首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Site-specific transposition of insertion sequence IS630.   总被引:9,自引:4,他引:5       下载免费PDF全文
  相似文献   

2.
We have found that the genomic regions surrounding the linked discoidin I genes of various Dictyostelium discoideum strains have undergone rapid changes. Wild-type strain NC-4 has three complete discoidin I genes; its axenic derivative strain Ax-3L has duplicated a region starting approximately 1 kilobase upstream from the two linked genes and extending for at least 8 kilobases past the genes. A separately maintained stock, strain Ax-3K, does not have this duplication but has undergone a different rearrangement approximately 3 kilobases farther upstream. We show that there are repeat elements in these rapidly changing regions. At least two of these elements, Tdd-2 and Tdd-3, have characteristics associated with mobile genetic elements. The Tdd-3 element is found in different locations in related strains and causes a 9- to 10-base-pair duplication of the target site DNA. The Tdd-2 and Tdd-3 elements do not cross-hybridize, but they share a 22-base-pair homology near one end. At two separate sites, the Tdd-3 element has transposed into the Tdd-2 element, directly adjacent to the 22-base-pair homology. The Tdd-3 element may use this 22-base-pair region as a preferential site of insertion.  相似文献   

3.
4.
Two subfamilies of murine retrotransposon ETn sequences   总被引:7,自引:0,他引:7  
Early transposon (ETn) elements are 5.7-kb retrotransposons found in the murine genome. We have sequenced large portions of two ETn elements that have apparently transposed within the DNA of a murine myeloma cell line, P3.26Bu4. One of the transposed ETn elements has 5' and 3' long terminal repeats (LTRs) that are exact duplicates of each other and has a 6-bp target site duplication. These results suggest that this element, which inserted into an immunoglobulin gamma 1 switch region, moved by a retrotransposition process. Our nucleotide sequences confirm that individual ETn elements are very similar to one another and lack open reading frames. However, the ETn sequences reported here and those previously described differ significantly near their 5' LTRs, including 200 bp of weak similarity and 240 bp of complete disparity. Southern hybridization analysis suggests that both subfamilies of ETn sequences are represented many times in the mouse genome. The possibility that the disparate sequences have a role in transposition by ETn elements is discussed.  相似文献   

5.
I-R hybrid dysgenesis in D. melanogaster is controlled by transposable elements known as I factors which terminate at their 3' ends by an A-rich sequence. Inducer strains contain active I factors. Both reactive and inducer stocks possess defective I elements. We have cloned various I elements from both categories of strains. The I elements having recently transposed in inducer strains have a structure closely related to that of active I factors. However we have isolated one such I element that is truncated at its 5' end. The I elements common to reactive and inducer strains are affected by various rearrangements and many point mutations. They do not appear to be simple derivatives of complete I factors.  相似文献   

6.
We have analyzed a repetitive DNA sequence found in the 3'-flanking region of the chicken vitellogenin gene. By its sequence, the repetitive DNA has been identified as a hitherto unreported member of the chicken CR1 family of repetitive elements. The CR1 sequence displays the structural characteristics of a long terminal repeat located at the 3' end of an avian retrovirus. The CR1 element lies 2.2 kb downstream of the vitellogenin gene and 'points' away from the gene rather than toward it. In this respect, this element differs from other CR1 repeats. The CR1 element is embedded in a region showing changes in chromatin structure implying a potential role for this sequence in determining the structural state of the local chromatin.  相似文献   

7.
Eight terminally deleted Drosophila melanogaster chromosomes have now been found to be "healed." In each case, the healed chromosome end had acquired sequence from the HeT DNA family, a complex family of repeated sequences found only in telomeric and pericentric heterochromatin. The sequences were apparently added by transposition events involving no sequence homology. We now report that the sequences transposed in healing these chromosomes identify a novel transposable element, HeT-A, which makes up a subset of the HeT DNA family. Addition of HeT-A elements to broken chromosome ends appears to be polar. The proximal junction between each element and the broken chromosome end is an oligo(A) tract beginning 54 nucleotides downstream from a conserved AATAAA sequence on the strand running 5' to 3' from the chromosome end. The distal (telomeric) ends of HeT-A elements are variably truncated; however, we have not yet been able to determine the extreme distal sequence of a complete element. Our analysis covers approximately 2,600 nucleotides of the HeT-A element, beginning with the oligo(A) tract at one end. Sequence homology is strong (greater than 75% between all elements studied). Sequence may be conserved for DNA structure rather than for protein coding; even the most recently transposed HeT-A elements lack significant open reading frames in the region studied. Instead, the elements exhibit conserved short-range sequence repeats and periodic long-range variation in base composition. These conserved features suggest that HeT-A elements, although transposable elements, may have a structural role in telomere organization or maintenance.  相似文献   

8.
A Gil  N J Proudfoot 《Cell》1987,49(3):399-406
We previously demonstrated that a critical 35 bp region 3' of the AAUAAA is required for rabbit beta-globin mRNA 3' end formation. Recently, we synthesized and tested sequence elements derived from this region. Here, we report that a GU-rich and a U-rich sequence element are both required for efficient rabbit beta-globin mRNA 3' end formation. The efficiency of processing is restored to the wild-type level when the two elements are placed together and is greatly diminished when only one element is present. The level of 3' end formation is also decreased when the distance between the two elements is expanded. These results demonstrate that the GU-rich and U-rich elements function synergistically to restore efficient mRNA 3' end formation and that they most likely form a single requisite sequence 3' of the AAUAAA. Furthermore, we show that the effect of the GU-rich and U-rich sequence elements is position-dependent.  相似文献   

9.
Highly repetitive DNA sequences constitute a significant portion of most eukaryotic genomes, raising questions about their evolutionary origins and amplification dynamics. In this study, a novel chicken repetitive DNA family, the HinfI repeat, was characterized. The basic repeating unit of this family displays a uniform length of 770 bp, which was defined by the recognition site of HinfI. The HinfI repeat was specifically localized in the pericentric region of chromosome 4 by fluorescence in situ hybridization and constitutes 0.51% of the chicken genome. Interestingly, a chicken repeat 1 (CR1) element has been identified within this basic repeating unit. Like other CR1 elements, this CR1 element also displays typical retrotransposition characteristics, including a highly conserved 3' region and a badly truncated 5' end. This direct evidence from sequence analysis, together with our Southern blot results, suggests that the HinfI repeat may originate from a unique region containing a retrotransposed CR1 element.  相似文献   

10.
Aberrant repair products of mariner transposition occur at a frequency of approximately 1/500 per target element per generation. Among 100 such mutations in the nonautonomous element peach, most had aberrations in the 5' end of peach (40 alleles), in the 3' end of peach (11 alleles), or a deletion of peach with or without deletion of flanking genomic DNA (29 alleles). Most mariner mutations can be explained by exonuclease "nibble" and host-mediated repair of the double-stranded gap created by the transposase, in contrast to analogous mutations in the P element. In mariner, mutations in the 5' inverted repeat are smaller and more frequent than those in the 3' inverted repeat, but secondary mutations in target elements with a 5' lesion usually had 3' lesions resembling those normally found at the 5' end. We suggest that the mariner transposase distinguishes between the 5' and 3' ends of the element, and that the 5' end is relatively more protected after strand scission. We also find: (1) that homolog-dependent gap repair is a frequent accompaniment to mariner excision, estimated as 30% of all excision events; and (2) that mariner is a hotspot of recombination in Drosophila females, but only in the presence of functional transposase.  相似文献   

11.
12.
13.
14.
15.
An RNA polymerase I enhancer in Saccharomyces cerevisiae.   总被引:35,自引:19,他引:16       下载免费PDF全文
  相似文献   

16.
17.
18.
19.
We have analyzed donor and target sites of the mobile element Activator (Ac) that are altered as a result of somatic transposition from the P locus in maize. Previous genetic analysis has indicated that the two mitotic daughter lineages which result from Ac transposition from P differ in their Ac constitution at the P locus. Both lineages, however, usually contain transposed Ac elements which map to the same genetic position. Using methylation-sensitive restriction enzymes and genomic blot analysis, we identified Ac elements at both the donor P locus and Ac target sites and used this assay to clone the P locus and to identify transposed Ac elements. Daughter lineages were shown to be mitotic descendants from a single transposition event. When both lineages contained Ac genetic activity, they both contained a transposed Ac element on identical genomic fragments independent of the genetic position of the target site. This indicates that in the majority of cases, Ac transposition takes place after replication of the donor locus but before completion of replication at the target site.  相似文献   

20.
Human L1 element target-primed reverse transcription in vitro   总被引:13,自引:0,他引:13  
Cost GJ  Feng Q  Jacquier A  Boeke JD 《The EMBO journal》2002,21(21):5899-5910
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号