首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Aims:  Statistical optimization of medium components for improved chitinase production by Paenibacillus sp. D1.
Methods and Results:  Urea, K2HPO4, chitin and yeast extract were identified as significant components influencing chitinase production by Paenibacillus sp. D1 using Plackett–Burman method. Response surface methodology (central composite design) was applied for further optimization. The concentrations of medium components for improved chitinase production were as follows (g l−1): urea, 0·33; K2HPO4, 1·17; MgSO4, 0·3; yeast extract, 0·65 and chitin, 3·75. This statistical optimization approach led to the production of 93·2 ± 0·58 U ml−1 of chitinase.
Conclusions:  The important factors controlling the production of chitinase by Paenibacillus sp. D1 were identified as urea, K2HPO4, chitin and yeast extract. Statistical approach was found to be very effective in optimizing the medium components in manageable number of experimental runs with overall 2·56-fold increase in chitinase production.
Significance and Impact of the Study:  The present investigation provides a report on statistical optimization of medium components for improved chitinase production by Paenibacillus sp. D1. Paenibacillus species are gram-positive, spore-forming bacteria with several PGPR and biocontrol potentials. However, only few reports concerning mycolytic enzyme production especially chitinases are available. Chitinase produced by Paenibacillus sp. D1 represents new source for biotechnological and agricultural use.  相似文献   

2.
Aims:  To find out the cumulative effect of the nutritional parameters and to enhance the production of jasmonic acid (JA) in static fermentation by Lasiodiplodia theobromae using response surface methodology (RSM).
Method and Results:  Malt extract, sucrose, NaNO3 and MgSO4.7H2O were analysed by a 30-trial central composite design using RSM for optimizing their concentrations in the medium and the effect of their mutual interaction on JA production. Sucrose and NaNO3 were found highly significant in influencing the JA production. Malt extract and MgSO4.7H2O showed an effect on the JA production in interaction with other variables. When the optimum values of the parameters obtained through RSM (19·95 g l−1 malt extract, 50 g l−1 sucrose, 7·5 g l−1 NaNO3 and 3·51 g l−1 MgSO4.7H2O) were applied, 32% increase in JA production (299 mg l−1) was observed in comparison with 225 mg l−1 of JA produced with same media components not analysed by RSM and subsequently validated the statistical model.
Conclusions:  Increase in JA production was achieved by optimizing the nutritional parameters.
Significance and Impact of the Study:  This is the first report of using RSM for optimizing a medium for JA production. It resulted in an increase in JA production without augmentation of costly additives.  相似文献   

3.
Aims:  The objective of this study is to develop kinetic models based on batch experiments describing the growth, CO2 consumption, and H2 production of Anabaena variabilis ATCC 29413-UTM as functions of irradiance and CO2 concentration.
Methods and Results:  A parametric experimental study is performed for irradiances from 1120 to 16100 lux and for initial CO2 mole fractions from 0·03 to 0·20 in argon at pH 7·0 ± 0·4 with nitrate in the medium. Kinetic models are successfully developed based on the Monod model and on a novel scaling analysis employing the CO2 consumption half-time as the time scale.
Conclusions:  Monod models predict the growth, CO2 consumption and O2 production within 30%. Moreover, the CO2 consumption half-time is an appropriate time scale for analysing all experimental data. In addition, the optimum initial CO2 mole fraction is 0·05 for maximum growth and CO2 consumption rates. Finally, the saturation irradiance is determined to be 5170 lux for CO2 consumption and growth whereas, the maximum H2 production rate occurs around 10 000 lux.
Significance and Impact of the Study:  The study presents kinetic models predicting the growth, CO2 consumption and H2 production of A. variabilis . The experimental and scaling analysis methods can be generalized to other micro-organisms.  相似文献   

4.
Aim:  To investigate the effects of feeding and induction strategies on the production of Bm R1 recombinant antigen.
Methods and Results:  Fed-batch fermentation was studied with respect to the specific growth rate and mode of induction to assess the growth potential of the bacteria in a bioreactor and to produce high yield of Bm R1 recombinant antigen. Cells were grown at a controlled specific growth rate (μset) during pre-induction, followed by constant feeding postinduction. The highest biomass (24·3 g l−1) was obtained during fed-batch process operated at μset of 0·15 h−1, whereby lower μset (0·075 h−1) gave the highest protein production (9·82 mg l−1). The yield of Bm R1 was increased by 1·2-fold upon induction with 1 mmol l−1 IPTG (isopropyl-β- d -thiogalactoside) compared to using 5 mmol l−1 and showed a further 3·5-fold increase when the culture was induced twice at the late log phase.
Conclusions:  Combination of feeding at a lower μset and twice induction with 1 mmol l−1 IPTG yielded the best result of all variables tested, promising an improved method for Bm R1 production .
Significance and Impact of the Study:  This method can be used to increase the production scale of the Bm R1 recombinant antigen to meet the increasing demand for Brugia Rapid, a commercial diagnostic test for detection of brugian filariasis.  相似文献   

5.
Mucor circinelloides LU M40 produced 12·2 mU ml−1 of linamarase activity when grown in a 3 l fermenter in the following optimized medium (g l−1 deionized water): pectin, 10·0; (NH4)2SO4,
1·0; KH2PO4, 2·0; Na2HPO4, 0·7; MgSO4.7H2O, 0·5; yeast extract, 1·0; Tween-80,
1·0, added after 48 h of fermentation. The purified linamarase was a dimeric protein with a molecular mass of 210 kDa; the enzyme showed optimum catalytic activity at pH 5·5 and 40 °C and had a wide range (3·0–7·0) of pH stability. The enzyme substrate specificity on plant cyanogenic glycosides was wide; the Km value for linamarin was 2·93 mmol l−1. The addition, before processing, of the fungal crude enzyme to cassava roots facilitated and shortened detoxification; after 24 h of fermentation, all cyanogenic glycosides were hydrolysed.  相似文献   

6.
Aim:  To develop optimum fermentation environment for enhanced rifamycin B production by isolated Amycolatopsis sp. RSP-3.
Methods and Results:  The impact of different fermentation parameters on rifamycin B production by isolated Amycolatopsis sp. RSP-3 was investigated using Taguchi methodology. Controlling fermentation factors were selected based on one variable at a time methodology. The isolated strain revealed more than 25% higher production compared to literature reports. Five different nutritional components (soyabean meal, glucose, potassium nitrate, calcium carbonate and barbital) and inoculum concentration showed impact on rifamycin B production at individual and interactive level. At optimized environment, 65% contribution was observed from selected fermentation parameters.
Conclusions:  Soyabean meal and calcium carbonate were the most significant factors among the selected factors followed by barbital and potassium nitrate. Glucose, however, showed the least significance on rifamycin B production with this strain. A maximum of 5·12 g l−1 rifamycin B production was achieved with optimized medium containing (g l−1) soyabean meal, 27; glucose, 100; potassium nitrate, 4; calcium carbonate, 3 and barbital, 1·2.
Significance and Impact of the Study:  The present study signifies identification of balanced medium component concentrations for improved rifamycin B production by isolated Amycolatopsis sp. RSP-3. This strain requires organic and inorganic nitrogen sources for effective product yield. Yet at individual level, organic nitrogen source has c. nine-fold higher influence compared to inorganic one.  相似文献   

7.
Aims:  3-Methylindole (3-MI) is a degradation product of l -tryptophan and is both an animal waste malodorant and threat to ruminant health. Culture conditions influencing 3-MI production in Clostridium scatologenes ATCC 25775 were investigated.
Methods and Results:  Extracellular 3-MI levels in cells cultured in brain heart infusion (BHI) medium (pH 7·0) at 33°C and 37°C for 72 h were 907 ± 38 and 834 ± 121  μ mol l−1, respectively. Cells cultured in tryptone-yeast (TY) extract medium at 37°C for 48 h produced 104 ± 86  μ mol l−1 3-MI; however, addition of 1 mmol l−1  l -tryptophan failed to increase extracellular levels (113 ± 50  μ mol l−1 3-MI). Specific activity of indole acetic acid decarboxylase measured in BHI, TY and TY plus 1 mmol l−1 tryptophan-grown cells displayed 35-, 33- and 76-fold higher levels than in semi-defined medium-grown cells.
Conclusions:  When cultured in rich medium, at 33°C or 37°C and pH 7·0, Cl. scatologenes ATCC 25775 optimally produced 3-MI. Addition of l- tryptophan to medium did not lead to significant increases in extracellular 3-MI levels. Whole cell assays indicate growth in rich medium significantly up-regulated 3-MI production.
Significance and Impact of the Study:  Information presented here may prove useful in understanding what factors influence 3-MI production in malodorous animal wastes.  相似文献   

8.
Aims:  The aim of this study was to enrich, characterize and identify strict anaerobic extreme thermophilic hydrogen (H2) producers from digested household solid wastes.
Methods and Results:  A strict anaerobic extreme thermophilic H2 producing bacterial culture was enriched from a lab-scale digester treating household wastes at 70°C. The enriched mixed culture consisted of two rod-shaped bacterial members growing at an optimal temperature of 80°C and an optimal pH 8·1. The culture was able to utilize glucose, galactose, mannose, xylose, arabinose, maltose, sucrose, pyruvate and glycerol as carbon sources. Growth on glucose produced acetate, H2 and carbon dioxide. Maximal H2 production rate on glucose was 1·1 mmol l−1 h−1 with a maximum H2 yield of 1·9 mole H2 per mole glucose. 16S ribosomal DNA clone library analyses showed that the culture members were phylogenetically affiliated to the genera Bacillus and Clostridium. Relative abundance of the culture members, assessed by fluorescence in situ hybridization, were 87 ± 5% and 13 ± 5% for Bacillus and Clostridium , respectively.
Conclusions:  An extreme thermophilic, strict anaerobic, mixed microbial culture with H2-producing potential was enriched from digested household wastes.
Significance and Impact of the Study:  This study provided a culture with a potential to be applied in reactor systems for extreme thermophilic H2 production from complex organic wastes.  相似文献   

9.
Aim:  Bioaugumentation of low temperature biogas production was attempted by addition of cold-adapted Clostridium and a methanogen.
Methods and Results:  A psychrotrophic xylanolytic acetogenic strain Clostridium sp. PXYL1 growing optimally at 20°C and pH 5·3 and a Methanosarcina strain, PMET1, growing optimally on acetate and producing methane at 15°C were isolated from a cattle manure digester. Anaerobic conversion of xylose at 15°C with the coculture of the two strains was performed, and batch culture methane production characteristics indicated that methanogenesis occurred via acetate through 'acetoclastic' pathway. Stimulation studies were also undertaken to evaluate the effect of exogenous addition of the coculture on biogas yields at 15°C. Addition of 3 ml of PXYL1 at the rate of 12 × 102 CFU ml−1 increased the biogas 1·7-fold (33 l per kg cowdung) when compared to control (19·3 l per kg cowdung) as well as increased the volatile fatty acid (VFA) levels to 3210 mg l−1 when compared to 1140 mg l−1 in controls. Exogenous of addition of 10 ml PMET1 inoculum at the rate of 6·8 ± 102 CFU ml−1 in addition to PXYL1 served to further improve the biogas yields to 46 l kg−1 as well as significantly brought down the VFA levels to 1350 mg l−1.
Conclusions:  Our results suggest that the rate-limiting methanogenic step at low temperatures could be overcome and that biogas yields improved by manipulating the population of the acetoclastic methanogens.
Significance and Impact of the Study:  Stimulation of biomethanation at low temperature by coculture.  相似文献   

10.
11.
Aims:  This study demonstrated the optimum growth of Bifidobacterium pseudocatenulatum G4 with prebiotics via statistical model.
Methods and Results:  Commercial prebiotics [inulin and fructooligosaccharide (FOS)], together with sorbitol, arabinan and inoculum rate, were tested by fractional factorial design to determine their impact on growth of Bif. pseudocatenulatum G4 in skim milk. At 48 h incubation, bacterial growth was mainly influenced by FOS and inoculum rate. Growth reduction was observed in all samples incubated for 72 h. Central composite design (CCD) was adopted using FOS and inoculum rate at 48 h incubation to develop the statistical model for optimization. The model predicted that 2·461 log CFU ml−1 produced the optimum growth increase of Bif. pseudocatenulatum G4. The combination that produced the optimum point was 2·86% FOS (g/v) and 0·67% inoculum rate (v/v).
Conclusion:  At optimum combination of inoculum rate and FOS, validation experiments recorded 2·40 ± 10·02 log CFU ml−1. The application in 1-l bioreactor for 24 h showed higher growth increase of 2·95 log CFU ml−1.
Significant and Impact of the Study:  Response surface methodology approach is useful to develop optimum synbiotics combination for strain G4 with FOS.  相似文献   

12.
Aims:  To evaluate the effectiveness of organic acids and supercritical carbon dioxide (SC-CO2) treatments as well as their combined effect for the reduction of nonpathogenic Escherichia coli and three pathogenic bacteria in fresh pork.
Methods and Results:  The different treatment conditions were as follows: (i) treatment with acetic (1%, 2% or 3%) or lactic acid (1%, 2% or 3%) only, (ii) treatment with SC-CO2 at 12 MPa and 35°C for 30 min only and (iii) treatment with 3% acetic or lactic acid followed by treatment with SC-CO2. Within the same organic acid concentration, the lactic and acetic acid treatments had similar reductions. For the combined treatment of lactic acid and SC-CO2, micro-organism levels were maximally reduced, ranging from 2·10 to 2·60 log CFU cm−2 ( E. coli , 2·58 log CFU cm−2; Listeria monocytogenes , 2·60 log CFU cm−2; Salmonella typhimurium , 2·33 log CFU cm−2; E. coli O157:H7, 2·10 log CFU cm−2).
Conclusions:  The results of this study indicate that the combined treatments of SC-CO2 and organic acids were more effective at destroying foodborne pathogens than the treatments of SC-CO2 or organic acids alone.
Significance and Impact of the Study:  The combination treatment of SC-CO2 and organic acids may be useful in the meat industry to help increase microbial safety.  相似文献   

13.
Aims:  To investigate the effect of pH, water activity ( a w) and temperature on the growth of Weissella cibaria DBPZ1006, a lactic acid bacterium isolated from sourdoughs.
Methods and Results:  The kinetics of growth of W. cibaria DBPZ1006 was investigated during batch fermentations as a function of pH (4·0–8·0), a w (0·935–0·994) and temperature (10–45°C) in a rich medium. The growth curve parameters (lag time, growth rate and asymptote) were estimated using the dynamic model of Baranyi and Roberts (1994. A dynamic approach to predicting bacterial growth in food. Int J Food Microbiol 23, 277–294). The effect of pH, a w and temperature on maximum specific growth rate (μmax) were estimated by fitting a cardinal model. μmax under optimal conditions (pH = 6·6, a w = 0·994, T  = 36·3°C) was estimated to be 0·93 h−1. Minimum and maximum estimated pH and temperature for growth were 3·6 and 8·15, and 9·0°C and 47·8°C, respectively, while minimum a w was 0·918 (equivalent to 12·2% w/v NaCl).
Conclusions:  Weissella cibaria DBPZ1006 is a fast-growing heterofermentative strain, which could be used in a mixed starter culture for making bread.
Significance and Impact of the Study:  This is the first study reporting the modelling of the growth of W. cibaria , a species that is increasingly being used as a starter in sourdough and vegetable fermentations.  相似文献   

14.
Aims:  To enhance the recovery of f2 bacteriophage and poliovirus by an established method based on the adsorption to and elution from positively-charged Al(OH)3-treated silica gel.
Methods and Results:  Polyaluminum Chloride (PAC) was added to water samples to neutralize the negatively charged materials, which can reduce virus recovery by providing a competing adsorption mode on the media surface. Using this improved process (PAC 30 mg l−1, pH 6·5, temperature 20∼30°C), the recoveries of Poliovirus I and f2 from small-volume sewage (100 ml) were 110·76 ± 36·0% and 92·06 ± 8·65%, respectively ( P  < 0·05 vs. traditional methods). Recovery from a 20-L volume of sewage averaged 85·65 ± 4·43% for f2 and 88·73 ± 9·76% for poliovirus, significantly higher than the recoveries in the traditional methods ( P  < 0·05).
Conclusions:  PAC could enhance concentration efficiency of poliovirus and f2 phage from sewage water.
Significance and Impact of the Study:  This method should significantly improve the recovery of viruses from sewage.  相似文献   

15.
Aims:  To identify if culture conditions affect the chemical composition of exopolysaccharide (EPS) produced by Aureobasidium pullulans .
Methods and Results:  In batch airlift and continuously stirred tank (CSTR) reactors the EPS produced with low (0·13 g l−1 N) initial NaNO3 or (NH4)2SO4 levels contained pullulan, with maltotriose as its major component, similar to that synthesized in the airlift reactor with high (0·78 g l−1 N) initial NaNO3 levels. EPS produced by CSTR grown cultures with high (NH4)2SO4 levels contained little pullulan, possibly because of a population shift from unicells to mycelium. This chemical difference may explain why total EPS yields did not fall as they did with cultures grown under identical conditions with high NaNO3 levels, where the pullulan component of the EPS disappeared. EPS synthesized in N-limiting chemostat cultures of A. pullulans changed little with growth rate or N source, being predominantly pullulan consisting of maltotriose units.
Conclusions:  While the EPS chemical composition changed little under N-limiting conditions, high initial medium N levels determined maltotriose content and/or pullulan content possibly by dictating culture morphology.
Significance and Impact of the Study:  These results emphasize the requirement of all studies to determine EPS chemical composition when examining the influence of culture conditions on EPS yields.  相似文献   

16.
Aims:  The objective of this work was to investigate the lipase production by a newly isolated Penicillium sp . , using experimental design technique, in submerged fermentation using a medium based on peptone, yeast extract, NaCl and olive oil, as well as to characterize the crude enzymatic extracts obtained.
Methods and Results:  Lipase activity values of 9·5 U ml−1 in 96 h of fermentation was obtained at the maximized operational conditions of peptone, yeast extract, NaCl and olive oil concentrations (g l−1) of 20·0, 5·0, 5·0 and of 10·0 respectively. The partial characterization of crude enzymatic extract obtained by submerged fermentation showed optimum activity at pH range from 4·9 to 5·5 and temperature from 37°C to 42°C. The crude extract maintained its initial activity at freezing temperatures up to 100 days.
Conclusions:  A newly isolated strain of Penicillium sp . used in this work yielded good lipase activities compared to the literature.
Significance and Impact of the Study:  The growing interest in lipase production is related to the potential biotechnological applications that these enzymes present. New lipase producers are relevant to finding enzymes with different catalytic properties of commercial interest could be obtained, without using genetically modified organisms (GMO).  相似文献   

17.
Aims:  To develop solid-state fermentation system (SSF) for hyper production of tylosin from a mutant γ-1 of Streptomyces fradiae NRRL-2702 and its parent strain.
Methods and Results:  Various agro-industrial wastes were screened to study their effect on tylosin production in SSF. Wheat bran as solid substrate gave the highest production of 2500 μg of tylosin g−1 substrate by mutant γ-1 against parent strain (300 μg tylosin g−1 substrate). The tylosin yield was further improved to 4500 μg g−1 substrate [70% moisture, 10% inoculum (v/w), pH 9·2, 30°C, supplemental lactose and sodium glutamate on day 9]. Wild-type strain displayed less production of tylosin (655 μg of tylosin g−1 substrate) in SSF even after optimization of process parameters.
Conclusion:  The study has shown that solid-state fermentation system significantly enhanced the tylosin yield by mutant γ-1.
Significance and Impact of the Study:  This study proved to be very useful and resulted in 6·87 ± 0·30-fold increase in tylosin yield by this mutant when compared to that of wild-type strain.  相似文献   

18.
Aims:  The aim of the study was to isolate the endophytic fungi from Acer ginnala and screen isolates rich in gallic acid.
Methods and Results:  After epiphytic sterilization, 145 fungal endophytes were isolated from the stem, annual twig and seed of Acer ginnala . The endophytes were grouped into ten different taxa, Phomopsis sp., Neurospora sp., Phoma sp., Epicoccum sp., Penicillium sp., Alternaria sp., Fusarium sp., Trichoderma sp., Cladosporium sp. and a species of Pleosporales Incertae Sedis , by their morphological traits and ITS-rDNA sequence analysis. The content and yield of gallic acid of 141 isolates were determined by HPLC. On average, the species of Pleosporales Incertae Sedis had the highest content and yield of gallic acid (13·28 mg g−1 DW; 119·62 mg l−1), while Alternaria sp. had the lowest.
Conclusions:  Of 141 fungal endophytes from A. ginnala , Phomopsis sp. isolate SX10 showed both the highest content and the highest yield of gallic acid (29·25 mg g−1 DW; 200·47 mg l−1).
Significance and Impact of the Study:  Endophytic fungi isolated from A. ginnala may be used as potential producers of gallic acid and other compounds with biological activities, or functioned as elicitors to produce natural compounds.  相似文献   

19.
Aims:  To express and product a fluorescent antioxidant holo-α-phycocyanin (PC) of Spirulina platensis ( Sp ) with His-tag (rHHPC; recombinant holo-α-phycocyaninof Spirulina platensis with His-tag) in 5-l bench scale.
Methods and Results:  A vector harbouring two cassettes was constructed: cpcA along with cpcE - cpcF in one cassette; ho1 - pcyA in the other cassette. Lyases CpcE/F of Synechocystis sp. PCC6803 ( S6 ) could catalyse the 82 site Cys in apo-α-PC of Sp linking with bilin chromophores, and rHHPC was biosynthesized in Escherichia coli BL21. The constant feeding mode was adopted, and transformant reached the biomass of rHHPC up to 0·55 g l−1 broth in 5-litre bench scale. rHHPC was purified by Ni2+ affinity column conveniently. The absorbance and the fluorescence emission spectra of rHHPC had λmax at 621 and 650 nm, respectively. The IC50 values of rHHPC were 277·5 ± 25·8 μ g ml−1 against hydroxyl radicals and 20·8 ± 2·2  μ g ml−1 against peroxyl radicals.
Conclusions:  Combinational biosynthesis of rHHPC was feasible, and the constant feeding mode was adopted to produce good yields of rHHPC. Fluorescent rHHPC with several unique qualitative and quantitative features was effective on scavenging hydroxyl and peroxyl radicals.
Significance and impact of the study:  A potent antioxidant rHHPC was co-expressed, produced and characterized for nutritional and pharmacological values, which would help to develop phycobiliproteins' applications in their fluorescent and biological activities.  相似文献   

20.
Aim:  This work is aimed at optimizing the production of a new heteropolysaccharide (HePS) of Leuconostoc sp. CFR-2181 by standardizing the fermentation conditions in a low cost semi-synthetic medium.
Methods and Results:  Both nutritional and cultural parameters, such as carbon source and its concentration, initial pH of the exopolysaccharide (EPS) medium, fermentation temperature and fermentation period were optimized. Fermentation of the EPS medium (pH 6·7), containing sucrose at 5% (w/v) and 5% (v/v) inoculum, at 25 ° C resulted in maximum production of HePS (18·38 g l−1) by the isolate in 4 h of fermentation.
Conclusions:  The isolate was found to produce good amount of HePS in just 4 h in a low cost semi-synthetic EPS medium.
Significance and Impact of the Study:  This is the first report on rapid production of HePS by any lactic culture, which can significantly reduce the cost of the EPS.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号