首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The nature and developmental profile of the soluble sialidase of rat forebrain were studied from birth to 150 days. Forebrain was extracted by two procedures, one (mild) preserving, the other (drastic) destroying nerve endings. The soluble extracts obtained by the mild procedure contained 64–78% of the total tissue cytosol, assayed as lactate-dehydrogenase; those obtained by the drastic procedure 87–94%. These latter extracts were considered as the soluble fraction containing ‘all’ tissue cytosol. The cytosolic origin of the sialidase contained in the soluble extracts at all examined ages was suggested by the following evidence: (a) during extraction sialidase behaved as lactate-dehydrogenase and quite differently from β-hexosaminidase and β-galactosidase, enzymes of lysosomal nature present in the same extracts, (b) the sialidase content of the extract was not influenced by the presence or absence of EDTA in the medium, (c) the sialidase content in the extracts did not diminish even after prolonged centrifugation (2 h) at high speed (150,000 g). The content of cytosolic sialidase referred to g fresh tissue increased from birth to 20 days, and slowly decreased thereafter. Till 20 days the content and the developmental trend of the cytosolic enzyme were similar to that of the better known membrane bound sialidase. This latter enzyme, however, reached its maximum at about 60 days of age. The specific activity of the cytosolic sialidase was lower till 10 days of age, higher from 10 to 30 days, and equalled that of the membrane bound enzyme during adult life. Therefore rat forebrain cytosolic and membrane bound sialidases, also from the developmental point of view, behave as different enzymes.  相似文献   

3.
In experiments on immobilized, lightly anesthetized turtles the presence of visual and somatic representation was established in the subcortical striatal division of the forebrain — the pallial thickening, the dorsal ventricular ridge, and the putamen. In their physiological characteristics they are similar to the corresponding representation in the general cortex. The absence of significant differences between the latent periods of cortical and striatal evoked potentials to flashes and to stimulation of the dorsal thalamus indicates that visual projection fibers (from the lateral geniculate body) terminate at both cortical and striatal levels. Differences in the distribution of latent periods of unit responses in the cortex to visual and thalamic stimulation are due to the presence of a rotundo-telencephalic visual channel, with direct connections with the striatal and polysynaptic connections with the general cortex, as well as the geniculo-telencephalic tract. Considerable differences between the latent periods of the evoked potentials and also between unit responses to electrodermal stimulation in the cortical and striatal structures indicate that somatic projection fibers relay in the striatum on their path to the general cortex. Consequently, the somatosensory system of turtles is less corticalized than the visual system. Comparison of the results described with those obtained by workers studying other vertebrates suggests that the afferent supply of the striatum may be reorganized in the transition from premammals to mammals.I. M. Sechenov Institute of Evolutionary Physiology and Biochemistry, Academy of Sciences of the USSR, Leningrad. Translated from Neirofiziologiya, Vol. 7, No. 2, pp. 184–193, March–April, 1973.  相似文献   

4.
We have previously shown that retinoic acid (RA) synthesized by the retinaldehyde dehydrogenase 2 (RALDH2) is required in forebrain development. Deficiency in RA due to inactivation of the mouse Raldh2 gene or to complete absence of retinoids in vitamin-A-deficient (VAD) quails, leads to abnormal morphogenesis of various forebrain derivatives. In this study we show that double Raldh2/Raldh3 mouse mutants have a more severe phenotype in the craniofacial region than single null mutants. In particular, the nasal processes are truncated and the eye abnormalities are exacerbated. It has been previously shown that retinoids act mainly on cell proliferation and survival in the ventral forebrain by regulating SHH and FGF8 signaling. Using the VAD quail model, which survives longer than the Raldh-deficient mouse embryos, we found that retinoids act in maintaining the correct position of anterior and dorsal boundaries in the forebrain by modulating FGF8 anteriorly and WNT signaling dorsally. Furthermore, BMP4 and FGF8 signaling are affected in the nasal region and BMP4 is ventrally expanded in the optic vesicle. At the optic cup stage, Pax6, Tbx5 and Bmp4 are ectopically expressed in the presumptive retinal pigmented epithelium (RPE), while Otx2 and Mitf are not induced, leading to a dorsal transdifferentiation of RPE to neural retina. Therefore, besides being required for survival of ventral structures, retinoids are involved in restricting anterior identity in the telencephalon and dorsal identity in the diencephalon and the retina.  相似文献   

5.
Embryonic Xenopus myocytes generate spontaneous calcium (Ca(2+)) transients during differentiation in culture. Suppression of these transients disrupts myofibril organization and the formation of sarcomeres through an identified signal transduction cascade. Since transients often occur during myocyte polarization and migration in culture, we hypothesized they might play additional roles in vivo during tissue formation. We have tested this hypothesis by examining Ca(2+) dynamics in the intact Xenopus paraxial mesoderm as it differentiates into the mature myotome. We find that Ca(2+) transients occur in cells of the developing myotome with characteristics remarkably similar to those in cultured myocytes. Transients produced within the myotome are correlated with somitogenesis as well as myocyte maturation. Since transients arise from intracellular stores in cultured myocytes, we examined the functional distribution of both IP(3) and ryanodine receptors in the intact myotome by eliciting Ca(2+) elevations in response to photorelease of caged IP(3) and superfusion of caffeine, respectively. As in culture, transients in vivo depend on Ca(2+) release from ryanodine receptor (RyR) stores, and blocking RyR during development interferes with somite maturation.  相似文献   

6.
The size of brain regions depends on the balance between proliferation and differentiation. During development of the mouse cerebral cortex, ventricular zone (VZ) progenitors, neuroepithelial and radial glial cells, enlarge the progenitor pool by proliferative divisions, while basal progenitors located in the subventricular zone (SVZ) mostly divide in a differentiative mode generating two neurons. These differences correlate to the existence of an apico-basal polarity in VZ, but not SVZ, progenitors. Only VZ progenitors possess an apical membrane domain at which proteins of the Par complex are strongly enriched. We describe a prominent decrease in the amount of Par-complex proteins at the apical surface during cortical development and examine the role of these proteins by gain- and loss-of-function experiments. Par3 (Pard3) loss-of-function led to premature cell cycle exit, reflected in reduced clone size in vitro and the restriction of the progeny to the lower cortical layers in vivo. By contrast, Par3 or Par6 (Pard6alpha) overexpression promoted the generation of Pax6+ self-renewing progenitors in vitro and in vivo and increased the clonal progeny of single progenitors in vitro. Time-lapse video microscopy revealed that a change in the mode of cell division, rather than an alteration of the cell cycle length, causes the Par-complex-mediated increase in progenitors. Taken together, our data demonstrate a key role for the apically located Par-complex proteins in promoting self-renewing progenitor cell divisions at the expense of neurogenic differentiation in the developing cerebral cortex.  相似文献   

7.
A key feature of early vertebrate development is the formation of superficial, epithelial cells that overlie non-epithelial deep cells. In Xenopus, deep and superficial cells show a range of differences, including a different competence for primary neurogenesis. We show that the two cell populations are generated during the blastula stages by perpendicularly oriented divisions. These take place during several cell divisions, in a variable pattern, but at a percentage that varies little between embryos and from one division to the next. The orientation of division correlates with cell shape suggesting that simple geometric rules may control the orientation of division in this system. We show that dividing cells are molecularly polarised such that aPKC is localised to the external, apical, membrane. Membrane localised aPKC can be seen as early as the one-cell stage and during the blastula divisions, it is preferentially inherited by superficial cells. Finally, we show that when 64-cell stage isolated blastomeres divide perpendicularly and the daughters are cultured separately, only the progeny of the cells that inherit the apical membrane turn on the bHLH gene, ESR6e. We conclude that oriented cell divisions generate the superficial and deep cells and establish cell fate diversity between them.  相似文献   

8.
9.
10.
11.
The human aristaless-related homeobox ( ARX) gene is mutated in several patients with X-linked mental retardation and/or other neurologic pathologies. We report the isolation and expression pattern of a Xenopus arx gene. Similar to other vertebrate arx genes, Xenopus arx is expressed in the developing telencephalon, diencephalon, and floor plate.  相似文献   

12.
Rho GTPases are signaling components that participate to the control of cell morphology, adhesion and motility through the regulation of F-actin cytoskeleton dynamics. In this paper, we report the identification of RhoB in Xenopus laevis (XRhoB) and its expression pattern during early development. Whole-mount in situ hybridization analysis indicated that XrhoB is expressed at high levels in the dorsal marginal zone early in gastrula and in the dorsal midline at later stages. At mid-neurula stages, XrhoB expression extends to the central nervous system, presomitic mesoderm and somites. Later during development, rhoB mRNA is detected in the eyes, the migrating neural crest cells as well as the dorso-lateral part of the somites.  相似文献   

13.
The ontogeny of gut innervation in the anuran amphibian Xenopus laevis was studied using immunohistochemistry on sections of whole larvae from NF stages 38-52. Immunoreactivity to acetylated tubulin confirmed the presence of nerve fibres as early as stages 38-39. Actin immunoreactivity was found at stage 41, indicating the presence of smooth muscle cells. Trk-like neurotrophin receptors were occasionally found in nerve fibres as soon as stages 38-39. Vasoactive intestinal polypeptide (VIP) and pituitary adenylate cyclase-activating peptide (PACAP) immunoreactivities coexisted in nerves innervating the gut wall from stages 40-41, and nitric oxide synthase (NOS) from stage 42. Substance P/neurokinin A (SP/NKA) occurred at stage 42. In all these cases, the first fibres were observed in the oesophagus. Calcitonin gene-related peptide (CGRP) was first observed in nerves at stage 48. In general, VIP/PACAP and NOS innervation was denser than the tachykinin innervation. In conclusion, the development of nerve fibres in the Xenopus gut is probably dependent on neurotrophins that may act via Trk-like receptors and occur before the gut wall is fully organised morphologically. Feeding in Xenopus larvae starts at NF stage 45. The study demonstrates that several of the transmitters investigated are expressed in the gut innervation (and in endocrine cells) prior to this stage.  相似文献   

14.
Bone morphogenetic proteins (BMPs) act repeatedly in the development of nervous system tissues. While BMP signaling is critical for the early growth and patterning of the eye, we are interested in possible later functions of BMPs in the morphological development of retinal neurons and formation of synaptic connections. Therefore, we conducted an in situ hybridization analysis of the mRNA expression for the ligands Bmp2, -4 and 7 and the type Ia, Ib and II receptors (BmprIa, BmprIb and BmprII) during development of the retina of Xenopus laevis. Bmp4 mRNA is expressed in the dorsal retina and Bmp7 in the distal peripheral retina during the period of cell differentiation, while Bmp2 is not present in the eye. The type I receptors are expressed predominantly ventrally, from the optic vesicle stage until at least stage 35/36, after most cells have differentiated and many synaptic connections have formed. BmprII mRNA, however, is distributed evenly across the dorsoventral axis, with highest expression in retinal ganglion cell and inner nuclear layers.  相似文献   

15.
Symmetric cell divisions have been proposed to rapidly increase neuronal number late in neurogenesis, but how critical this mode of division is to establishing a specific neuronal layer is unknown. Using in vivo time-lapse imaging methods, we discovered that in the laminated zebrafish retina, the horizontal cell (HC) layer forms quickly during embryonic development upon division of a precursor cell population. The precursor cells morphologically resemble immature, postmitotic HCs and express HC markers such as ptf1a and Prox1 prior to division. These precursors undergo nonapical symmetric division at the laminar location where mature HCs contact photoreceptors. Strikingly, the precursor cell type we observed generates exclusively HCs. We have thus identified a dedicated HC precursor, and our findings suggest a mechanism of neuronal layer formation whereby the location of mitosis could facilitate rapid contact between synaptic partners.  相似文献   

16.
17.
18.
Changes in the polysome content of developing Xenopus laevis embryos   总被引:13,自引:0,他引:13  
A method for preparing polysomes from all embryonic stages of Xenopus laevis is described. In the oocyte only about 1–2% of the total ribosomes are present in polysomes, the remainder being a developmental reserve. Upon conversion to an egg the polysome content rises by up to 3-fold, and by about a further 2-fold after fertilization. There is only a small further increase during cleavage, but by the tailbud stage, when organogenesis begins, there is a more rapid rise. Most of the ribosomes are incorporated into polysomes by stage 42, shortly before feeding begins.At very early stages, the changes in polysome content seem to mirror the changes in protein synthesis. At later stages the polysome contents reported here provide the only available guide to changes in the rate of protein synthesis. Judged by polysome content, the stage 42 tadpole seems to make protein about 20 times faster than the unfertilized egg, though it contains very few more ribosomes. The relationship between polysome content and the synthesis of various types of RNA is discussed.  相似文献   

19.
We measured ultraweak emissions of the Xenopus laevis eggs and embryos during normal development and under the influence of stress factors in a spectral range of 250 to 800 nm using a photomultiplier. The registered emissions were analyzed by several basic characteristics: mean intensity, histograms, kurtosis, linear trends, and Fourier spectra. We followed relationships between these parameters and developmental stage, as well as the number of individuals in optic contact with each other. The ultraweak emissions did not differ from the background at all developmental stages according to the mean intensity. But Fourier analysis revealed the reliable presence of a number of spectral lines of ultraweak emission, predominantly in the ranges of 10-20 and 30-40 Hz, in the embryos at developmental stages 2 to 11. The intensity of ultraweak emissions reliably decreased within the first 10 min after egg activation and fertilization, as well as in the case of optic interaction between groups of embryos. Sharp cooling, increase in osmotic medium pressure, and transfer in a Ca(2+)- and Mg(2+)-free medium induced a short term (approximately 1-5 min) increase in the mean intensity of ultraweak emission. We studied specific features of ultraweak emissions from different parts of the embryo. The intensity of emission from the animal part of early blastula exceeded those from the vegetal area and entire embryo. Separated fragments of the lateral ectoderm at the neurula stage had higher mean intensities of ultraweak emission than intact embryos at the same developmental stages.  相似文献   

20.
Das T  Payer B  Cayouette M  Harris WA 《Neuron》2003,37(4):597-609
Two-photon excitation microscopy was used to reconstruct cell divisions in living zebrafish embryonic retinas. Contrary to proposed models for vertebrate asymmetric divisions, no apico-basal cell divisions take place in the zebrafish retina during the generation of postmitotic neurons. However, a surprising shift in the orientation of cell division from central-peripheral to circumferential occurs within the plane of the ventricular surface. In the sonic you (syu) and lakritz (lak) mutants, the shift from central-peripheral to circumferential divisions is absent or delayed, correlating with the delay in neuronal differentiation and neurogenesis in these mutants. The reconstructions here show that mitotic cells always remain in contact with the opposite basal surface by means of a thin basal process that can be inherited asymmetrically.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号