首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 804 毫秒
1.
病理性疼痛包括炎症性疼痛、神经病理性疼痛及癌症痛等。临床上,传统的止痛药对病理性疼痛止痛效果不佳或副作用较大。目前对病理性疼痛尚未有很好的治疗方案。大量研究表明,Fractalkine及其特异性受体CX3CR1通过介导神经元与胶质细胞的信号连接,增强伤害性感觉神经元兴奋性,促进外周敏感化和中枢敏感化。研究发现,FKN/CX3CR1通过调节促炎性因子IL-1β、TNF-α和信号通路P38 MAPK、NF-κB、STAT3、IP3等,在病理性痛的发生中发挥重要作用。本文阐述了Fractalkine及其受体CX3CR1在病理性疼痛中的作用,探讨其在病理性疼痛中的作用机制,为疼痛的治疗找到新的靶点。  相似文献   

2.
晏燕花  付国良  洪炎国 《生命科学》2013,(10):1036-1040
摘要:缓激肽B1受体(bradykinin 1 receptors,B1Rs)是与Gq蛋白相偶联的受体。正常状态下,B1R除了在神经系统中(如脊髓背角浅层和感觉神经节)有少数表达外,其他机体组织中几乎不存在。在炎症或者神经受损的情况下,脊髓背角浅层和感觉神经节B1R表达量大大上升,参与炎性疼痛和神经病理性疼痛的产生和维持。近年来的研究表明,B1R在糖尿病性神经病理疼痛的发病中起着重要的作用。阻断B1R能有效抑制糖尿病诱发的热痛觉过敏和冷觉及触觉超敏。此外,B1R和癌症痛的发生也有密切关系,所以,对B1R的研究可能会为治疗这些临床顽症提供新的靶点。关键词:缓激肽B1受体;炎性痛;神经病理性痛中图分类号:Q189;Q42;R338文献标志码:A  相似文献   

3.
癌痛是临床晚期恶性肿瘤患者常见的临床表现之一。其中,以肺癌、乳腺癌和前列腺癌等骨转移引起疼痛尤为严重。P2X7受体是ATP门控离子通道型嘌呤能受体的一个亚型,在脊髓背角主要表达在胶质细胞。P2X7受体激活可以促进胶质细胞释放多种炎症介质,介导脊髓中枢敏化。该受体在炎症痛及神经病理性疼痛中的作用已多有报道,但在癌痛中的作用尚有争议。本研究采用C57BL/6J小鼠股骨骨髓腔内接种Lewis肺癌细胞所诱导的骨癌痛小鼠模型,分析对比了野生型小鼠和P2X7受体基因敲除(P2rx7-/-)小鼠骨癌痛的发生、发展。野生型C57BL/6J小鼠股骨骨髓腔内接种Lewis肺癌细胞后,患侧后肢分别在第7和14天开始出现明显的触诱发痛和热痛过敏,并呈进行性加重;Cat Walk步态分析显示骨癌第21和28天,小鼠患侧脚印面积明显减小,站立时相持续时间缩短,举步时相持续时间显著延长;组织病理学结果显示受累骨骨髓腔有大量肿瘤细胞浸润,骨髓质正常结构消失,伴有髓质骨和皮质骨的破坏。与研究设计时的预期相反,P2rx7-/-小鼠接种瘤细胞后,患肢痛行为检测结果与野生型小鼠相似,甚至在Cat Walk步态分析检测值变化发生的时间上较野生小鼠有所提前。这与本研究组前期在大鼠骨癌痛模型观察到的阻断P2X7受体明显对抗骨癌痛的结果完全不同,提示P2X7受体在大、小鼠骨癌痛中可能发挥不同的作用,并再次提示疾病动物模型上的研究结果与人类疾病机理之间还存在巨大差异。  相似文献   

4.
《植物杂志》2010,(2):7-7
神经病理胜疼痛是指神经系统的损伤或功能障碍引起的疼痛,占到了各类慢性疼痛的30%以上。第四军医大学完成的—项研究成果成功揭示了神经病理性痛的发生机制,创建两种能够分别模拟神经病理性痛不同临床表现的动物模型为研究神经病理性痛和制定治疗策略奠定了基础。  相似文献   

5.
目的探讨脊髓背根神经节(dorsal root ganglia,DRG)P2X3受体参与大鼠足底慢性炎症痛相关的热痛觉过敏机制。方法 1)用行为学的研究方法,以大鼠右侧后脚掌注射松节油加石蜡(各占50%)0.1ml建立后脚掌慢性痛模型,用热测痛的方法测量后脚掌皮下注射松节油后的痛阈,每天1次,连续测15d。2)用免疫组织化学技术观察大鼠后脚掌慢性炎症后第2天和第7天,炎症侧脊髓背根神经节(L4—6)神经元中P2X,受体阳性细胞类型的分布变化;以及正常脊髓背根神经节(L4—6)神经元中P2X,受体阳性细胞类型的分布作为对照。结果1)炎症后大鼠后脚掌侧痛阈出现降低,在第2天痛阈达到最低,后逐渐恢复,14d后恢复正常痛阈值。2)正常大鼠P2X,主要表达于DRG的中小神经元上,炎症后DRG(L4—6),中小型P2X,受体阳性细胞数比对照组明显增加。细胞平均面积增大。结论后脚掌慢性炎症痛可以引起大鼠对伤害性热刺激的痛觉过敏,并导致脊髓背根神经节(L4—6)神经元qbP2X3受体阳性细胞数目增加,表明P2X3在DRG的中小神经元的改变可能对松节油引起脚掌炎症痛时热痛觉过敏的形成与维持起重要作用。  相似文献   

6.
温度感受器TRPV1调节疼痛   总被引:1,自引:1,他引:0       下载免费PDF全文
2021年诺贝尔生理学或医学奖由戴维·朱利叶斯(David Julius)和阿德姆·帕塔普蒂安(Ardem Patapoutian)共同获得,以表彰二人分别在温度感受器辣椒素受体(TRPV1)和触觉感受器PIEZO1/2方面做出的杰出贡献. 此项工作有助于阐明神经系统如何感知冷、热和机械刺激的机制,以及开发治疗疼痛的药物. 本文简介David Julius关于能被辣椒素、 热(>43℃)、酸(pH<6.0)激活的TRPV1的开创性工作,以及TRPV1在外周和中枢敏化,从而增强癌症痛、慢性炎症痛、神经病理性痛等方向的最新成果.  相似文献   

7.
P2X7是一种在多种免疫细胞中广泛表达的以ATP为配体的阳离子通道受体,它的激活能引起和加重炎症反应。当细胞处于损伤、缺氧或炎症状态时, P2X7受体可被释放到胞外的大量ATP激活,进而通过活化NLRP3炎症小体、调节基因转录等方式,影响炎症介质(IL-1β、IL-18等)的释放从而参与多种炎症性疾病,如糖尿病肾病、系统性红斑狼疮(systemic lupus erythematosus,SLE)等。近年来,细胞外ATP-P2X7受体信号通路已成为炎症性疾病研究较多的通路之一。大量研究表明, P2X7受体是治疗炎症性疾病的潜在靶点。该文将对P2X7受体及其参与的炎症相关性疾病的关系作一综述。  相似文献   

8.
癌痛是临床晚期恶性肿瘤患者常见的临床表现之一。其中,以肺癌、乳腺癌和前列腺癌等骨转移引起疼痛尤为严重。P2X7受体是ATP门控离子通道型嘌呤能受体的一个亚型,在脊髓背角主要表达在胶质细胞。P2X7受体激活可以促进胶质细胞释放多种炎症介质,介导脊髓中枢敏化。该受体在炎症痛及神经病理性疼痛中的作用已多有报道,但在癌痛中的作用尚有争议。本研究采用C57BL/6J小鼠股骨骨髓腔内接种Lewis肺癌细胞所诱导的骨癌痛小鼠模型,分析对比了野生型小鼠和P2X7受体基因敲除(P2rx7-/-)小鼠骨癌痛的发生、发展。野生型C57BL/6J小鼠股骨骨髓腔内接种Lewis肺癌细胞后,患侧后肢分别在第7和14天开始出现明显的触诱发痛和热痛过敏,并呈进行性加重;Cat Walk步态分析显示骨癌第21和28天,小鼠患侧脚印面积明显减小,站立时相持续时间缩短,举步时相持续时间显著延长;组织病理学结果显示受累骨骨髓腔有大量肿瘤细胞浸润,骨髓质正常结构消失,伴有髓质骨和皮质骨的破坏。与研究设计时的预期相反,P2rx7-/-小鼠接种瘤细胞后,患肢痛行为检测结果与野生型小鼠相似,甚至在Cat Walk步态分析检测值变化发生的时间上较野生小鼠有所提前。这与本研究组前期在大鼠骨癌痛模型观察到的阻断P2X7受体明显对抗骨癌痛的结果完全不同,提示P2X7受体在大、小鼠骨癌痛中可能发挥不同的作用,并再次提示疾病动物模型上的研究结果与人类疾病机理之间还存在巨大差异。  相似文献   

9.
各种疾病引起的神经系统的损伤或功能障碍致使全球数以百万计的人们患有神经性病理性疼痛。目前的方法对神经病理性疼痛的疗效不佳且有副作用,需要开发有效的治疗方法。近年来人们逐渐认识到,脊髓中胶质细胞(如小胶质细胞和星形胶质细胞)能通过释放强效的神经调质,如促炎细胞因子和趋化因子,在神经性病理性疼痛的产生和维持中起重要作用。近期的证据显示,趋化因子是疼痛调控中的新成员。该文综述了一些趋化因子和受体(如CCL2/CCR2、CXCL1/CXCR2、CX3CL1/CX3CR1、CCL21/CXCR3)作为神经元和胶质细胞相互调控的介质参与神经病理性疼痛的调节。靶向趋化因子介导的神经炎症反应将成为治疗神经病理性疼痛的新方向。  相似文献   

10.
神经病理性疼痛是由于神经系统的损伤和炎症引起的,发病率日益增高,但是根本机制仍然不清楚。动物实验表明细胞因子和趋化因子参与神经病理性疼痛的发生。作为唯一的CX3C亚族的膜结合型趋化因子Fractalkine(Fkn)在神经病理性疼痛发病机制中的作用日益受到关注,有望成为神经病理性疼痛治疗的新靶点。Fkn及其受体有其特殊结构和功能作用,本文就其参与神经病理性疼痛的可能机制,调节吗啡的效应作一综述。  相似文献   

11.
ATP, acting via P2 purinergic receptors, is a known mediator of inflammatory and neuropathic pain. There is increasing evidence that the ATP-gated P2X4 receptor (P2X4R) subtype is a locus through which activity of spinal microglia and peripheral macrophages instigate pain hypersensitivity caused by inflammation or by injury to a peripheral nerve. The present article highlights the recent advances in our understanding of microglia-neuron interactions in neuropathic pain by focusing on the signaling and regulation of the P2X4R. We will also develop a framework for understanding converging lines of evidence for involvement of P2X4Rs expressed on macrophages in peripheral inflammatory pain.  相似文献   

12.
The understanding of how pain is processed at each stage in the peripheral and central nervous system is the precondition to develop new therapies for the selective treatment of pain. In the periphery, ATP can be released from various cells as a consequence of tissue injury or visceral distension and may stimulate the local nociceptors. The highly selective distribution of P2X3 and P2X2/3 receptors within the nociceptive system has inspired a variety of approaches to elucidate the potential role of ATP as a pain mediator. Depolarization by ATP of neurons in pain–relevant neuronal structures such as trigeminal ganglion, dorsal root ganglion, and spinal cord dorsal horn neurons are well investigated. P2X receptor-mediated afferent activation appears to have been implicated in visceral and neuropathic pain and even in migraine and cancer pain. This article reviews recently published research describing the role that ATP and P2X receptors may play in pain perception, highlighting the importance of the P2X3 receptor in different states of pain.  相似文献   

13.
The P2X3 receptor is primarily expressed in the peripheral sensory nerves, and therefore, antagonists of this receptor may be useful for the treatment of chronic pain. Pyrrolinone derivatives have been identified as a novel class of P2X3 receptor antagonists. A lead structure with moderate activity was discovered through a high-throughput screening assay. A structure-activity study led to the discovery of several P2X3 receptor antagonists. Compound 34 showed potent and specific antagonistic activity and analgesic efficacy.  相似文献   

14.
Liu S  Xu C  Li G  Liu H  Xie J  Tu G  Peng H  Qiu S  Liang S 《Neurochemistry international》2012,60(6):565-572
Neuropathic pain can arise from a lesion affecting the peripheral nervous system. Selective P2X(3) and P2X(2/3) receptors' antagonists effectively reduce neuropathic pain. VEGF inhibitors are effective for pain relief. The present study investigated the effects of Vatalanib (VEGF receptor-2 (VEGFR-2) inhibitor) on the neuropathic pain to address the interaction of VEGFR-2 and P2X(2/3) receptor in dorsal root ganglia of chronic constriction injury (CCI) rats. Neuropathic pain symptoms following CCI are similar to most peripheral lesions as assessed by the Neuropathic Pain Symptom Inventory. Sprague-Dawley rats were randomly divided into sham group, CCI group and CCI rats treated with Vatalanib group. Mechanical withdrawal threshold and thermal withdrawal latency were measured. Co-expression of VEGFR-2 and P2X(2) or P2X(3) in L4-6 dorsal root ganglia (DRG) was detected by double-label immunofluorescence. The modulation effect of VEGF on P2X(2/3) receptor agonist-activated currents in freshly isolated DRG neurons of rats both of sham and CCI rats was recorded by whole-cell patch-clamp technique. The mechanical withdrawal threshold (MWT) and thermal withdrawal latency (TWL) in CCI group were lower than those in sham group (p<0.05). MWT and TWL in CCI rats treated with Vatalanib group were increased compared with those in CCI group (p<0.05). VEGFR-2 and P2X(2) or P2X(3) receptors were co-expressed in the cytoplasm and surface membranes of DRG. The co-expression of VEGFR-2 and P2X(2) or P2X(3) receptor in CCI group exhibited more intense staining than those in sham group and CCI rats treated with Vatalanib group, respectively. VEGF enhanced the amplitude of ATP and α,β-meATP -activated currents of both sham and CCI rats. Increment effects of VEGF on ATP and α,β-meATP -activated currents in CCI rats were higher than those in sham rats. Both ATP (100 μM) and α,β-meATP (10 μM)- activated currents enhanced by VEGF ( 1nM) were significantly blocked by Vatalanib (1 μM, an inhibitor of VEGF receptors). The stain values of VEGFR-2, P2X(2) and P2X(3) protein expression in L4/5 DRG of CCI treated with Vatalanib group were significantly decreased compared with those in CCI group (p<0.01). Vatalanib can alleviate chronic neuropathic pain by decreasing the activation of VEGF on VEGFR-2 and the positive interaction between the up-regulated VEGFR-2 and P2X(2/3) receptors in the neuropathic pain signaling.  相似文献   

15.
组织酸化参与外周痛觉传递的离子通道机制   总被引:2,自引:0,他引:2  
组织酸化可以导致痛觉的产生.初级感觉神经元可以通过离子通道来感受外周的组织酸化.已鉴定了几个离子通道家族可能参与了外周组织酸化的感受:a.酸敏感离子通道(ASICs)是可以被酸直接门控的阳离子通道;b.辣椒素受体(VR1)可被酸敏化,同时可被pH<6.0直接激活;c.P2X2和P2X2/3受体通道反应被酸上调;d.TwIK相关的酸感受钾通道(TASK)是被酸关闭的双孔内向整流钾通道.这些通道被酸所调控的共同结果就是提高了神经元的兴奋性.因此,它们在介导了组织酸化所诱导的痛觉感受和传递中具有重要作用.  相似文献   

16.
Chronic pain is highly variable between individuals, as is the response to analgesics. Although much of the variability in chronic pain and analgesic response is heritable, an understanding of the genetic determinants underlying this variability is rudimentary. Here we show that variation within the coding sequence of the gene encoding the P2X7 receptor (P2X7R) affects chronic pain sensitivity in both mice and humans. P2X7Rs, which are members of the family of ionotropic ATP-gated receptors, have two distinct modes of function: they can function through their intrinsic cationic channel or by forming nonselective pores that are permeable to molecules with a mass of up to 900 Da. Using genome-wide linkage analyses, we discovered an association between nerve-injury-induced pain behavior (mechanical allodynia) and the P451L mutation of the mouse P2rx7 gene, such that mice in which P2X7Rs have impaired pore formation as a result of this mutation showed less allodynia than mice with the pore-forming P2rx7 allele. Administration of a peptide corresponding to the P2X7R C-terminal domain, which blocked pore formation but not cation channel activity, selectively reduced nerve injury and inflammatory allodynia only in mice with the pore-forming P2rx7 allele. Moreover, in two independent human chronic pain cohorts, a cohort with pain after mastectomy and a cohort with osteoarthritis, we observed a genetic association between lower pain intensity and the hypofunctional His270 (rs7958311) allele of P2RX7. Our findings suggest that selectively targeting P2X7R pore formation may be a new strategy for individualizing the treatment of chronic pain.  相似文献   

17.
There are divergences between neuropathic pain and visceralgia in terms of the duration, location, and character of hyperalgesia. It is generally recognized that nociceptive receptors, including P2X receptors, may play different roles in nociceptive mechanisms. The different roles of P2X1–7 receptors have not been fully understood both in neuropathic pain and visceral hyperalgesia. In order to explore the different expressions of P2X1–7 receptors in these two hyperalgesia models, the lumbosacral dorsal root ganglion (DRG) neurons from rat sciatic nerve chronic constriction injury (CCI) model and neonatal colorectal distention (NCRD) model were studied (both the primary nociceptive neuron afferents of those two models projected to the same segment of spinal cord). Both immunohistochemistry (IHC) technique and real-time fluorescence quantitative polymerase chain reaction (RT-PCR) technology were applied to analyze the protein expression levels and nucleic acid of P2X1–7 receptors. We found that except P2X2 and P2X3, the expression levels of P2X1 and P2X5 receptors increased in neuropathic pain while those expression levels of P2X4, P2X6, and P2X7 receptors increased in visceral pain. Our results also suggested that in addition to P2X2/3 heteromeric, other P2X subunits may also involved in generation heteromeric such as P2X1/5 and/or P2X2/5 in neuropathic pain and P2X4/6 and/or P2X4/7 in visceral pain.  相似文献   

18.

Enhanced sensitivity to noxious stimuli and the perception of non-noxious stimuli as painful are hallmark sensory perturbations associated with chronic pain. It is now appreciated that ATP, through its actions as an excitatory neurotransmitter, plays a prominent role in the initiation and maintenance of chronic pain states. Mechanistically, the ability of ATP to drive nociceptive sensitivity is mediated through direct interactions at neuronal P2X3 and P2X2/3 receptors. Extracellular ATP also activates P2X4, P2X7, and several P2Y receptors on glial cells within the spinal cord, which leads to a heightened state of neural-glial cell interaction in ongoing pain states. Following the molecular identification of the P2 receptor superfamilies, selective small molecule antagonists for several P2 receptor subtypes were identified, which have been useful for investigating the role of specific P2X receptors in preclinical chronic pain models. More recently, several P2X receptor antagonists have advanced into clinical trials for inflammation and pain. The development of orally bioavailable blockers for ion channels, including the P2X receptors, has been traditionally difficult due to the necessity of combining requirements for target potency and selectivity with suitable absorption distribution, metabolism, and elimination properties. Recent studies on the physicochemical properties of marketed orally bioavailable drugs, have identified several parameters that appear critical for increasing the probability of achieving suitable bioavailability, central nervous system exposure, and acceptable safety necessary for clinical efficacy. This review provides an overview of the antinociceptive pharmacology of P2X receptor antagonists and the chemical diversity and drug-like properties for emerging antagonists of P2X3, P2X2/3, P2X4, and P2X7 receptors.

  相似文献   

19.
Enhanced sensitivity to noxious stimuli and the perception of non-noxious stimuli as painful are hallmark sensory perturbations associated with chronic pain. It is now appreciated that ATP, through its actions as an excitatory neurotransmitter, plays a prominent role in the initiation and maintenance of chronic pain states. Mechanistically, the ability of ATP to drive nociceptive sensitivity is mediated through direct interactions at neuronal P2X3 and P2X2/3 receptors. Extracellular ATP also activates P2X4, P2X7, and several P2Y receptors on glial cells within the spinal cord, which leads to a heightened state of neural-glial cell interaction in ongoing pain states. Following the molecular identification of the P2 receptor superfamilies, selective small molecule antagonists for several P2 receptor subtypes were identified, which have been useful for investigating the role of specific P2X receptors in preclinical chronic pain models. More recently, several P2X receptor antagonists have advanced into clinical trials for inflammation and pain. The development of orally bioavailable blockers for ion channels, including the P2X receptors, has been traditionally difficult due to the necessity of combining requirements for target potency and selectivity with suitable absorption distribution, metabolism, and elimination properties. Recent studies on the physicochemical properties of marketed orally bioavailable drugs, have identified several parameters that appear critical for increasing the probability of achieving suitable bioavailability, central nervous system exposure, and acceptable safety necessary for clinical efficacy. This review provides an overview of the antinociceptive pharmacology of P2X receptor antagonists and the chemical diversity and drug-like properties for emerging antagonists of P2X3, P2X2/3, P2X4, and P2X7 receptors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号