首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 140 毫秒
1.
DNA双链断裂损伤反应及它的医学意义   总被引:2,自引:0,他引:2  
DNA损伤应激反应是维持基因组稳定性的基石.细胞在长期进化中形成了由损伤监视、周期调控、损伤修复、凋亡诱导等在内的自稳平衡机制.一方面,借助感应、识别并启动精细而复杂的修复机制修复损伤;另一方面,通过DNA损伤应激活化的细胞周期检查点机制,延迟或阻断细胞周期进程,为损伤修复提供时间,使细胞能安全进入新一轮细胞周期;损伤无法修复时则诱导细胞凋亡.DNA双链断裂(double strand breaks,DSBs)是真核基因组后果最严重的损伤类型之一,其修复不利,同肿瘤等人类疾病的发生发展密切相关.新进展揭示:DSBs损伤反应信号分子ATM-Chk2-p53、H2AX等的组成性活化,是肿瘤形成早期所激活的细胞内可诱导的抗癌屏障,其信号网络的精确、精细调控在基因组稳定性维持中发挥重要作用.此外,HIV病毒整合进入宿主细胞基因组的过程也依赖于宿主细胞中ATM介导的DSBs损伤反应信号转导;ATM特异性的小分子抑制剂在抗HIV感染中显示重要的功能意义.文中重点讨论调控DSBs损伤应激反应信号网络的主要研究进展,及其在肿瘤发生、发展及抗HIV感染中的新医学意义.  相似文献   

2.
H2AX是组蛋白H2A家族常见的变体之一,H2AX磷酸化是指哺乳动物细胞中的组蛋白H2AX在其C端第139位丝氨酸上发生磷酸化修饰形成磷酸化组蛋白H2AX(histone H2AX phosphorylation,γH2AX)的过程。目前,γH2AX的检测方法主要有免疫荧光法、流式细胞术、免疫印迹法。γH2AX是DNA损伤尤其是DNA双链断裂(DNA double-strand breaks,DSB)或DNA修复的标志物,已经被应用到医学相关领域,如放射性DNA损伤的检测、癌症的辅助诊断以及预后监测。此外,γH2AX在检测生殖细胞中的DNA损伤及修复和维持胚胎干细胞的自我更新中有重要意义。检测γH2AX水平已成为评价生殖细胞和干细胞质量的重要方法。本文将从H2AX及其家族的生物学特征、γH2AX的检测方法、DNA损伤与修复中的H2AX磷酸化及其在生殖相关细胞中的应用等角度对γH2AX研究进展进行总结和探讨。  相似文献   

3.
目的 研究不同时间诱导X射线照射的淋巴细胞进入细胞周期DNA损伤修复与凋亡的影响.方法 X射线(0.5 Gy)作用于正常人外周血淋巴细胞,以照射后不同时间点(0、4 h)分别加入PHA并分成两组,即照射后0 h加PHA组(A组)和照射后4 h加PHA组(B组),再分别培养0、0.5、2 h,用流式细胞术和免疫印迹法检测A组和B组γ-H2AX蛋白的表达,Annexin-V/PI法分析A、B两组的细胞凋亡率.结果 流式细胞术及免疫印迹结果均显示A组的γ-H2AX蛋白表达高于B组(P<0.05),且均先升高后降低.A组细胞凋亡率亦大于B组.结论 不同时间诱导被打击的淋巴细胞进入周期其可能发生DNA修复并同时伴随细胞凋亡的发生.  相似文献   

4.
SMU1是一个与细胞基因组复制和RNA剪切过程相关的新基因。该研究为进一步调查SMU1对细胞增殖及DNA双链断裂(DNAdouble—strand breaks,DNADSBs)损伤应答的影响,设计合成针对SMU1基因的小分子siRNA,并与对照siRNA(scramblel分别转染HEK293T或U2OS细胞。通过免疫印迹(Westernblot)检测证实,siSMU1转染细胞中SMU1的表达显著下降,采用台盼蓝染色细胞计数检测显示,SMU1表达下调显著降低细胞增殖能力。免疫荧光和免疫印迹法检测结果表明,SMU1表达下调显著增加细胞内源性DSBs损伤(7H2AXfoci和蛋白水平均升高);而进一步用X-ray处理细胞造成外源性DSBs损伤后,SMUI沉默细胞显示出延长的DSBs损伤修复动力学(减缓的γH2AXfoci和蛋白水平消退)。以上结果提示,SMU1在细胞DSBs损伤修复反应中扮演重要角色,积极参与细胞基因纽完整性的维持。  相似文献   

5.
WRAP53β是一种具有WD40结构域的蛋白质,在维护卡哈尔体稳定、RNA剪接、端粒延伸等方面起着至关重要的作用.WRAP53β功能紊乱与先天性角化不良、肿瘤、进行性脊髓性肌萎缩、过早老化等疾病有关.近两年研究发现WRAP53β是DNA双链断裂修复(DSBs)的一个重要支架蛋白,它以一种依赖于ATM、H2AX、MDC1的方式被募集至损伤位点并磷酸化,其WD40结构域可募集泛素E3连接酶RNF8,将DSBs位点附近的组蛋白H2AX泛素化,促进下游修复因子的聚集,引起DNA损伤后的修复作用.为此,我们重点综述了现阶段WRAP53β在DNA损伤修复方面的具体作用及机制.  相似文献   

6.
细胞周期检定点激酶ATM蛋白属于磷酸肌醇3激酶(PI-3K)家族成员,也是哺乳动物细胞BASC高分子蛋白复合物的组成之一。ATM调整由于DNA损伤引发的DNA修复和凋亡通路,该通路主要表现为DNA损伤激活ATM激酶,ATM激酶磷酸化其下游的相应蛋白,使细胞在细胞周期关卡处停滞分裂,主要是G1-S期和G2-M期的阻滞,使损伤的DNA得以修复,当修复失败时,细胞进入凋亡进程。ATM磷酸化的蛋白质很多,如p53,cdc25A,cdc25C等,这些蛋白质对细胞周期关卡调控都非常重要,因此也就证明了ATM在细胞周期调控中的重要作用。  相似文献   

7.
共济失调–毛细血管扩张突变(ataxia telangiectasia mutated,ATM)蛋白属于磷脂酰肌醇-3-激酶相关激酶家族(phosphatidylinositol-3-kinase related kinase family,PIKK)成员,是DNA损伤的感应器并将DNA损伤信号传递到下游修复蛋白,从而启动DNA修复、细胞周期阻滞和细胞凋亡等一系列事件,进而维持细胞基因组完整性。近期的研究揭示,ATM参与了体细胞重编程过程,当ATM完全缺失后显著影响诱导多能干细胞(induced pluripotent stem cells,i PS cells)获得以及染色质的稳定;ATM还通过参与重编程过程中的染色质重塑进而调控体细胞重编程。ATM下游的效应因子p53和H2AX(histone 2A member X)等在重编程引起的细胞周期阻滞和凋亡中发挥重要作用。该文重点探讨了ATM及其下游细胞因子在参与调控体细胞重编程过程中的作用机制。  相似文献   

8.
摘要 目的:探究髓系/淋巴系或混合谱系白血病3基因(myeloid/lymphoid or mixed-lineage leukemia 3,MLL3)对宫颈癌细胞生长、转移、放射敏感性的影响。方法:选择60例宫颈鳞癌患者的癌组织及配对癌旁组织,采用实时定量聚合酶链式反应(qRT-PCR)检测检测MLL3 mRNA水平。体外培养SiHa细胞,将其分为以下5组:Control组(不转染)、NC-sh组(转染阴性对照shRNA慢病毒)、MLL3-sh组(转染MLL3 shRNA慢病毒)、NC-OE组(转染阴性对照过表达慢病毒)和MLL3-OE组(转染MLL3过表达慢病毒)。进一步采用2300EX直线加速器9 MeV ?茁射线照射细胞建立放射抵抗SiHa细胞(SiHaR),然后将其分为:NC-sh组、MLL3-sh组、8 Gy+NC-sh组和8 Gy+MLL3-sh组。NC-sh组和MLL3-sh组细胞不照射,8 Gy+NC-sh组和8 Gy+MLL3-sh组细胞用9 MeV β射线照射8 Gy。采用MTT法检测细胞增殖情况;Annexin V-FITC/PI双染色法检测细胞凋亡;Transwell检测细胞侵袭能力;qRT-PCR检测MLL3、共济失调毛细血管扩张征突变基因(ATM)、ATM-Rad3相关基因(ATR)、乳腺癌易感基因(BRCA1)和RAD50双链断裂修复蛋白(RAD50)的mRNA水平;Western blot检测MLL3、Bcl-2相关X蛋白基因(Bax)、B细胞淋巴瘤/白血病-2基因(Bcl-2)、cleaved caspase 3、基质金属蛋白酶(MMP)2、MMP9和γ-H2AX的表达;免疫荧光染色检测γ-H2AX的表达。结果:与癌旁组织相比,宫颈鳞癌组织中的MLL3 mRNA水平显著降低(P<0.001)。与NC-sh组比较,MLL3-sh组SiHa细胞的MLL3 mRNA和蛋白相对表达量降低,细胞活力升高,细胞凋亡率、Bax和cleaved caspase 3蛋白相对表达量降低,Bcl-2蛋白相对表达量升高,侵袭细胞数量、MMP2和MMP9蛋白相对表达量升高(P<0.05)。与NC-OE组比较,MLL3-OE组SiHa细胞的MLL3 mRNA和蛋白相对表达量升高,细胞活力降低,细胞凋亡率、Bax和cleaved caspase 3蛋白相对表达量升高,Bcl-2蛋白相对表达量降低,侵袭细胞数量、MMP2和MMP9蛋白相对表达量降低(P<0.05)。与SiHa细胞相比,SiHaR细胞中的MLL3 mRNA和蛋白相对表达量均升高(P<0.001)。与8 Gy+NC-sh组比较,8 Gy+MLL3-sh组SiHaR细胞的细胞活力降低,γ-H2AX的蛋白相对表达量和γ-H2AX foci数目升高,ATM、ATR、BRCA1和RAD50的mRNA水平降低(P<0.05)。结论:宫颈癌细胞MLL3的表达下调促进了其生长和转移,但降低DNA损伤修复能力,提高宫颈癌细胞的放射敏感性。  相似文献   

9.
染色质作为真核细胞遗传信息,体内外各种因素的作用致使不断的产生损伤,但是细胞仍能保持正常的生长、分裂和繁殖,这与基因组稳定性和完整性保持,并且通过自身的损伤修复有着密切的联系。ATP依赖的染色质重塑是染色质重塑的最重要的方式之一,主要是利用ATP水解释放的能量,将凝聚的异染色质打开,协调损伤修复蛋白与DNA损伤位点的作用,通过对组蛋白的共价键修饰或ATP依赖的染色质重塑复合物开启了DNA的损伤修复的大门。CHD4/Mi-2β的类SWI2/SNF2 ATP酶/解螺旋酶域结构域保守性最强,这一结构域存在与多种依赖于ATP的核小体重构复合物。Mi-2蛋白复合物称为核小体重塑及去乙酰化酶NuRd(nucleoside remodeling and deacetylase,NuRD),是个多亚基蛋白复合物,Mi2β/CHD4是该复合物的核心成员。近来的研究发现,CHD4具有染色质重塑功能,并且参与DNA损伤修复的调控。CHD4羧基端的PHD通过乙酰化或甲基化识别组蛋白H3氨基端Lys9(H3K9ac和H3K9me),并且通过Lys4甲基化(H3K4me)或Ala1乙酰化(H3A Lac)抑制与H3、H4的结合,为染色质重塑提供了保障。Mi-2β/CHD4参与DNA损伤反应,定位于DNA损伤γ-H2AX的foci。沉默Mi-2β/CHD4基因,细胞自发性DNA损伤增多和辐射敏感性增强。表明CHD4在染色质重塑中具有重要的作用。  相似文献   

10.
该文旨在探究淫羊藿苷(icariin,ICA)对博来霉素(bleomycin,BLM)诱导的小鼠GC-1精原细胞DNA损伤的保护作用及其分子机制。将GC-1细胞分为正常对照组、BLM处理组(10 μg/mL)、BLM+不同浓度(0.5、1、2和4 μmol/L) ICA组。用不同浓度ICA预保护GC-1细胞12 h后加入BLM继续处理6 h,收集细胞,Western blot法检测DNA损伤相关蛋白γ-H2AX、DNA损伤修复相关通路蛋白(p-ATM、p-Chk1、p-P53和P21)、碱基切除修复(base excision repair,BER)相关通路蛋白(OGG1、APE1和XRCC1)的表达水平;免疫荧光技术检测γ-H2AX、8-OHdG表达与定位。结果表明,与正常对照组相比,BLM处理组中γ-H2AX、p-ATM、p-Chk1、p-P53、P21、OGG1、APE1和XRCC1的蛋白表达水平均显著上升,而ICA可浓度依赖性地下调BLM诱导的γ-H2AX、p-ATM、p-Chk1、p-P53、P21、OGG1、APE1和XRCC1蛋白表达水平。免疫荧光结果显示,与正常对照组相...  相似文献   

11.
Damage that engenders DNA double-strand breaks (DSBs) activates ataxia telangiectasia mutated (ATM) kinase through its auto- or trans-phosphorylation on Ser1981 and activated ATM is one of the mediators of histone H2AX phosphorylation on Ser139. The present study was designed to explore: (i) whether measurement of ATM activation combined with H2AX phosphorylation provides a more sensitive indicator of DSBs than each of these events alone, and (ii) to reveal possible involvement of ATM activation in H2AX phosphorylation during apoptosis. Activation of ATM and/or H2AX phosphorylation in HL-60 or Jurkat cells treated with topotecan (Tpt) was detected immunocytochemically in relation to cell cycle phase, by multiparameter cytometry. Exposure to Tpt led to concurrent phosphorylation of ATM and H2AX in S-phase cells, whereas G1 cells were unaffected. Immunofluorescence (IF) of the S-phase cells immunostained for ATM-S1981P and gammaH2AX combined was distinctly stronger compared to that of the cells stained for each of these proteins alone. However, because of the relatively high ATM-S1981P IF of G1 cells, the ratio of IF of S to G1 cells, that is, the factor that determines competence of the assay in distinction of cells with DSBs, was 2- to 3-fold lower for ATM-S1981P alone, or for ATM-S1981P and gammaH2AX IF combined, than for gammaH2AX alone. ATM activation concurrent with H2AX phosphorylation, likely triggered by induction of DSBs during DNA fragmentation, occurred during apoptosis. The data suggest that frequency of activated ATM and phosphorylated H2AX molecules, per apoptotic cell, is comparable.  相似文献   

12.
BACKGROUND: DNA replication stress often induces DNA damage. The antitumor drug hydroxyurea (HU), a potent inhibitor of ribonucleotide reductase that halts DNA replication through its effects on cellular deoxynucleotide pools, was shown to damage DNA inducing double-strand breaks (DSBs). Aphidicolin (APH), an inhibitor of alpha-like DNA polymerases, was also reported to cause DNA damage, but the evidence for induction of DSBs by APH is not straightforward. Histone H2AX is phosphorylated on Ser 139 in response to DSBs and one of the protein kinases that phosphorylate H2AX is ataxia telangiectasia mutated (ATM); activation of ATM is through its phosphorylation of Ser 1981. The present study was undertaken to reveal whether H2AX is phosphorylated in cells exposed to HU or APH and whether its phosphorylation is mediated by ATM. MATERIALS AND METHODS: HL-60 cells were treated in cultures with 0.1-5.0 mM HU or 1-4 muM APH for up to 5 h. Activation of ATM and H2AX phosphorylation was detected immunocytochemically using Ab specific to Ser1981-ATM or Ser 139-H2AX epitopes, respectively, concurrent with measurement of cellular DNA content. RESULTS: While exposure of cells to HU led to H2AX phosphorylation selectively during S phase and the cells progressing through the early portion of S (DI = 1.1-1.4) were more affected than late-S phase (DI = 1.6-1.9) cells, ATM was not activated by HU. In fact, the level of constitutive ("programmed") ATM phosphorylation was distinctly suppressed, in all phases of the cell cycle, at 0.1-5.0 mM HU. Cells' exposure to APH also resulted in H2AX phosphorylation at Ser139 with no evidence of ATM activation, and as in the case of HU, the early-S cells were more affected than the late-S phase cells. The rise in frequency of apoptotic cells became apparent after 2 h of exposure to HU or APH, and all apoptotic cells had markedly elevated levels of both H2AX-Ser139 and ATM-Ser1981 phosphorylation. CONCLUSIONS: The lack of correlation between H2AX phosphorylation and ATM activation indicates that protein kinase(s) other than ATM (ATR and/or DNA-dependent protein kinase) are activated by DSBs induced by replication stress. Interestingly, HU inhibits the constitutive ("programmed") level of ATM phosphorylation in untreated cells. However, DNA fragmentation during apoptosis activates ATM and dramatically increases level of H2AX phosphorylation.  相似文献   

13.
We recently reported that Hepatitis C virus (HCV) RNA replication requires one or more geranylgeranylated host proteins. Using a combination of [(3)H]mevalonate labeling, coimmunoprecipitation, and bioinformatic search, we identified a geranylgeranylated host protein required for HCV RNA replication. This protein, FBL2, contains an F box domain and a CAAX motif (CVIL). It forms a stable immunoprecipitable complex with the HCV nonstructural protein 5A (NS5A). The association of FBL2 with NS5A requires the CAAX motif of FBL2, but not the F box. Deletion of the F box created a dominant-negative protein that inhibited replication of HCV RNA when overexpressed in Huh7-K2040 cells; this inhibition was overcome by coexpression of NS5A. siRNA-mediated knockdown of FBL2 mRNA by 70% in Huh7-HP cells reduced HCV RNA by 65%; this reduction was overcome by expression of a cDNA encoding a wobble mutant of FBL2. The current data indicate that geranylgeranylated FBL2 binds to NS5A in a reaction crucial for HCV RNA replication.  相似文献   

14.
Oxidative stress linked to DNA damage is involved in the pathogenesis of Helicobacter pylori-associated gastric diseases. The DNA damage response (DDR) coordinates cell-cycle transitions, DNA repair, and apoptosis through the activation of ataxia-telangiectasia-mutated (ATM) and ATM and Rad3-related (ATR) and their target proteins. However, neither H. pylori-induced DDR nor the effects of antioxidants on the DNA damage have been established. This study aimed to investigate the detailed process of H. pylori-induced DNA damage and to examine whether lycopene, a natural antioxidant, inhibits DNA damage and cellular response of gastric epithelial AGS cells infected with H. pylori. AGS cells were cultured with H. pylori in Korean isolates and treated with or without lycopene. Cell viability, DNA damage indices, levels of 8-OH-dG, and reactive oxygen species (ROS) as well as cell-cycle distributions were determined. The activation of ATM, ATR, Chk1, and Chk2; histone H2AX focus formation; activation and induction of p53; and levels of Bax and Bcl-2 and poly(ADP-ribose) polymerase-1 (PARP-1) were assessed. The results showed that H. pylori induced apoptosis in AGS cells with increased Bax and decreased Bcl-2 expression as well as PARP-1 cleavage. Culture with H. pylori led to increases in intracellular ROS, 8-OH-dG, double-strand DNA breaks (DSBs), and DNA fragmentation. H. pylori induced activation of the ATM/Chk2 and ATR/Chk1 pathways, phosphorylation of H2AX and p53, and a delay in the progression of the cells entering the S phase. Lycopene inhibited H. pylori-induced increases in ROS, apoptosis, alterations in cell-cycle distribution, DSBs, and ATM- and ATR-mediated DDR in AGS cells. In conclusion, lycopene may be beneficial for treatment of H. pylori-induced gastric diseases associated with oxidative DNA damage.  相似文献   

15.
Reviewed are the methods aimed to detect DNA damage in individual cells, estimate its extent and relate it to cell cycle phase and induction of apoptosis. They include the assays that reveal DNA fragmentation during apoptosis, as well as DNA damage induced by genotoxic agents. DNA fragmentation that occurs in the course of apoptosis is detected by selective extraction of degraded DNA. DNA in chromatin of apoptotic cells shows also increased propensity to undergo denaturation. The most common assay of DNA fragmentation relies on labelling DNA strand breaks with fluorochrome-tagged deoxynucleotides. The induction of double-strand DNA breaks (DSBs) by genotoxic agents provides a signal for histone H2AX phosphorylation on Ser139; the phosphorylated H2AX is named gammaH2AX. Also, ATM-kinase is activated through its autophosphorylation on Ser1981. Immunocytochemical detection of gammaH2AX and/or ATM-Ser1981(P) are sensitive probes to reveal induction of DSBs. When used concurrently with analysis of cellular DNA content and caspase-3 activation, they allow one to correlate the extent of DNA damage with the cell cycle phase and with activation of the apoptotic pathway. The presented data reveal cell cycle phase-specific patterns of H2AX phosphorylation and ATM autophosphorylation in response to induction of DSBs by ionizing radiation, topoisomerase I and II inhibitors and carcinogens. Detection of DNA damage in tumour cells during radio- or chemotherapy may provide an early marker predictive of response to treatment.  相似文献   

16.
Viruses can interact with host cell molecules responsible for the recognition and repair of DNA lesions, resulting in dysfunctional DNA damage response (DDR). Cells with inefficient DDR are more vulnerable to therapeutic approaches that target DDR, thereby raising DNA damage to a threshold that triggers apoptosis. Here, we demonstrate that 2 Jurkat-derived cell lines with incorporated silent HIV-1 provirus show increases in DDR signaling that responds to formation of double strand DNA breaks (DSBs). We found that phosphorylation of histone H2AX on Ser139 (gamma-H2AX), a biomarker of DSBs, and phosphorylation of ATM at Ser1981, Chk2 at Thr68, and p53 at Ser15, part of signaling pathways associated with DSBs, are elevated in these cells. These results indicate a DDR defect even though the virus is latent. DDR-inducing agents, specifically high doses of nucleoside RT inhibitors (NRTIs), caused greater increases in gamma-H2AX levels in latently infected cells. Additionally, latently infected cells are more susceptible to long-term exposure to G-quadruplex stabilizing agents, and this effect is enhanced when the agent is combined with an inhibitor targeting DNA-PK, which is crucial for DSB repair and telomere maintenance. Moreover, exposing these cells to the cancer drug etoposide resulted in formation of DSBs at a higher rate than in un-infected cells. Similar effects of etoposide were also observed in population of primary memory T cells infected with latent HIV-1. Sensitivity to these agents highlights a unique vulnerability of latently infected cells, a new feature that could potentially be used in developing therapies to eliminate HIV-1 reservoirs.  相似文献   

17.
A variant of histone H2A, H2AX, is phosphorylated on Ser139 in response to DNA double-strand breaks (DSBs), and clusters of the phosphorylated form of H2AX (gamma-H2AX) in nuclei of DSB-induced cells show foci at breakage sites. Here, we show phosphorylation of H2AX in a cell cycle-dependent manner without any detectable DNA damage response. Western blot and immunocytochemical analyses with the anti-gamma-H2AX antibody revealed that H2AX is phosphorylated at M phase in HeLa cells. In ataxia-telangiectasia cells lacking ATM kinase activity, gamma-H2AX was scarcely detectable in the mitotic chromosomes, suggesting involvement of ATM in M-phase phosphorylation of H2AX. Single-cell gel electrophoresis assay and Western blot analysis with the anti-phospho-p53 (Ser15) antibody indicated that H2AX in human M-phase cells is phosphorylated independently of DSB and DNA damage signaling. Even in the absence of DNA damage, phosphorylation of H2AX in normal cell cycle progression may contribute to maintenance of genomic integrity.  相似文献   

18.
Hepatitis C virus (HCV) often establishes a persistent infection that most likely involves a complex host-virus interplay. We previously reported that the HCV nonstructural protein 5A (NS5A) bound to cellular protein FKBP38 and resulted in apoptosis suppression in human hepatoma cell line Huh7. In the present research we further found that NS5A increased phosphorylation levels of two mTOR-targeted substrates, S6K1 and 4EBP1, in Huh7 in the absence of serum. mTOR inhibitor rapamycin or NS5A knockdown blocked S6K1 and 4EBP1 phosphorylation increase in NS5A-Huh7 and HCV replicon cells, suggesting that NS5A specifically regulated mTOR activation. Overexpression of NS5A and FKBP38 mutants or FKBP38 knockdown revealed this mTOR activation was dependent on NS5A-FKBP38 interaction. Phosphatidylinositol 3-kinase (PI3K) inhibitor LY294002 treatment in NS5A-Huh7 showed that the mTOR activation was independent of PI3K. Moreover, NS5A suppressed caspase 3 and poly(ADP-ribose) polymerase activation, which was abolished by NS5A knockdown or rapamycin, indicating NS5A inhibited apoptosis specifically through the mTOR pathway. Further analyses suggested that apoptotic inhibition exerted by NS5A via mTOR also required NS5A-FKBP38 interaction. Glutathione S-transferase pulldown and co-immunoprecipitation showed that NS5A disrupted the mTOR-FKBP38 association. Additionally, NS5A or FKBP38 mutants recovered the mTOR-FKBP38 interaction; this indicated that the impairment of mTOR-FKBP38 association was dependent on NS5A-FKBP38 binding. Collectively, our data demonstrate that HCV NS5A activates the mTOR pathway to inhibit apoptosis through impairing the interaction between mTOR and FKBP38, which may represent a pivotal mechanism for HCV persistence and pathogenesis.  相似文献   

19.
Phosphorylated histone H2AX (γ-H2AX) functions in the recruitment of DNA damage response proteins to DNA double-strand breaks (DSBs) and facilitates DSB repair. ATM also co-localizes with γ-H2AX at DSB sites following its auto-phosphorylation. However, it is unclear whether γ-H2AX has a role in activation of ATM-dependent cell cycle checkpoints. Here, we show that ATM as well as NBS1 is recruited to damaged-chromatin in a γ-H2AX-dependent manner. Foci formation of phosphorylated ATM and ATM-dependent phosphorylation is repressed in H2AX-knockdown cells. Furthermore, anti-γ-H2AX antibody co-immunoprecipitates an ATM-like protein kinase activity in vitro and recombinant H2AX increases in vitro kinase activity of ATM from un-irradiated cells. Moreover, H2AX-deficient cells exhibited a defect in ATM-dependent cell cycle checkpoints. Taken together, γ-H2AX has important role for effective DSB-dependent activation of ATM-related damage responses via NBS1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号