanced synergistic action on crystalline cellulose.  相似文献   

3.
A library of 75 different chimeric cellulosomes was constructed as an extension of our previously described approach for the production of model functional complexes (Fierobe, H.-P., Mechaly, A., Tardif, C., Bélaich, A., Lamed, R., Shoham, Y., Bélaich, J.-P., and Bayer, E. A. (2001) J. Biol. Chem. 276, 21257-21261), based on the high affinity species-specific cohesin-dockerin interaction. Each complex contained three protein components: (i) a chimeric scaffoldin possessing an optional cellulose-binding module and two cohesins of divergent specificity, and (ii) two cellulases, each bearing a dockerin complementary to one of the divergent cohesins. The activities of the resultant ternary complexes were assayed using different types of cellulose substrates. Organization of cellulolytic enzymes into cellulosome chimeras resulted in characteristically high activities on recalcitrant substrates, whereas the cellulosome chimeras showed little or no advantage over free enzyme systems on tractable substrates. On recalcitrant cellulose, the presence of a cellulose-binding domain on the scaffoldin and enzyme proximity on the resultant complex contributed almost equally to their elevated action on the substrate. For certain enzyme pairs, however, one effect appeared to predominate over the other. The results also indicate that substrate recalcitrance is not necessarily a function of its crystallinity but reflects the overall accessibility of reactive sites.  相似文献   

4.
Artificial designer minicellulosomes comprise a chimeric scaffoldin that displays an optional cellulose-binding module (CBM) and bacterial cohesins from divergent species which bind strongly to enzymes engineered to bear complementary dockerins. Incorporation of cellulosomal cellulases from Clostridium cellulolyticum into minicellulosomes leads to artificial complexes with enhanced activity on crystalline cellulose, due to enzyme proximity and substrate targeting induced by the scaffoldin-borne CBM. In the present study, a bacterial dockerin was appended to the family 6 fungal cellulase Cel6A, produced by Neocallimastix patriciarum, for subsequent incorporation into minicellulosomes in combination with various cellulosomal cellulases from C. cellulolyticum. The binding of the fungal Cel6A with a bacterial family 5 endoglucanase onto chimeric miniscaffoldins had no impact on their activity toward crystalline cellulose. Replacement of the bacterial family 5 enzyme with homologous endoglucanase Cel5D from N. patriciarum bearing a clostridial dockerin gave similar results. In contrast, enzyme pairs comprising the fungal Cel6A and bacterial family 9 endoglucanases were substantially stimulated (up to 2.6-fold) by complexation on chimeric scaffoldins, compared to the free-enzyme system. Incorporation of enzyme pairs including Cel6A and a processive bacterial cellulase generally induced lower stimulation levels. Enhanced activity on crystalline cellulose appeared to result from either proximity or CBM effects alone but never from both simultaneously, unlike minicellulosomes composed exclusively of bacterial cellulases. The present study is the first demonstration that viable designer minicellulosomes can be produced that include (i) free (noncellulosomal) enzymes, (ii) fungal enzymes combined with bacterial enzymes, and (iii) a type (family 6) of cellulase never known to occur in natural cellulosomes.  相似文献   

5.
Artificial designer minicellulosomes comprise a chimeric scaffoldin that displays an optional cellulose-binding module (CBM) and bacterial cohesins from divergent species which bind strongly to enzymes engineered to bear complementary dockerins. Incorporation of cellulosomal cellulases from Clostridium cellulolyticum into minicellulosomes leads to artificial complexes with enhanced activity on crystalline cellulose, due to enzyme proximity and substrate targeting induced by the scaffoldin-borne CBM. In the present study, a bacterial dockerin was appended to the family 6 fungal cellulase Cel6A, produced by Neocallimastix patriciarum, for subsequent incorporation into minicellulosomes in combination with various cellulosomal cellulases from C. cellulolyticum. The binding of the fungal Cel6A with a bacterial family 5 endoglucanase onto chimeric miniscaffoldins had no impact on their activity toward crystalline cellulose. Replacement of the bacterial family 5 enzyme with homologous endoglucanase Cel5D from N. patriciarum bearing a clostridial dockerin gave similar results. In contrast, enzyme pairs comprising the fungal Cel6A and bacterial family 9 endoglucanases were substantially stimulated (up to 2.6-fold) by complexation on chimeric scaffoldins, compared to the free-enzyme system. Incorporation of enzyme pairs including Cel6A and a processive bacterial cellulase generally induced lower stimulation levels. Enhanced activity on crystalline cellulose appeared to result from either proximity or CBM effects alone but never from both simultaneously, unlike minicellulosomes composed exclusively of bacterial cellulases. The present study is the first demonstration that viable designer minicellulosomes can be produced that include (i) free (noncellulosomal) enzymes, (ii) fungal enzymes combined with bacterial enzymes, and (iii) a type (family 6) of cellulase never known to occur in natural cellulosomes.  相似文献   

6.
During the course of our studies on the structure–function relationship of cellulosomes, we were interested in converting the free cellulase system of the aerobic bacterium, Thermobifida fusca, to a cellulosomal system. For this purpose, the cellulose-binding modules (CBM) of two T. fusca family-6 cellulases, endoglucanase Cel6A and exoglucanase Cel6B, were replaced by divergent dockerin modules. Thus far, family-6 cellulases have not been shown to be members of natural cellulosome systems. The resultant chimaeric proteins, 6A-c and t-6B, respectively, were purified and found to interact specifically and stoichiometrically with their corresponding cohesin modules, indicating their suitability for use as components in ‘designer cellulosomes’. Both chimaeric enzymes showed somewhat decreased but measurable levels of activity on carboxymethyl cellulose, consistent with the known endo- and exo-glucanase character of the parent enzymes. The activity of 6A-c on phosphoric acid swollen cellulose was also consistent with that of the wild-type endoglucanase Cel6A. The startling finding of the present research was the extent of degradation of this substrate by the chimaeric enzyme t-6B. Wild-type exoglucanase Cel6B exhibited very low activity on this substrate, while the specific activity of t-6B was 14-fold higher than the parent enzyme.  相似文献   

7.
Artificial cellulase complexes active on crystalline cellulose were reconstituted in vitro from a native mix of cellulosomal enzymes and CipA scaffoldin. Enzymes containing dockerin modules for binding to the corresponding cohesin modules were prepared from culture supernatants of a C. thermocellum cipA mutant. They were reassociated to cellulosomes via dockerin-cohesin interaction. Recombinantly produced mini-CipA proteins with one to three cohesins either with or without the carbohydrate-binding module (CBM) and the complete CipA protein were used as the cellulosomal backbone. The binding between cohesins and dockerins occurred spontaneously. The hydrolytic activity against soluble and crystalline cellulosic compounds showed that the composition of the complex does not seem to be dependent on which CipA-derived cohesin was used for reconstitution. Binding did not seem to have an obvious local preference (equal binding to Coh1 and Coh6). The synergism on crystalline cellulose increased with an increasing number of cohesins in the scaffoldin. The in vitro-formed complex showed a 12-fold synergism on the crystalline substrate (compared to the uncomplexed components). The activity of reconstituted cellulosomes with full-size CipA reached 80% of that of native cellulosomes. Complexation on the surface of nanoparticles retained the activity of protein complexes and enhanced their stability. Partial supplementation of the native cellulosome components with three selected recombinant cellulases enhanced the activity on crystalline cellulose and reached that of the native cellulosome. This opens possibilities for in vitro complex reconstitution, which is an important step toward the creation of highly efficient engineered cellulases.  相似文献   

8.
Clostridium cellulovorans, an anaerobic bacterium, degrades native substrates efficiently by producing an extracellular enzyme complex called the cellulosome. All cellulosomal enzyme subunits contain dockerin domains that can bind to hydrophobic domains termed cohesins which are repeated nine times in CbpA, the nonenzymatic scaffolding protein of C. cellulovorans cellulosomes. In this study, the synergistic interactions of cellulases (endoglucanase E, EngE; endoglucanase L, EngL) and hemicellulases (arabinofuranosidase A, ArfA; xylanase A, XynA) were determined on the degradation of corn fiber, a natural substrate containing mainly xylan, arabinan, and cellulose. The degradation by XynA and ArfA of cellulose/arabinoxylan was greater than that of corn fiber and resulted in 2.6-fold and 1.4-fold increases in synergy, respectively. Synergistic effects were observed in increments in both simultaneous and sequential reactions with ArfA and XynA. These synergistic enzymes appear to represent potential rate-limiting enzymes for efficient hemicellulose degradation. When mini-cellulosomes were constructed from the cellulosomal enzymes (XynA and EngL) and mini-CbpA with cohesins 1 and 2 (mini-CbpA1&2) and mini-CbpA with cohesins 5 and 6 (mini-CbpA5&6), higher activity was observed than that for the corresponding enzymes alone. Based on the degradation of different types of celluloses and hemicelluloses, the interaction between cellulosomal enzymes (XynA and EngL) and mini-CbpA displayed a diversity that suggests that dockerin-cohesin interaction from C. cellulovorans may be more selective than random.  相似文献   

9.
Clostridium cellulovorans, an anaerobic bacterium, degrades native substrates efficiently by producing an extracellular enzyme complex called the cellulosome. All cellulosomal enzyme subunits contain dockerin domains that can bind to hydrophobic domains termed cohesins which are repeated nine times in CbpA, the nonenzymatic scaffolding protein of C. cellulovorans cellulosomes. In this study, the synergistic interactions of cellulases (endoglucanase E, EngE; endoglucanase L, EngL) and hemicellulases (arabinofuranosidase A, ArfA; xylanase A, XynA) were determined on the degradation of corn fiber, a natural substrate containing mainly xylan, arabinan, and cellulose. The degradation by XynA and ArfA of cellulose/arabinoxylan was greater than that of corn fiber and resulted in 2.6-fold and 1.4-fold increases in synergy, respectively. Synergistic effects were observed in increments in both simultaneous and sequential reactions with ArfA and XynA. These synergistic enzymes appear to represent potential rate-limiting enzymes for efficient hemicellulose degradation. When mini-cellulosomes were constructed from the cellulosomal enzymes (XynA and EngL) and mini-CbpA with cohesins 1 and 2 (mini-CbpA1&2) and mini-CbpA with cohesins 5 and 6 (mini-CbpA5&6), higher activity was observed than that for the corresponding enzymes alone. Based on the degradation of different types of celluloses and hemicelluloses, the interaction between cellulosomal enzymes (XynA and EngL) and mini-CbpA displayed a diversity that suggests that dockerin-cohesin interaction from C. cellulovorans may be more selective than random.  相似文献   

10.
During the course of our studies on the structure-function relationship of cellulosomes, we were interested in converting the free cellulase system of the aerobic bacterium, Thermobifida fusca, to a cellulosomal system. For this purpose, the cellulose-binding modules (CBM) of two T. fusca family-6 cellulases, endoglucanase Cel6A and exoglucanase Cel6B, were replaced by divergent dockerin modules. Thus far, family-6 cellulases have not been shown to be members of natural cellulosome systems. The resultant chimaeric proteins, 6A-c and t-6B, respectively, were purified and found to interact specifically and stoichiometrically with their corresponding cohesin modules, indicating their suitability for use as components in 'designer cellulosomes'. Both chimaeric enzymes showed somewhat decreased but measurable levels of activity on carboxymethyl cellulose, consistent with the known endo- and exo-glucanase character of the parent enzymes. The activity of 6A-c on phosphoric acid swollen cellulose was also consistent with that of the wild-type endoglucanase Cel6A. The startling finding of the present research was the extent of degradation of this substrate by the chimaeric enzyme t-6B. Wild-type exoglucanase Cel6B exhibited very low activity on this substrate, while the specific activity of t-6B was 14-fold higher than the parent enzyme.  相似文献   

11.
Lignocellulosic biomass is a renewable and abundant resource with great potential for bioconversion to value-added bioproducts. However, the biorefining process remains economically unfeasible due to a lack of biocatalysts that can overcome costly hurdles such as cooling from high temperature, pumping of oxygen/stirring, and, neutralization from acidic or basic pH. The extreme environmental resistance of bacteria permits screening and isolation of novel cellulases to help overcome these challenges. Rapid, efficient cellulase screening techniques, using cellulase assays and metagenomic libraries, are a must. Rare cellulases with activities on soluble and crystalline cellulose have been isolated from strains of Paenibacillus and Bacillus and shown to have high thermostability and/or activity over a wide pH spectrum. While novel cellulases from strains like Cellulomonas flavigena and Terendinibacter turnerae, produce multifunctional cellulases with broader substrate utilization. These enzymes offer a framework for enhancement of cellulases including: specific activity, thermalstability, or end-product inhibition. In addition, anaerobic bacteria like the clostridia offer potential due to species capable of producing compound multienzyme complexes called cellulosomes. Cellulosomes provide synergy and close proximity of enzymes to substrate, increasing activity towards crystalline cellulose. This has lead to the construction of designer cellulosomes enhanced for specific substrate activity. Furthermore, cellulosome-producing Clostridium thermocellum and its ability to ferment sugars to ethanol; its amenability to co-culture and, recent advances in genetic engineering, offer a promising future in biofuels. The exploitation of bacteria in the search for improved enzymes or strategies provides a means to upgrade feasibility for lignocellulosic biomass conversion, ultimately providing means to a ''greener'' technology.  相似文献   

12.
The cellulosome is a supramolecular multienzyme complex formed by species-specific interactions between the cohesin modules of scaffoldin proteins and the dockerin modules of a wide variety of polysaccharide-degrading enzymes. Cellulosomal enzymes bound to the scaffoldin protein act synergistically to degrade crystalline cellulose. However, there have been few attempts to reconstitute intact cellulosomes due to the difficulty of heterologously expressing full-length scaffoldin proteins. We describe the synthesis of a full-length scaffoldin protein containing nine cohesin modules, CipA; its deletion derivative containing two cohesin modules, ΔCipA; and three major cellulosomal cellulases, Cel48S, Cel8A, and Cel9K, of the Clostridium thermocellum cellulosome. The proteins were synthesized using a wheat germ cell-free protein synthesis system, and the purified proteins were used to reconstitute cellulosomes. Analysis of the cellulosome assembly using size exclusion chromatography suggested that the dockerin module of the enzymes stoichiometrically bound to the cohesin modules of the scaffoldin protein. The activity profile of the reconstituted cellulosomes indicated that cellulosomes assembled at a CipA/enzyme molar ratio of 1/9 (cohesin/dockerin = 1/1) and showed maximum synergy (4-fold synergy) for the degradation of crystalline substrate and ∼2.4-fold-higher synergy for its degradation than minicellulosomes assembled at a ΔCipA/enzyme molar ratio of 1/2 (cohesin/dockerin = 1/1). These results suggest that the binding of more enzyme molecules on a single scaffoldin protein results in higher synergy for the degradation of crystalline cellulose and that the stoichiometric assembly of the cellulosome, without excess or insufficient enzyme, is crucial for generating maximum synergy for the degradation of crystalline cellulose.  相似文献   

13.
In this study, novel cellulosome chimeras exhibiting atypical geometries and binding modes, wherein the targeting and proximity functions were directly incorporated as integral parts of the enzyme components, were designed. Two pivotal cellulosomal enzymes (family 48 and 9 cellulases) were thus appended with an efficient cellulose-binding module (CBM) and an optional cohesin and/or dockerin. Compared to the parental enzymes, the chimeric cellulases exhibited improved activity on crystalline cellulose as opposed to their reduced activity on amorphous cellulose. Nevertheless, the various complexes assembled using these engineered enzymes were somewhat less active on crystalline cellulose than the conventional designer cellulosomes containing the parental enzymes. The diminished activity appeared to reflect the number of protein-protein interactions within a given complex, which presumably impeded the mobility of their catalytic modules. The presence of numerous CBMs in a given complex, however, also reduced their performance. Furthermore, a "covalent cellulosome" that combines in a single polypeptide chain a CBM, together with family 48 and family 9 catalytic modules, also exhibited reduced activity. This study also revealed that the cohesin-dockerin interaction may be reversible under specific conditions. Taken together, the data demonstrate that cellulosome components can be used to generate higher-order functional composites and suggest that enzyme mobility is a critical parameter for cellulosome efficiency.  相似文献   

14.
Exploration of New Geometries in Cellulosome-Like Chimeras   总被引:5,自引:0,他引:5       下载免费PDF全文
In this study, novel cellulosome chimeras exhibiting atypical geometries and binding modes, wherein the targeting and proximity functions were directly incorporated as integral parts of the enzyme components, were designed. Two pivotal cellulosomal enzymes (family 48 and 9 cellulases) were thus appended with an efficient cellulose-binding module (CBM) and an optional cohesin and/or dockerin. Compared to the parental enzymes, the chimeric cellulases exhibited improved activity on crystalline cellulose as opposed to their reduced activity on amorphous cellulose. Nevertheless, the various complexes assembled using these engineered enzymes were somewhat less active on crystalline cellulose than the conventional designer cellulosomes containing the parental enzymes. The diminished activity appeared to reflect the number of protein-protein interactions within a given complex, which presumably impeded the mobility of their catalytic modules. The presence of numerous CBMs in a given complex, however, also reduced their performance. Furthermore, a “covalent cellulosome” that combines in a single polypeptide chain a CBM, together with family 48 and family 9 catalytic modules, also exhibited reduced activity. This study also revealed that the cohesin-dockerin interaction may be reversible under specific conditions. Taken together, the data demonstrate that cellulosome components can be used to generate higher-order functional composites and suggest that enzyme mobility is a critical parameter for cellulosome efficiency.  相似文献   

15.
We have been developing the cellulases of Thermobifida fusca as a model to explore the conversion from a free cellulase system to the cellulosomal mode. Three of the six T. fusca cellulases (endoglucanase Cel6A and exoglucanases Cel6B and Cel48A) have been converted in previous work by replacing their cellulose-binding modules (CBMs) with a dockerin, and the resultant recombinant “cellulosomized” enzymes were incorporated into chimeric scaffolding proteins that contained cohesin(s) together with a CBM. The activities of the resultant designer cellulosomes were compared with an equivalent mixture of wild-type enzymes. In the present work, a fourth T. fusca cellulase, Cel5A, was equipped with a dockerin and intervening linker segments of different lengths to assess their contribution to the overall activity of simple one- and two-enzyme designer cellulosome complexes. The results demonstrated that cellulose binding played a major role in the degradation of crystalline cellulosic substrates. The combination of the converted Cel5A endoglucanase with the converted Cel48A exoglucanase also exhibited a measurable proximity effect for the most recalcitrant cellulosic substrate (Avicel). The length of the linker between the catalytic module and the dockerin had little, if any, effect on the activity. However, positioning of the dockerin on the opposite (C-terminal) side of the enzyme, consistent with the usual position of dockerins on most cellulosomal enzymes, resulted in an enhanced synergistic response. These results promote the development of more complex multienzyme designer cellulosomes, which may eventually be applied for improved degradation of plant cell wall biomass.In nature, some anaerobic cellulolytic bacteria produce cellulosomes, which are organized by the action of scaffoldin subunits that usually contain a single carbohydrate-binding module (CBM) and multiple cohesin modules (2, 7, 13, 14, 28, 36). This arrangement allows the integration of several dockerin-containing enzymes into a complex, which is then targeted to the cellulosic substrate by the common CBM. The cellulosomal enzymes then exhibit enhanced synergistic activity, presumably due to their spatial proximity and coordinated interaction. In contrast, the enzyme systems of aerobic bacteria and fungi comprise free (uncomplexed) enzymes, which differ from cellulosomal systems in that many of them contain their own CBM that delivers the individual catalytic module to the surface of the substrate (39, 41, 42).In previous work, we used the designer cellulosome concept (5) to construct unique minicellulosomes of defined content (16, 32, 33). In order to construct designer cellulosomes, chimeric scaffoldins have been prepared which contained two or more cohesins that matched the dockerins of the enzymes (native cellulosomal or dockerin-fused chimeras). Enzymes that contain dockerins that match the specificity of a scaffoldin-borne cohesin can then be selectively integrated into the designer cellulosome at a specified site. Cellulosomal enzymes containing either a native dockerin or a divergent dockerin can be inserted on different sites of a chimeric scaffoldin. Alternatively, a free, noncellulosomal enzyme can be included in designer cellulosomes by replacing its native CBM with a dockerin of choice. In some cases, designer cellulosomes displayed enhanced synergistic activity over the parallel free-enzyme system (15, 17). This increased activity was shown to be a function of both a substrate-targeting effect (contributed by the CBM on the chimeric scaffoldin) and the enzyme proximity effect, thus supporting the initial hypothesis.In recent studies, we have investigated the free-cellulase system of Thermobifida fusca for use in designer cellulosome systems. This aerobic thermophilic cellulolytic bacterium contains a limited set of six free cellulases, each composed of a catalytic module and a crystalline-cellulose binding family 2 CBM (CBM2) module on either the N or C terminus of the protein. T. fusca contains three endoglucanases (Cel5A, Cel6A, and Cel9B), two exocellulases (Cel6B and Cel48A), and one processive endoglucanase (Cel9A). Previously, we converted both family 6 cellulases and the family 48 exoglucanase from the free to the cellulosomal mode of action by replacing their native CBM2s with a dockerin module (11, 12). All three chimeric enzymes exhibited cellulose-degrading activity on both soluble and crystalline substrates. The results indicated that the family 48 exoglucanase appeared to be well adapted to the cellulosomal mode of action, whereas the family 6 exoglucanase is less appropriate for inclusion into cellulosomes. Indeed, family 48 cellulases have been found to be a major component in every native cellulosome thus far described, in contrast to the family 6 cellulases, which have been identified only in free-cellulase systems.An important feature of the free-acting fungal and bacterial cellulases is that they contain a linker segment, often rich in prolines and threonines, that connects the catalytic module to the CBM (37). The role of such flexible linkers is thought to ensure independent action of the adjacent functional modules, thus allowing progressive and efficient hydrolysis of cellulose by the catalytic modules (6, 9, 10, 20, 25-27, 34, 36, 38, 40). The present communication focuses on the effect of linker length and dockerin position (relative to the catalytic module) on enzymatic activity within a designer cellulosome. For this purpose we have employed the highly active family 5 endoglucanase Cel5A from T. fusca (21, 22, 29), which was converted to the cellulosomal mode by replacement of its CBM with a dockerin module. Chimeric dockerin derivatives were prepared on either the N or C terminus of the Cel5A catalytic module, separated by linker segments of different lengths. In most cases, binary designer cellulosomes, comprising the respective Cel5A chimera together with a Cel48A chimera, were shown to be more efficient on crystalline cellulosic substrates than the combination of the wild-type free enzymes.  相似文献   

16.

Background

Select cellulolytic bacteria produce multi-enzymatic cellulosome complexes that bind to the plant cell wall and catalyze its efficient degradation. The multi-modular interconnecting cellulosomal subunits comprise dockerin-containing enzymes that bind cohesively to cohesin-containing scaffoldins. The organization of the modules into functional polypeptides is achieved by intermodular linkers of different lengths and composition, which provide flexibility to the complex and determine its overall architecture.

Results

Using a synthetic biology approach, we systematically investigated the spatial organization of the scaffoldin subunit and its effect on cellulose hydrolysis by designing a combinatorial library of recombinant trivalent designer scaffoldins, which contain a carbohydrate-binding module (CBM) and 3 divergent cohesin modules. The positions of the individual modules were shuffled into 24 different arrangements of chimaeric scaffoldins. This basic set was further extended into three sub-sets for each arrangement with intermodular linkers ranging from zero (no linkers), 5 (short linkers) and native linkers of 27–35 amino acids (long linkers). Of the 72 possible scaffoldins, 56 were successfully cloned and 45 of them expressed, representing 14 full sets of chimaeric scaffoldins. The resultant 42-component scaffoldin library was used to assemble designer cellulosomes, comprising three model C. thermocellum cellulases. Activities were examined using Avicel as a pure microcrystalline cellulose substrate and pretreated cellulose-enriched wheat straw as a model substrate derived from a native source. All scaffoldin combinations yielded active trivalent designer cellulosome assemblies on both substrates that exceeded the levels of the free enzyme systems. A preferred modular arrangement for the trivalent designer scaffoldin was not observed for the three enzymes used in this study, indicating that they could be integrated at any position in the designer cellulosome without significant effect on cellulose-degrading activity. Designer cellulosomes assembled with the long-linker scaffoldins achieved higher levels of activity, compared to those assembled with short-and no-linker scaffoldins.

Conclusions

The results demonstrate the robustness of the cellulosome system. Long intermodular scaffoldin linkers are preferable, thus leading to enhanced degradation of cellulosic substrates, presumably due to the increased flexibility and spatial positioning of the attached enzymes in the complex. These findings provide a general basis for improved designer cellulosome systems as a platform for bioethanol production.
  相似文献   

17.
The genome of Clostridium cellulolyticum encodes 13 GH9 enzymes that display seven distinct domain organizations. All but one contain a dockerin module and were formerly detected in the cellulosomes, but only three of them were previously studied (Cel9E, Cel9G, and Cel9M). In this study, the 10 uncharacterized GH9 enzymes were overproduced in Escherichia coli and purified, and their activity pattern was investigated in the free state or in cellulosome chimeras with key cellulosomal cellulases. The newly purified GH9 enzymes, including those that share similar organization, all exhibited distinct activity patterns, various binding capacities on cellulosic substrates, and different synergies with pivotal cellulases in mini-cellulosomes. Furthermore, one enzyme (Cel9X) was characterized as the first genuine endoxyloglucanase belonging to this family, with no activity on soluble and insoluble celluloses. Another GH9 enzyme (Cel9V), whose sequence is 78% identical to the cellulosomal cellulase Cel9E, was found inactive in the free and complexed states on all tested substrates. The sole noncellulosomal GH9 (Cel9W) is a cellulase displaying a broad substrate specificity, whose engineered form bearing a dockerin can act synergistically in minicomplexes. Finally, incorporation of all GH9 cellulases in trivalent cellulosome chimera containing Cel48F and Cel9G generated a mixture of heterogeneous mini-cellulosomes that exhibit more activity on crystalline cellulose than the best homogeneous tri-functional complex. Altogether, our data emphasize the importance of GH9 diversity in bacterial cellulosomes, confirm that Cel9G is the most synergistic GH9 with the major endoprocessive cellulase Cel48F, but also identify Cel9U as an important cellulosomal component during cellulose depolymerization.  相似文献   

18.
Paenibacillus curdlanolyticus B-6 showed effective degradation activities for xylan and cellulose and produced an extracellular multienzyme complex (approximately 1,450 kDa) containing several xylanases and cellulases. To characterize the multienzyme complex, we purified the complex from culture supernatants by four kind of chromatography. The purified multienzyme complex was composed of a 280-kDa protein with xylanase activity, a 260-kDa protein that was a truncated form on the C-terminal side of the 280-kDa protein, two xylanases of 40 and 48 kDa, and 60 and 65 kDa proteins having both xylanase and carboxymethyl cellulase activities. The 280-kDa protein resembled the scaffolding proteins of cellulosomes based on its migratory behavior in polyacrylamide gels and as a glycoprotein. Cloning of the 40-kDa major xylanase subunit named Xyn11A revealed that Xyn11A contained two functional domains which belonged to glycosyl hydrolase family-11 and to carbohydrate-binding module family-36, respectively, and a glycine- and asparagine-rich linker. However, an amino acid sequence similar to a dockerin domain, which is crucial to cellulosome assembly, was not found in Xyn11A. These results suggest that the multienzyme complex produced by P. curdlanolyticus B-6 should assemble by a mechanism distinct from the cohesin-dockerin interactions known in cellulosomes.  相似文献   

19.
Conversion of components of the Thermobifida fusca free-enzyme system to the cellulosomal mode using the designer cellulosome approach can be employed to discover the properties and inherent advantages of the cellulosome system. In this article, we describe the conversion of the T. fusca xylanases Xyn11A and Xyn10B and their synergistic interaction in the free state or within designer cellulosome complexes in order to enhance specific degradation of hatched wheat straw as a model for a complex cellulosic substrate. Endoglucanase Cel5A from the same bacterium and its recombinant dockerin-containing chimera were also studied for their combined effect, together with the xylanases, on straw degradation. Synergism was demonstrated when Xyn11A was combined with Xyn10B and/or Cel5A, and ∼1.5-fold activity enhancements were achieved by the designer cellulosome complexes compared to the free wild-type enzymes. These improvements in activity were due to both substrate-targeting and proximity effects among the enzymes contained in the designer cellulosome complexes. The intrinsic cellulose/xylan-binding module (XBM) of Xyn11A appeared to be essential for efficient substrate degradation. Indeed, only designer cellulosomes in which the XBM was maintained as a component of Xyn11A achieved marked enhancement in activity compared to the combination of wild-type enzymes. Moreover, integration of the XBM in designer cellulosomes via a dockerin module (separate from the Xyn11A catalytic module) failed to enhance activity, suggesting a role in orienting the parent xylanase toward its preferred polysaccharide component of the complex wheat straw substrate. The results provide novel mechanistic insight into the synergistic activity of designer cellulosome components on natural plant cell wall substrates.Thermobifida fusca is an aerobic thermophilic soil bacterium with strong cellulolytic activity (52). The T. fusca enzyme system is an extensively studied free cellulase system in which nearly all of the cellulolytic enzymes have been fully characterized, from the individual enzyme sequences to the three-dimensional structures, as well as the biochemical activities of the native and recombinant proteins. The genome sequence has been published (36), and the number and types of carbohydrate-active enzymes produced by the organism are known. This actinomycete produces six different cellulases that have been well studied (29, 31, 32, 50, 52). T. fusca also has the ability to grow on xylan and produces several enzymes involved in xylan degradation, such as xylanases, β-xylosidase, α-l-arabinofuranosidase, and acetylesterases (1, 21).Previous research has suggested that the multienzyme cellulosome complex from Clostridium thermocellum is far more efficient than free cellulase systems that were tested in degrading polysaccharides (33). The cellulosome system is characterized by the strong bimodular interaction between the cohesin and dockerin modules that integrates the various enzymes into the complex (5, 35, 55). Scaffoldin subunits (nonenzymatic protein components) contain the cohesin modules that incorporate the enzymes into the complex via their resident dockerins. The primary scaffoldin subunit also includes a carbohydrate (cellulose)-binding module (CBM) through which the complex recognizes and binds to the cellulosic substrate (42, 46).In order to evaluate the reasons for the apparent advantage of cellulosomes over free enzymes, it is interesting to compare the properties of the best-characterized free-enzyme systems for degradation of polysaccharides with those of the best-studied cellulosome system. We have initiated a program to convert the free-enzyme system of T. fusca into an artificial designer cellulosome (11-13). The designer cellulosome concept is based on the very high affinity (20, 44) and specific interaction (37, 43, 55) between a cohesin and a dockerin module from the same species. Since the various scaffoldin-borne cohesins of a given species essentially show the same specificity of binding for the enzyme-borne dockerins, designer cellulosomes are constructed from recombinant chimeric scaffoldins containing divergent cohesins from different species, for which matching dockerin-containing enzyme hybrids are prepared, as a platform for promoting synergistic action among enzyme components (5). Free cellulases from the T. fusca system were converted to the cellulosomal mode by replacing their native CBM with a desired dockerin module, and in some cases, the resultant “designer cellulosomes” exhibited enhanced synergistic activity on crystalline cellulosic substrates compared to that of the mixture of wild-type enzymes (11).In this study, we incorporated xylanolytic enzymes into designer cellulosomes and investigated their hydrolytic effects on purified xylans and on a native, complex cellulosic substrate (hatched wheat straw). We focused on T. fusca xylanases 11A and 10B (Xyn11A and Xyn10B), which are the most abundant xylanases produced during growth on xylan (34). Xyn11A and Xyn10B function as endoxylanases (28, 34); Xyn11A contains a C-terminal family 2 CBM that binds both cellulose and xylan, whereas Xyn10B lacks a CBM. In some experiments, one of the previously converted (dockerin-containing) T. fusca endoglucanases, f-5A (11), was also introduced into the designer cellulosomes in order to evaluate cooperation between xylanases and cellulases in hydrolysis of a natural substrate. This study contributes primary information concerning a major feature of cellulosomes that had not been suitably addressed in earlier research: although xylanases are integral components of cellulosomes, their synergistic action in the cellulosome mode has yet to be examined experimentally. The xylan-binding CBM (termed XBM for the purposes of this report) was found to contribute to the activity of the parent Xyn11A enzyme.  相似文献   

20.
Cellulosomes are large extracellular multi-enzyme complexes that exhibit elevated activity on plant cell-wall polysaccharides. In the present study, the relationships between the conformational flexibility and efficacy of cellulosomes, and the inter-modules linkers of their scaffold protein were investigated. For this purpose, the length of the intrinsically disordered Ser/Thr-rich 50-residue linker connecting a Clostridium thermocellum and a Clostridium cellulolyticum cohesin in a hybrid scaffoldin (Scaf4) was changed by sequences ranging from 4 to 128 residues. The composition was also modified and new linkers composed of series of N, S or repeats of the EPPV motif were generated. Two model cellulases (Cel48F and Cel9G) appended with appropriate dockerins were subsequently bound to the engineered scaffoldins. All the resulting minicomplexes displayed the same activity on crystalline cellulose as the complex based on the initial Scaf4, and were found to be 2-fold more active than Cel48F and Cel9G bound to separate cohesins. Small-angle X-ray scattering assays of the engineered scaffoldins confirmed, however, that the size and the conformational flexibility of some of the new inter-cohesins linkers differed significantly from that of the initial 50 residue linker displayed by the parental Scaf4. Our data suggest that the synergy induced by proximity does not require a specific inter-cohesins sequence or distance. The present study reveals that complexation onto the hybrid scaffoldins modifies the type of soluble sugars released from crystalline cellulose by the selected cellulases, compared to the free enzyme system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号