首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Intracellular growth of protozoan parasite Babesia bovis has been followed to study the effect of some chemical agents on growth regulation. Using an in vitro parasite culture system we present evidence that the normal growth of the parasite is dependent upon available calcium and a Ca2(+)-binding protein, calmodulin, because sequestration of either of these 2 components from the culture medium causes inhibition of parasitic growth. Further studies demonstrate that the parasite contains a protein kinase that can phosphorylate a 40-kDa parasitic protein and its activity is regulated by calcium and calmodulin. Both the enzyme and its substrate are present in the membrane of the parasite. In addition, the parasite also contains a highly active protein kinase C activity that is documented by phosphorylating histone, a known substrate for protein kinase C. These findings suggest a possible correlation between the growth of parasite and calcium/calmodulin-dependent protein phosphorylation activity.  相似文献   

2.
Lin PP  Key JL 《Plant physiology》1980,66(3):360-367
A histone-type protein kinase (EC 2.7.1.37) has been partially purified (320-fold) from the crude extracts of soybean hypocotyls by means of a combination of gel filtration and anion exchange procedures. The purified enzyme fraction is devoid of the activities of phosphoprotein phosphatase (EC 3.1.3.16), histone protease, and casein (or phosvitin)-type kinase. The soybean histone kinase uses ATP to phosphorylate specifically lysine-rich histone H1 from either pea seedlings or calf thymus.  相似文献   

3.
The microtubule-associated protein (MAP) 1 preparation, MAP1A and 1B, obtained from rat brain microtubules was associated with protein kinases that were insensitive to cAMP, cGMP, calcium, calcium/calmodulin and calcium/phosphatidylserine. The fractionation of highly purified MAP1 by phosphocellulose chromatography revealed that protein kinase activity to phosphorylate phosvitin was separated into three major peaks (MAP1 kinases A, B and C). MAP1 was recovered in the MAP1 kinase A fraction and phosphorylated by the contained kinase. MAP1 kinase A is a novel protein kinase that is remarkably activated by poly- -lysine and poly- -arginine, but very insensitive to heparin among the kinases. Photoaffinity labeling using [-32P]8-azido ATP indicated that the e65 kDa polypeptide is identified as an ATP-binding protein on sodium dodecyl sulfate-polyacrylamide gel electrophoresis in the highly purified MAP1 and MAP1 kinase A fractions. MAP1 kinases B and C may be identified as casein kinase I- and II-like kinases. The present results show that MAP1 is associated with at least three kinases and provide an insight for understanding thoroughly the MAP1-mediated microtubule functions.  相似文献   

4.
Murine T cell differentiation antigen CD8 alpha (Lyt-2) is phosphorylated in vivo after phorbol 12-myristate 13-acetate (PMA) treatment of cells. Concanavalin A,dibutyryl cAMP and calcium ionophore are unable to stimulate phosphate incorporation into CD8 alpha. Depletion of cellular protein kinase C (PKC) by prolonged PMA treatment abolished this phosphorylation, suggesting that PKC is required for this effect. Using the amino acid sequence derived from cloning CD8 alpha, peptides encompassing both possible intracellular phosphorylation sites were made and used to test the ability of various kinases to phosphorylate CD8 alpha sequences. Only the proximal serine peptide was a kinase substrate, and of PKC, cAMP-dependent kinase and the multifunctional calcium/calmodulin-dependent kinase, only PKC was able to phosphorylate this peptide. These studies provide the first definitive evidence that CD8 alpha is a direct substrate of PKC.  相似文献   

5.
Protein kinase C in vesicular preparations of the myocardium sarcolemma is shown to phosphorylate proteins with the molecular weight of 250, 140, 67, 58, 24 and 11 kD. The exogenic protein kinase C catalyzed phosphorylation of the sarcolemma preparations lowers the initial rate of the passive calcium transport from 0.56 down to 0.18 mmol per 1 mg second. Activation of endogenic protein kinase C by 4 beta-phorbol-12 beta-myristate-13 alpha-acetate is also accompanied by phosphorylation of vesicular preparations of sarcolemma and by inhibition of the passive calcium transport. Polymyxin B, being an inhibitor of protein kinase C, suppresses the phosphorylation and thus prevents the inhibitory action of phosphorylation on the passive calcium transport.  相似文献   

6.
The calcium-activated, phospholipid-dependent protein kinase (C kinase) and its proteolytic product (M kinase), originally discovered in central nervous tissue (Takai, Y., Kishimoto, A., Inoue, M., and Nishizuka, Y. (1977) J. Biol. Chem. 252, 7603-7610) were characterized in bovine adrenal cortex cytosol. An endogenous calcium-dependent protease able to generate M kinase from the isolated C kinase in vitro was also present in adrenocortical extracts. Bovine adrenocortical cells in suspension as well as in primary culture contain the C and the M kinase activities. Treatment of these cells by steroidogenic concentrations (nM to microM) of ACTH resulted in a time and dose-dependent increase of cytosolic C kinase activity, whereas no change in M kinase activity was detected. This apparent activation appears to result mostly from an intracellular shift of the membrane-associated C kinase to a soluble cytosolic form of the enzyme. These observations open the question of the possible implication of the calcium, phospholipid-dependent protein phosphorylation system in hormone-dependent cellular regulatory processes.  相似文献   

7.
Protease activated kinase I from rabbit reticulocytes has been shown to phosphorylate the P-light chain of myosin light chains isolated from rabbit skeletal muscle. The enzyme is not activated by Ca2+ and calmodulin or phospholipids. Protease activated kinase I is not inhibited by trifluoperazine at concentrations up to 200 μM or by the antibody to the Ca2+, calmodulin-dependent myosin light chain kinase from rabbit skeletal muscle. Two-dimensional peptide mapping of chymotryptic digests of myosin P-light chain show the site phosphorylated by the protease activated kinase is different from that phosphorylated by the Ca2+, calmodulin-dependent myosin light chain kinase.  相似文献   

8.
A calcium- and phospholipid-dependent protein kinase of apparent molecular mass 54 kDa (designated ZmCPKp54) was partially purified from etiolated maize seedlings. Activity of ZmCPKp54 is stimulated by phosphatidylserine and phosphatidylinositol, but is not essentially affected by diolein and phorbol esters. The enzyme cross-reacts with polyclonal antibodies against the calmodulin like-domain of the calcium-dependent protein kinase, but not with antibodies against catalytic or regulatory domains of protein kinase C. ZmCPKp54 is not able to phosphorylate the specific substrates of protein kinase C (MARCKS peptide and protein kinase C substrate peptide derived from pseudosubstrate sequence) and its activity is not inhibited by specific PKC inhibitors (bisindolylmaleimide, protein kinase C pseudosubstrate inhibitory peptide). The substrate specificity and sensitivity to the inhibitors of the maize enzyme resembles calcium-dependent protein kinase. The biochemical and immunological properties indicate that ZmCPKp54 belongs to the calcium-dependent protein kinase family.  相似文献   

9.
Protein kinase C has been purified by a rapid method resulting in a high-yield, stable enzyme preparation. The catalytic and regulatory properties of this enzyme preparation were characterized employing histone H1 and HMG8, a proteolytic fragment of H1. The enzyme had a lower Km for HMG8, and was stimulated more effectively by diacylglycerol and phorbol esters in the presence of this substrate. Furthermore, these activators markedly increased the Km for HMG8 but not for H1. Protein kinase C and cyclic AMP-dependent protein kinase phosphorylate serine residues which are located in different, single tryptic peptides from HMG8.  相似文献   

10.
Because phosphorylation of protein kinase C (PKC) may provide a mechanism for regulation of this enzyme, we have examined the ability of two other kinases to phosphorylate PKC. Our results show that casein kinase 1 (CK-1), but not casein kinase 2 (CK-2), can phosphorylate PKC in the absence of Ca2+ and phospholipids. The 32P incorporation into PKC in the presence of Ca2+ and phospholipids is also enhanced by CK-1.  相似文献   

11.
The eukaryotic elongation factor 2 kinase (eEF-2K) modulates the rate of protein synthesis by impeding the elongation phase of translation by inactivating the eukaryotic elongation factor 2 (eEF-2) via phosphorylation. eEF-2K is known to be activated by calcium and calmodulin, whereas the mTOR and MAPK pathways are suggested to negatively regulate kinase activity. Despite its pivotal role in translation regulation and potential role in tumor survival, the structure, function, and regulation of eEF-2K have not been described in detail. This deficiency may result from the difficulty of obtaining the recombinant kinase in a form suitable for biochemical analysis. Here we report the purification and characterization of recombinant human eEF-2K expressed in the Escherichia coli strain Rosetta-gami 2(DE3). Successive chromatography steps utilizing Ni-NTA affinity, anion-exchange, and gel filtration columns accomplished purification. Cleavage of the thioredoxin-His(6)-tag from the N-terminus of the expressed kinase with TEV protease yielded 9 mg of recombinant (G-D-I)-eEF-2K per liter of culture. Light scattering shows that eEF-2K is a monomer of ~85 kDa. In vitro kinetic analysis confirmed that recombinant human eEF-2K is able to phosphorylate wheat germ eEF-2 with kinetic parameters comparable to the mammalian enzyme.  相似文献   

12.
The protease from Southern Copperhead venom that activates protein C was purified to homogeneity by sulfopropyl (SP)-Sephadex C-50 ion-exchange chromatography, Sephadex G-150 gel filtration, and Mono-S fast protein liquid chromatography. The purified enzyme is a glycoprotein containing 16% carbohydrate, and migrated as a single band in sodium dodecyl sulfate-polyacrylamide gel electrophoresis with an apparent molecular mass of 40,000 kDa. The enzyme is composed of a single polypeptide chain possessing an NH2-terminal sequence of Val-Ile-Gly-Gly-Asp-Glu-Cys-Asn-Ile-Asn-Glu-His. The purified venom protein C activator hydrolyzed several tripeptide p-nitroanilides. The amidolytic and proteolytic activities of the enzyme were readily inhibited by phenylmethanesulfonyl fluoride, p-amidinophenylmethanesulfonyl fluoride, chloromethyl ketones, and human antithrombin III. Covalent binding of diisopropyl fluorophosphate to the enzyme was confirmed using a tritium-labeled preparation of the inhibitor. The venom protease readily activated human and bovine protein C at 1:1000 enzyme:substrate weight ratio. The protease also cleaved human prothrombin, factor X, factor IX, factor VII, and fibrinogen. Prothrombin coagulant activity decreased upon incubation with the venom protease, and the rate of this reaction was reduced in the presence of calcium. Factor X and factor IX coagulant activity increased upon incubation with the venom protease in the presence of calcium, and decreased in the absence of calcium. Human factor VII clotting activity decreased slightly upon incubation with the venom protease. Although the venom protease did not clot human fibrinogen, it nonetheless cleaved the A alpha chain of fibrinogen, and this cleavage appeared to be associated with a measurable increase in the clottability of the protease-treated fibrinogen by thrombin. These data demonstrate that the protein C activator from Southern Copperhead venom is a typical serine protease with a relatively broad specificity.  相似文献   

13.
Phosphorylation of the skeletal muscle AMP-deaminase by protein kinase C   总被引:1,自引:0,他引:1  
Protein kinase C catalyzes phosphorylation of the rat skeletal muscle AMP-deaminase in the presence of calcium ions and phosphatidylserine. At the same time, the catalytic subunit of cAMP-dependent protein kinase fails to phosphorylate AMP-deaminase. Ca2+, phosphatidylserine-dependent phosphorylation decreases three-fold (from 0.6 to 0.2 mM) the Km value and does not affect Vmax. Protein kinase C-induced phosphorylation of AMP-deaminase, besides ADP-ribosylation, is suggested to be involved in regulating the AMP-deaminase activity in vivo.  相似文献   

14.
Sarcomplasmic reticulum from rabbit fast skeletal muscle contains intrinsic protein kinase activity (ATP:protein phosphotransferase, EC 2.7.1.37) and a substrate. The protein kinase activity was Mg2+ dependent and could also phosphorylate exogenous protein substrates. Autophosphorylation of sarcoplasmic reticulum vesicles was not stimulated by cyclic AMP, neither was it inhibited by the heat-stable protein kinase inhibitor protein. The phosphorylated membranes had the characteristics of a protein with a phosphoester bond. An average of 73 pmol Pi/mg protein were incorporated in 10 min at 30 degrees C. Addition of exogenous cyclic AMP-dependent protein kinase increased the endogenous level of phosphorylation by 25-100%. Sarcoplasmic reticulum membrane phosphorylation, mediated by either endogenous cyclic AMP-independent or exogenous cyclic AMP-dependent protein kinase, occurred on a 100 000 dalton protein and both enzyme activities resulted in enhanced calcium uptake and Ca2+-dependent ATPase (ATP phosphohydrolase, EC 3.6.1.3), in a manner similar to cardiac microsomal preparations. Regulation of Ca2+ transport in skeletal sarcoplasmic reticulum may be mediated by phosphorylation of a 100 000 dalton component of these membranes.  相似文献   

15.
cAMP and Ca2(+)-independent histone kinase was generated from rat liver plasma membrane in an ionic strength-dependent manner by the action of an endogenous trypsin-like protease (Hashimoto, E. et al. (1986) FEBS Lett. 200, 63-66). In addition to the effect of ionic strength, this proteolytic activation of protein kinase proceeded faster at alkaline pH. In an attempt to identify the activated kinase as the protease-activated form of protein kinase C (protein kinase M), the active enzyme released from plasma membrane was highly purified and characterized. Various properties including Mg2+ requirement in histone phosphorylation, substrate specificity, effects of protein kinase activators, and inhibitors and comparison of catalytic properties by peptide map analysis were compatible with those of protein kinase M reported earlier. Immunoblot analyses also supported the idea that the protein kinase subjected to proteolytic activation was protein kinase C. The subtype of protein kinase C detected in this study was identified as type III enzyme encoding alpha-type sequence from the elution profile from hydroxyapatite column. These results suggest that type III protein kinase C bound to rat liver plasma membrane has an ability to be activated by endogenous trypsin-like protease dependently on the alteration of ionic strength and pH around the plasma membrane.  相似文献   

16.
17.
This study describes the characterization of 80 kDa protease showing gelationlytic property among three proteases in the excretory/secretory proteins (ESP) from Toxoplasma gondii. The protease activity was detected in the ESP but not in the somatic extract of RH tachyzoites. This protease was active only in the presence of calcium ion but not other divalent cationic ions such as Cu(2+), Zn(2+), Mg(2+), and Mn(2+), implying that Ca(2+) is critical factor for the activation of the protease. The 80 kDa protease was optimally active at pH 7.5. Its gelatinolytic activity was maximal at 37 degrees C, and significant level of enzyme activity of the protease remained after heat treatment at 56 degrees C for 30 min or 100 degrees C for 10 min. This thermostable enzyme was strongly inhibited by metal chelators, i.e., EDTA, EGTA, and 1,10- phenanthroline. Thus, the 80 kDa protease in the ESP secreted by T. gondii was classified as a calcium dependent neutral metalloprotease.  相似文献   

18.
The diglyceride kinase activity of membranes from Escherichia coli was extracted into acidic butan-1-ol. The enzyme was purified in organic solvent by precipitation at -20 degrees C, chromatography on DEAE-cellulose and repeated chromatography on Sephadex LH-60. The final 1460-fold purified enzyme preparation gave a single protein band upon isoelectric focusing in the presence of Triton X-100 (pI, 4.0) and upon polyacrylamide-gel electrophoresis in the presence of sodium dodecylsulphate. The latter method as well as gel chromatography on Sephadex LH-60 indicated a molecular weight of about 15400. The purified enzyme was devoid of lipid, and it required re-addition of lipid for activity. sn-1,2-Dipalmitate and ceramide were phosphorylated, whereas the C55-isoprenoid alcohol, ficaprenol, did not serve as a substrate under the same conditions. Conversely, the butanol-soluble C55-isoprenoid-alcohol kinase from Staphylococcus aureus did not phosphorylate sn-1,2-dipalmitate.  相似文献   

19.
Protein kinase C autophosphorylates by an intrapeptide reaction   总被引:4,自引:0,他引:4  
The Ca2+-activated, phospholipid-dependent protein kinase C autophosphorylates by an intrapeptide reaction in a mixed micelle system in which the enzyme is a monomer. The rate of autophosphorylation in the micellar system is comparable to that observed in bilayer systems, where the enzyme may exist as an oligomer. Trypsinolysis of the enzyme reveals that both the regulatory and catalytic domains of the molecule are modified by the intrapeptide phosphorylation. Proteolysis of the enzyme to separate the two domains results in loss of ability to autophosphorylate. Furthermore, intact protein kinase C cannot phosphorylate either the cleaved regulatory or catalytic domains. Kinetic and proteolytic analyses suggest that intrapeptide phosphorylation is the predominant, and perhaps only, mechanism by which protein kinase C autophosphorylates. The intrapeptide modification of protein kinase C has intriguing implications for protein structure and regulation.  相似文献   

20.
Protein kinase C (PKC) was purified to near homogeneity from human leukemia ML-1 cells. The purified enzyme showed a single polypeptide band of 80 kDa on SDS-polyacrylamide gel after electrophoresis, and was totally dependent on Ca2+/phospholipid for activity. Diacylglycerol and the tumor-promoting on Ca2/phospholipid for activity. Diacylglycerol and the tumor-promoting phorbol esters stimulated the enzyme activity. Autophosphorylation of PKC purified from phenyl-Sepharose column showed both 80- and 37 kDa polypeptides. Further fractionation of PKC on a hydroxyapatite column revealed two peaks of enzyme activity, indicating that there may be two different forms of protein kinase C present in human leukemia cells. The purified PKC was used to phosphorylate RNA polymerase II of human leukemia cells in vitro and the autoradiogram showed that RNA polymerase II large subunits (240, 220 and 150 kDa) were phosphorylated in a time-dependent manner.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号