共查询到20条相似文献,搜索用时 0 毫秒
1.
IL-10 inhibits lipopolysaccharide-induced CD40 gene expression through induction of suppressor of cytokine signaling-3 总被引:3,自引:0,他引:3
Qin H Wilson CA Roberts KL Baker BJ Zhao X Benveniste EN 《Journal of immunology (Baltimore, Md. : 1950)》2006,177(11):7761-7771
Costimulation between T cells and APCs is required for adaptive immune responses. CD40, an important costimulatory molecule, is expressed on a variety of cell types, including macrophages and microglia. The aberrant expression of CD40 is implicated in diseases including multiple sclerosis, rheumatoid arthritis, and Alzheimer's disease, and inhibition of CD40 signaling has beneficial effects in a number of animal models of autoimmune diseases. In this study, we discovered that IL-10, a cytokine with anti-inflammatory properties, inhibits LPS-induced CD40 gene expression. We previously demonstrated that LPS induction of CD40 in macrophages/microglia involves both NF-kappaB activation and LPS-induced production of IFN-beta, which subsequently activates STAT-1alpha. IL-10 inhibits LPS-induced IFN-beta gene expression and subsequent STAT-1alpha activation, but does not affect NF-kappaB activation. Our results also demonstrate that IL-10 inhibits LPS-induced recruitment of STAT-1alpha, RNA polymerase II, and the coactivators CREB binding protein and p300 to the CD40 promoter, as well as inhibiting permissive histone H3 acetylation (AcH3). IL-10 and LPS synergize to induce suppressor of cytokine signaling (SOCS)-3 gene expression in macrophages and microglia. Ectopic expression of SOCS-3 attenuates LPS-induced STAT activation, and inhibits LPS-induced CD40 gene expression, comparable to that seen by IL-10. These results indicate that SOCS-3 plays an important role in the negative regulation of LPS-induced CD40 gene expression by IL-10. 相似文献
2.
Myew-Ling Toh Masanori Kawashima Saloua Zrioual Arnaud Hot Philippe Miossec Pierre Miossec 《Cytokine》2009,48(3):226-230
Th17 cells are critical in adaptive immunity and autoimmune disease. The polarized development of Th17, Th1 and Th2 cells is dependent on counterregulatory effects on each other. Whereas IFN-γ inhibits Th17 development, the effect of IL-17 in human Th1 development is not known. We report a novel negative regulatory role of IL-17 on IL-12Rβ2 expression associated with reduced IL-12 responsiveness. IL-17 decreased IL-12-induced IFN-γ expression in PBMC and developing Th1 cells, associated with a selective reduction in IL-12Rβ2, and not IL-23R, IL-12Rβ1 or T-bet. Counterregulatory effects of human Th17 on Th1 lineage cytokines may contribute to lineage divergence. In autoimmune disease, IL-17 may reinforce its own developmental programme by reducing IL-12 responsiveness, thus limiting inhibitory effects of IFN-γ on Th17 development. 相似文献
3.
4.
Inhibition of Th1 immune response by glucocorticoids: dexamethasone selectively inhibits IL-12-induced Stat4 phosphorylation in T lymphocytes 总被引:10,自引:0,他引:10
Franchimont D Galon J Gadina M Visconti R Zhou Y Aringer M Frucht DM Chrousos GP O'Shea JJ 《Journal of immunology (Baltimore, Md. : 1950)》2000,164(4):1768-1774
Glucocorticoids are widely used in the therapy of inflammatory, autoimmune, and allergic diseases. As the end-effectors of the hypothalamic-pituitary-adrenal axis, endogenous glucocorticoids also play an important role in suppressing innate and cellular immune responses. Previous studies have indicated that glucocorticoids inhibit Th1 and enhance Th2 cytokine secretion. IL-12 promotes Th1 cell-mediated immunity, while IL-4 stimulates Th2 humoral-mediated immunity. Here, we examined the regulatory effect of glucocorticoids on key elements of IL-12 and IL-4 signaling. We first investigated the effect of dexamethasone on IL-12-inducible genes and showed that dexamethasone inhibited IL-12-induced IFN-gamma secretion and IFN regulatory factor-1 expression in both NK and T cells. This occurred even though the level of expression of IL-12 receptors and IL-12-induced Janus kinase phosphorylation remained unaltered. However, dexamethasone markedly inhibited IL-12-induced phosphorylation of Stat4 without altering its expression. This was specific, as IL-4-induced Stat6 phosphorylation was not affected, and mediated by the glucocorticoid receptor, as it was antagonized by the glucocorticoid receptor antagonist RU486. Moreover, transfection experiments showed that dexamethasone reduced responsiveness to IL-12 through the inhibition of Stat4-dependent IFN regulatory factor-1 promoter activity. We conclude that blocking IL-12-induced Stat4 phosphorylation, without altering IL-4-induced Stat6 phosphorylation, appears to be a new suppressive action of glucocorticoids on the Th1 cellular immune response and may help explain the glucocorticoid-induced shift toward the Th2 humoral immune response. 相似文献
5.
Suppressor of cytokine signaling 1 inhibits cytokine induction of CD40 expression in macrophages 总被引:4,自引:0,他引:4
Wesemann DR Dong Y O'Keefe GM Nguyen VT Benveniste EN 《Journal of immunology (Baltimore, Md. : 1950)》2002,169(5):2354-2360
CD40 is a type I membrane-bound molecule belonging to the TNFR superfamily that is expressed on various immune cells including macrophages and microglia. The aberrant expression of CD40 is involved in the initiation and maintenance of various human diseases including multiple sclerosis, arthritis, atherosclerosis, and Alzheimer's disease. Inhibition of CD40 signaling has been shown to provide a significant beneficial effect in a number of animal models of human diseases including the aforementioned examples. We have previously shown that IFN-gamma induces CD40 expression in macrophages and microglia. IFN-gamma leads to STAT-1alpha activation directly and up-regulation of NF-kappaB activity due to the secretion and subsequent autocrine signaling of TNF-alpha. However, TNF-alpha alone is not capable of inducing CD40 expression in these cells. Suppressor of cytokine signaling 1 protein (SOCS-1) is a cytokine-inducible Src homology 2-containing protein that regulates cytokine receptor signaling by inhibiting STAT-1alpha activation via a specific interaction with activated Janus kinase 2. Given the important role of CD40 in inflammatory events in the CNS as well as other organ systems, it is imperative to understand the molecular mechanisms contributing to both CD40 induction and repression. We show that ectopic expression of SOCS-1 abrogates IFN-gamma-induced CD40 protein expression, mRNA levels, and promoter activity. Additionally, IFN-gamma-induced TNF-alpha secretion, as well as STAT-1alpha and NF-kappaB activation, are inhibited in the presence of SOCS-1. We conclude that SOCS-1 inhibits cytokine-induced CD40 expression by blocking IFN-gamma-mediated STAT-1alpha activation, which also then results in suppression of IFN-gamma-induced TNF-alpha secretion and subsequent NF-kappaB activation. 相似文献
6.
B cells convert what are normally conditions for Th1 differentiation into an environment suitable for Th2 development. This capacity is dependent on CD40 as B cells from CD40-/- mice do not elicit Th2 differentiation. To elucidate the basis of this effect, we surveyed cytokine RNA made by naive B cells after activation with anti-Ig and anti-CD40. Resting B cells make TGF-beta message only, however, 4 days after activation, RNA encoding IL-6, IL-10, and TNF-alpha was found. The expression of these messages was accelerated by 2 days in the presence of IL-12. The relevance of these observations to T cell differentiation was investigated: addition of OVA peptide to splenic cells from DO.11.10 transgenic mice causes most T cells to make IFN-gamma. Coactivation of B cells in these cultures reduces the number of IFN-gamma-producing T cells and increases the number synthesizing IL-4. Abs to IL-6 and IL-10 block the IL-4 enhancement. Dissection of the component APC demonstrated that interaction of B cells with IL-12-producing dendritic cells is crucial for B cell-mediated IL-4 enhancement: Thus, B cells preactivated in the presence of dendritic cells from IL-12-/- mice show little IL-4-inducing activity when used to activate T cells. This immune regulation is initiated by IL-12 and therefore represents a feedback loop to temper its own dominant effect (IFN-gamma induction). 相似文献
7.
8.
Feng T Qin H Wang L Benveniste EN Elson CO Cong Y 《Journal of immunology (Baltimore, Md. : 1950)》2011,186(11):6313-6318
Both Th1 and Th17 cells have been implicated in the pathogenesis of inflammatory bowel disease and experimental colitis. However, the complex relationship between Th1 and Th17 cells and their relative contributions to the pathogenesis of inflammatory bowel disease have not been completely analyzed. Although it has been recently shown that Th17 cells can convert into Th1 cells, the underlying in vivo mechanisms and the role of Th1 cells converted from Th17 cells in the pathogenesis of colitis are still largely unknown. In this study, we report that Th17 cells from CBir1 TCR transgenic mice, which are specific for an immunodominant microbiota Ag, are more potent than Th1 cells in the induction of colitis, as Th17 cells induced severe colitis, whereas Th1 cells induced mild colitis when transferred into TCRβxδ(-/-) mice. High levels of IL-12 and IL-23 and substantial numbers of IFN-γ(+) Th1 cells emerged in the colons of Th17 cell recipients. Administration of anti-IL-17 mAb abrogated Th17 cell-induced colitis development, blocked colonic IL-12 and IL-23 production, and inhibited IFN-γ(+) Th1 cell induction. IL-17 promoted dendritic cell production of IL-12 and IL-23. Furthermore, conditioned media from colonic tissues of colitic Th17 cell recipients induced IFN-γ production by Th17 cells, which was inhibited by blockade of IL-12 and IL-23. Collectively, these data indicate that Th17 cells convert to Th1 cells through IL-17 induction of mucosal innate IL-12 and IL-23 production. 相似文献
9.
Owaki T Asakawa M Morishima N Mizoguchi I Fukai F Takeda K Mizuguchi J Yoshimoto T 《Journal of immunology (Baltimore, Md. : 1950)》2008,180(5):2903-2911
IL-27, a member of the IL-6/IL-12 family, activates both STAT1 and STAT3 through its receptor, which consists of WSX-1 and gp130 subunits, resulting in augmentation of Th1 differentiation and suppression of proinflammatory cytokine production. In the present study, we investigated the role of STAT3 in the IL-27-mediated immune functions. IL-27 induced phosphorylation of STAT1, -2, -3 and -5 in wild-type naive CD4+ T cells, but failed to induce that of STAT3 and STAT5 in STAT3-deficient cohorts. IL-27 induced not only proinflammatory responses including up-regulation of ICAM-1, T-box expressed in T cells, and IL-12Rbeta2 and Th1 differentiation, but also anti-inflammatory responses including suppression of proinflammatory cytokine production such as IL-2, IL-4, and IL-13 even in STAT3-deficient naive CD4+ T cells. In contrast, IL-27 augmented c-Myc and Pim-1 expression and induced cell proliferation in wild-type naive CD4+ T cells but not in STAT3-deficient cohorts. Moreover, IL-27 failed to activate STAT3, augment c-Myc and Pim-1 expression, and induce cell proliferation in pro-B BaF/3 transfectants expressing mutant gp130, in which the putative STAT3-binding four Tyr residues in the YXXQ motif of the cytoplasmic region was replaced by Phe. These results suggest that STAT3 is activated through gp130 by IL-27 and is indispensable to IL-27-mediated cell proliferation but not to IL-27-induced Th1 differentiation and suppression of proinflammatory cytokine production. Thus, IL-27 may be a cytokine, which activates both STAT1 and STAT3 through distinct receptor subunits, WSX-1 and gp130, respectively, to mediate its individual immune functions. 相似文献
10.
Inflammatory bowel diseases (IBD), including Crohn’s disease (CD) and ulcerative colitis (UC), are chronic inflammatory diseases with unsolved pathogenesis. Imbalanced Th1/Th2 may play a role in the sustained inflammation of IBD. In China, CD is rare but the incidence of UC has been rising steadily in the last two decades. We investigated the expression of IL-12 (p40) and IFN-γ, and the activational state of Stat4 signaling in mucosal tissues at the site of disease from 30 active UC patients in comparison with 30 healthy controls. RT-PCR analyses revealed increased mRNA expression of IL-12 (p40) but not IFN-γ in UC patients. Western blot analyses discovered, for the first time, increased levels of constitutive Stat4 in the cytoplasm and phosphorylated Stat4 in the nucleus of mucosal cells from UC patients. We conclude that a heightened, perhaps persistent, activational state of IL-12/Stat4, and/or IL-23/Stat4 signaling may be present in active Chinese UC patients, and possibly involved in chronic inflammation in UC. 相似文献
11.
Yang XP Albrecht U Zakowski V Sobota RM Häussinger D Heinrich PC Ludwig S Bode JG Schaper F 《The Journal of biological chemistry》2004,279(43):45279-45289
Interleukin-6 (IL-6) exerts pro- as well as anti-inflammatory activities in response to infection, injury, or other stimuli that affect the homeostasis of the organism. IL-6-induced expression of acute-phase protein genes in the liver is tightly regulated through both IL-6-induced feedback inhibitors and the activity of pro-inflammatory cytokines such as tumor necrosis factor alpha and interleukin-1beta. In previous studies mechanisms for how IL-1beta counteracts IL-6-dependent acute-phase protein gene induction have been proposed. Herein we analyzed IL-1beta-mediated regulation of IL-6-induced expression of the feedback inhibitor SOCS3. In hepatocytes IL-1beta alone does not induce SOCS3 expression, but it counteracts SOCS3-promoter activation in long term studies. Surprisingly, short term stimulation revealed IL-1beta to be a potent enhancer of SOCS3 expression in concert with IL-6. This activity of IL-1beta does not depend on IL-1beta-dependent STAT1-serine phosphorylation but on NF-kappaB-dependent gene induction. Such a regulatory network allows IL-1beta to counteract IL-6-dependent expression of acute-phase protein genes without inhibiting IL-6-induced SOCS3 expression and provides a reasonable mechanism for the IL-1beta-dependent inhibition of acute-phase gene induction, because reduced SOCS3 expression would lead to enhanced IL-6 activity. 相似文献
12.
13.
Suppressive oligodeoxynucleotides inhibit Th1 differentiation by blocking IFN-gamma- and IL-12-mediated signaling 总被引:4,自引:0,他引:4
Repetitive TTAGGG motifs present at high frequency in mammalian telomeres can suppress Th1-mediated immune responses. Synthetic oligonucleotides (ODN) containing TTAGGG motifs mimic this activity and have proven effective in the prevention/treatment of certain Th1-dependent autoimmune diseases. This work explores the mechanism by which suppressive ODN block the induction of Th1 immunity. Findings indicate that these ODN inhibit IFN-gamma-induced STAT1 phosphorylation and IL-12-induced STAT3 and STAT4 phosphorylation. As a result, T-bet expression is reduced as is the maturation of naive CD4+ cells into Th1 effectors. These changes indirectly support the generation of Th2-dominated immune responses. Suppressive ODN may thus represent a novel approach to influence the Th1:Th2 balance in vivo. 相似文献
14.
T helper 1 (Th1) cell fate is induced by overlapping signaling pathways, whose kinetic principles and regulatory motifs are largely unknown. We identified a simple positive feedback loop in the STAT4 signaling pathway, whereby activation by IL-12 leads to the increased expression in IL-12 receptor. A computational analysis shows that this feedback loop synergizes with the one mediated by the IFN-gamma secreted by differentiating cells, when the induction of Th1 cell fate is weak. Positive feedback loops are often utilized to enhance phenotypic differentiation. This effect was confirmed by experiments showing that stochastic fluctuations in the expression of IL-12 receptor gene were amplified, leading to two discrete levels of expression in a cell population. 相似文献
15.
Synergistic effect of IL-2, IL-12, and IL-18 on thymocyte apoptosis and Th1/Th2 cytokine expression 总被引:7,自引:0,他引:7
Rodriguez-Galán MC Bream JH Farr A Young HA 《Journal of immunology (Baltimore, Md. : 1950)》2005,174(5):2796-2804
In the periphery, IL-18 synergistically induces the expression of the Th1 cytokine IFN-gamma in the presence of IL-12 and the Th2 cytokines IL-5 and IL-13 in the presence of IL-2. Although the expression of these cytokines has been described in the thymus, their role in thymic development and function remains uncertain. We report here that freshly isolated thymocytes from C57BL/6 and BALB/c mice stimulated in vitro with IL-2-plus-IL-18 or IL-12-plus-IL-18 produce large amounts of IFN-gamma and IL-13. Analysis of the thymic subsets, CD4(-)CD8(-) (DN), CD4(+)CD8(+), CD4(+)CD8(-), and CD4(-)CD8(+) revealed that IL-18 in combination with IL-2 or IL-12 induces IFN-gamma and IL-13 preferentially from DN cells. Moreover, DN2 and DN3 thymocytes contained more IFN-gamma(+) cells than cells in the later stage of maturation. Additionally, IL-18 in combination with IL-2 induces CCR4 (Th2-associated) and CCR5 (Th1-associated) gene expression. In contrast, IL-18-plus-IL-12 specifically induced CCR5 expression. The IL-2-plus-IL-18 or IL-12-plus-IL-18 effect on IFN-gamma and IL-13 expression is dependent on Stat4 and NF-kappaB but independent of Stat6, T-bet, or NFAT. Furthermore, IL-12-plus-IL-18 induces significant thymocyte apoptosis when expressed in vivo or in vitro, and this effect is exacerbated in the absence of IFN-gamma. IL-12-plus-IL-18-stimulated thymocytes can also induce IA-IE expression on cortical and medullary thymic epithelial cells in an IFN-gamma-dependent manner. Thus, the combination of IL-2, IL-12, and IL-18 can induce phenotypic and functional changes in thymocytes that may alter migration, differentiation, and cell death of immature T cells inside the thymus and potentially affect the Th1/Th2 bias in peripheral immune compartments. 相似文献
16.
Takatori H Nakajima H Hirose K Kagami S Tamachi T Suto A Suzuki K Saito Y Iwamoto I 《Journal of immunology (Baltimore, Md. : 1950)》2005,174(6):3734-3740
It is well-recognized that Stat6 plays a critical role in Th2 cell differentiation and the induction of allergic inflammation. We have previously shown that Stat5a is also required for Th2 cell differentiation and allergic airway inflammation. However, it is the relative importance and redundancy of Stat6 and Stat5a in Th2 cell differentiation and allergic airway inflammation are unknown. In this study we addressed these issues by comparing Stat5a-deficient (Stat5a(-/-)) mice, Stat6(-/-) mice, and Stat5a- and Stat6 double-deficient (Stat5a(-/-) Stat6(-/-)) mice on the same genetic background. Th2 cell differentiation was severely decreased in Stat6(-/-)CD4+ T cells, but Stat6-independent Th2 cell differentiation was still significantly observed in Stat6(-/-)CD4+ T cells. However, even in the Th2-polarizing condition (IL-4 plus anti-IFN-gamma mAb), no Th2 cells developed in Stat5a(-/-)Stat6(-/-) CD4+ T cells. Moreover, Ag-induced eosinophil and lymphocyte recruitment in the airways was severely decreased in Stat5a(-/-)Stat6(-/-) mice compared with that in Stat6(-/-) mice. These results indicate that Stat5a plays an indispensable role in Stat6-independent Th2 cell differentiation and subsequent Th2 cell-mediated allergic airway inflammation. 相似文献
17.
Morphine withdrawal inhibits IL-12 induction in a macrophage cell line through a mechanism that involves cAMP 总被引:1,自引:0,他引:1
Kelschenbach J Ninkovic J Wang J Krishnan A Charboneau R Barke RA Roy S 《Journal of immunology (Baltimore, Md. : 1950)》2008,180(6):3670-3679
There are very few studies that examine the effects that morphine withdrawal has on immune functioning, and of these even fewer describe the mechanisms by which withdrawal brings about these changes. Our previous work demonstrated that morphine withdrawal contributed to Th cell differentiation by biasing cells toward the Th2 lineage. A major finding from these studies was that IL-12 was decreased following withdrawal, and it was concluded that this decrease may be a mechanism by which morphine withdrawal is mediating Th2 polarization. Therefore, it was the aim of the current studies to develop an in vitro model to examine the process of morphine withdrawal and to understand the signaling mechanisms that withdrawal may use to effect IL-12 production through the use of this model. It was demonstrated and concluded that morphine withdrawal may be effecting IL-12 production by increasing cAMP levels, which activates protein kinase A. Protein kinase A activation then prevents the phosphorylation and subsequent degradation of IkappaB, which in turn prevents translocation of the NF-kappaB p65 subunit to the nucleus to transactivate the IL-12 p40 gene, ultimately resulting in decreased IL-12 production following LPS stimulation. 相似文献
18.
19.
Ding Y Chen D Tarcsafalvi A Su R Qin L Bromberg JS 《Journal of immunology (Baltimore, Md. : 1950)》2003,170(3):1383-1391
IL-10 has proved to be a key cytokine in regulating inflammatory responses by controlling the production and function of various other cytokines. The suppressor of cytokine signaling (SOCS) gene products are a family of cytoplasmic molecules that are essential mediators for negatively regulating cytokine signaling. It has been previously shown that IL-10 induced SOCS3 expression and that forced constitutive expression of SOCS3 inhibits IL-10/STAT3 activation and LPS-induced macrophage activation. In this report, we show that, in addition to SOCS3 expression, IL-10 induces SOCS1 up-regulation in all cell lines tested, including Ba/F3 pro-B cells, MC/9 mast cells, M1 leukemia cells, U3A human fibroblasts, and primary mouse CD4(+) T cells. Induction of SOCS molecules is dependent on STAT3 activation by IL-10R1. Cell lines constitutively overexpressing SOCS proteins demonstrated that SOCS1 and SOCS3, but not SOCS2, are able to partially inhibit IL-10-mediated STAT3 activation and proliferative responses. Pretreatment of M1 cells with IFN-gamma resulted in SOCS1 induction and a reduction of IL-10-mediated STAT3 activation and cell growth inhibition. IL-10-induced SOCS is associated with the inhibition of IFN-gamma signaling in various cell types, and this inhibition is independent of C-terminal serine residues of the IL-10R, previously shown to be required for other anti-inflammatory responses. Thus, the present results show that both SOCS1 and SOCS3 are induced by IL-10 and may be important inhibitors of both IL-10 and IFN-gamma signaling. IL-10-induced SOCS1 may directly inhibit IL-10 IFN-gamma signaling, while inhibition of other proinflammatory cytokine responses may use additional IL-10R1-mediated mechanisms. 相似文献
20.
Owaki T Asakawa M Kamiya S Takeda K Fukai F Mizuguchi J Yoshimoto T 《Journal of immunology (Baltimore, Md. : 1950)》2006,176(5):2773-2780
IL-27 is a novel IL-6/IL-12 family cytokine that not only plays a role in the early regulation of Th1 differentiation, but also exerts an inhibitory effect on immune responses, including the suppression of proinflammatory cytokine production. However, the molecular mechanism by which IL-27 exerts the inhibitory effect remains unclear. In this study we demonstrate that IL-27 inhibits CD28-mediated IL-2 production and that suppressor of cytokine signaling 3 (SOCS3) plays a critical role in the inhibitory effect. Although IL-27 enhanced IFN-gamma production from naive CD4+ T cells stimulated with plate-coated anti-CD3 and anti-CD28 in the presence of IL-12, IL-27 simultaneously inhibited CD28-mediated IL-2 production. Correlated with the inhibition, IL-27 was shown to augment SOCS3 expression. Analyses using various mice lacking a signaling molecule revealed that the inhibition of IL-2 production was dependent on STAT1, but not on STAT3, STAT4, and T-bet, and was highly correlated with the induction of SOCS3 expression. Similar inhibition of CD28-mediated IL-2 production and augmentation of SOCS3 expression by IL-27 were observed in a T cell hybridoma cell line, 2B4. Forced expression of antisense SOCS3 or dominant negative SOCS3 in the T cell line blocked the IL-27-inudced inhibition of CD28-mediated IL-2 production. Furthermore, pretreatment with IL-27 inhibited IL-2-mediated cell proliferation and STAT5 activation, although IL-27 hardly affected the induction level of CD25 expression. These results suggest that IL-27 inhibits CD28-mediated IL-2 production and also IL-2 responses, and that SOCS3, whose expression is induced by IL-27, plays a critical role in the inhibitory effect in a negative feedback mechanism. 相似文献