首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
Objective: To understand the possible role of chronic dietary high vitamin A supplementation in body weight regulation and obesity using a novel WNIN/Ob obese rat model developed at the National Centre for Laboratory Animal Sciences of National Institute of Nutrition, India. Research Methods and Procedures: Thirty‐six 7‐month‐old male rats of lean, carrier, and obese phenotypes were broadly divided into two groups; each group was subdivided into three subgroups consisting of six lean, six carrier, and six obese rats and received diets containing either 2.6 or 129 mg vitamin A/kg of diet for 2 months. Body weight gain, food intake, and weights of various organs were recorded. Adiposity index and BMI were calculated. Serum and liver retinol and brown adipose tissue (BAT)‐uncoupling protein1 (UCP1) mRNA expression levels were quantified. Results: Chronic feeding of high but non‐toxic doses of vitamin A through diet significantly reduced (P ≤ 0.05) body weight gain, adiposity index, and retroperitoneal white adipose tissue mass (without affecting food intake) in obese rats compared with their lean and carrier counterparts. In general, vitamin A treatment significantly improved hepatic retinol stores (P ≤ 0.05) in all phenotypes without affecting serum free retinol levels. However, augmented BAT‐UCP1 expression was observed only in carrier and obese rats (whose basal expression was low). Discussion: Our data suggest that chronic dietary vitamin A supplementation at high doses effectively regulates obesity in obese phenotype of the WNIN/Ob strain, possibly through up‐regulation of the BAT‐UCP1 gene and associated adipose tissue loss. However, in vitamin A‐supplemented lean and carrier rats, changes in adiposity could not be related to BAT‐UCP1 expression levels.  相似文献   

2.
Chronic administration of leptin has been shown to reduce adiposity through energy intake and expenditure. The present study aims to examine how acute central infusion of leptin regulates peripheral lipid metabolism, as assessed by markers indicative of their mobilization and utilization. A bolus infusion of 1 microg/rat leptin into the third cerebroventricle increased the expression of mRNA for hormone-sensitive lipase (HSL), an indicator of lipolysis, in white adipose tissue (WAT). This was accompanied by elevation of plasma levels of glycerol, but not of free fatty acids, as compared to the saline control (P < 0.03). The same treatment with leptin decreased plasma insulin levels but did not affect the plasma glucose level (P < 0.05 for insulin). Among the major regulators of the transportation or utilization of energy substrates, leptin treatment increased expression of mRNA for uncoupling protein 1 (UCP1) in brown adipose tissue (BAT), UCP2 in WAT, and UCP3 in quadriceps skeletal muscle, but not those for fatty acid-binding protein in WAT, carnitine phosphate transferase-1, a marker for beta oxidation of fatty acids in muscle, nor glucose transporter 4 in WAT and muscle (P < 0.01 for HSL, P < 0.05 for UCP1, and P < 0.005 for UCP2 and UCP3). These results indicate that, even in a single bolus, leptin may regulate the mobilization and/or utilization of energy substrates such as fatty acids by affecting lipolytic activity in WAT and by increasing the expression of UCPs in BAT, WAT, and muscle.  相似文献   

3.
Circulating adiponectin levels fall whereas leptin levels rise with obesity, suggesting that regulation of these two adipocyte-derived hormones may be simultaneously influenced by common obesity-related factors. We examined adiponectin mRNA levels in WAT and in some instances, brown adipose tissue (BAT) following fasting and refeeding, acute and chronic administration of a beta(3)-adrenergic agonist, acute treatment with retinoic acid (RA) and a glucocorticoid, and following chronic infusion of leptin and compared the expression of adiponectin to that of leptin in each circumstance. Serum concentrations of adiponectin were also reported for most of the treatments. Fasting diminished and refeeding reversed both adiponectin and leptin gene expression. Peripheral injection of the beta(3)-adrenergic agonist, CL316,243, suppressed both leptin and adiponectin expression in WAT. A small but significant reduction in adiponectin expression in BAT was also observed following this treatment. Although CL316,23 lowered serum leptin levels markedly, it did not affect serum adiponectin levels. A chronic 7-day infustion of CL316,243 resulted in an elevation of adiponectin expression in WAT and serum concentrations in contrast to suppressions in both mRNA and serum levels of leptin by a similar treatment as previously reported. Chronic administration of leptin did not alter adiponectin synthesis in WAT compared to controls, but prevented the reduction in adiponectin synthesis associated with pair feeding. Food restriction through pair feeding also diminished adiponectin expression in BAT. Collectively, although leptin and adiponectin are inversely correlated with obesity, leptin does not appear to participate directly in adiponectin synthesis. The short-term regulation of the two adipokine expression in WAT is somewhat similar, perhaps subjective to common control of energy balance. The long-term regulation of adiponectin expression in WAT appears to be the opposite of that of leptin and may be more sensitive to changes in adiposity or insulin sensitivity.  相似文献   

4.
Up-regulation of uterine UCP2 and UCP3 in pregnant rats.   总被引:2,自引:0,他引:2  
Pregnancy produces profound changes in hormone dynamics, thermoregulation and energy metabolism. Uncoupling proteins (UCPs) have been identified in a variety of tissues and UCP1 is known to play important roles in energy homeostasis, while the regulation of UCP2 and UCP3 is still unclear. The present study aimed to investigate the effects of the changes during pregnancy on UCP gene expression in the uterus, as well as in brown adipose tissue (BAT), white adipose tissue (WAT), soleus muscle (Muscle), and liver, throughout the estrus and metestrus periods, at early, middle and late stages in pregnancy, and during post-gestational stages. The expression of uterine UCP2 and UCP3 were up-regulated by 3.2- and 1. 5-fold, respectively, during the late stage of pregnancy with an increase of WAT leptin mRNA expression and exogenous administration of leptin resulted in induction of the uterine UCP2 and UCP3 levels. Contrary to uterine UCPs, UCP1 mRNA expression in BAT was down-regulated by 0.5-fold and there were no remarkable changes in WAT or liver UCP2, or Muscle UCP3 expression throughout the periods. These results indicate that UCP gene expressions during pregnancy are regulated tissue-dependently, and up-regulation of uterine UCP2 and UCP3 mRNA may be due to increased leptin levels.  相似文献   

5.
Obesity-resistant (A/J) and obesity-prone (C57BL/6J) mice were weaned onto low-fat (LF) or high-fat (HF) diets and studied after 2, 10, and 16 wk. Despite consuming the same amount of food, A/J mice on the HF diet deposited less carcass lipid and gained less weight than C57BL/6J mice over the course of the study. Leptin mRNA was increased in white adipose tissue (WAT) in both strains on the HF diet but to significantly higher levels in A/J compared with C57BL/6J mice. Uncoupling protein 1 (UCP1) and UCP2 mRNA were induced by the HF diet in brown adipose tissue (BAT) and WAT of A/J mice, respectively, but not in C57BL/6J mice. UCP1 mRNA was also significantly higher in retroperitoneal WAT of A/J compared with C57BL/6J mice. The ability of A/J mice to resist diet-induced obesity is associated with a strain-specific increase in leptin, UCP1, and UCP2 expression in adipose tissue. The findings indicate that the HF diet does not compromise leptin-dependent regulation of adipocyte gene expression in A/J mice and suggest that maintenance of leptin responsiveness confers resistance to diet-induced obesity.  相似文献   

6.
The aim of the present study was to determine whether the antiobesity effects of tea catechins (TCs) are associated with the expression of uncoupling protein 1 (UCP1) in brown adipose tissue (BAT). Male Sprague–Dawley rats were fed a high-fat (HF; 35% fat) diet for 5 weeks, then divided into four groups and fed an HF, HF with 0.5% TC (HFTC), normal-fat (NF; 5% fat) or NF with 0.5% TC (NFTC) diet for 8 weeks. At the end of the experimental period, perirenal and epididymal white adipose tissues (WATs) and interscapular BAT were isolated. The NFTC group had significantly lower perirenal WAT weights than the NF group (NF: 12.7±0.53 g; NFTC: 10.2±0.43 g; P<.01), but the HF and HFTC groups did not differ significantly. TC intake had no effects on epididymal WAT weights. The NFTC and HFTC groups had significantly lower BAT weights than the NF and HF groups, respectively. The NFTC group had significantly higher UCP1 mRNA levels in BAT than the NF group (NF: 0.35±0.02; NFTC: 0.60±0.11; P<.05), but the HF and HFTC groups did not differ significantly. Thus, TC intake in the context of the NF diet reduced perirenal WAT weight and up-regulated UCP1 mRNA expression in BAT. These results suggest that the suppressive effect of TC on body fat accumulation is associated with UCP1 expression in BAT.  相似文献   

7.
 为探讨禁食和胰岛素对解偶联蛋白 - 1、2、3基因 (UCP1 ,2 ,3)表达的影响 ,应用 RT- PCR方法观察了在不同禁食时间和应用胰岛素条件下大鼠白色脂肪组织、棕色脂肪组织和骨骼肌中 UCP1 ,2 ,3m RNA水平的变化 .UCP1基因只在大鼠棕色脂肪组织中表达 .UCP2 ,3基因在三种组织中均有表达 ,在白色脂肪组织中以 UCP2表达为主 ;在骨骼肌中以 UCP3表达为主 .过夜禁食使棕色脂肪组织 UCP1 ,3m RNA水平明显下降 (P<0 .0 1 ) ;UCP2 m RNA水平在三种组织中均呈上升反应 ,以白色脂肪组织中表现最为明显 (P<0 .0 5) ;而对白色脂肪组织和骨骼肌中 UCP3基因表达无明显影响 .禁食时间延长至 48h,除棕色脂肪组织中 UCP2 ,3基因有明显下降外 ,各组织中UCPs基因表达基本调节至正常或高于对照组水平 .胰岛素对 UCPs基因表达水平有一定的上调作用 ,这一作用对棕色脂肪组织 UCPs各基因及骨骼肌中 UCP3基因表现得尤为明显 (P<0 .0 5) .大鼠 UCPs基因表达有一定的组织特异性 ;禁食时间对三种组织中 UCPs各成员基因表达的影响有时相上的区别 ;胰岛素可以调 UCPs各成员基因的表达 .结果反映了 UCPs各成员在能量代谢调节上的不同作用 ,这为理解膳食 -产热与体重调节的关系 ,及其能量代谢平衡与疾病关系提供了实验依据  相似文献   

8.
The vulnerability of streptozotocin (STZ)-induced diabetic rats to cold stress has been established. One of the elements controlling body temperature is thermogenesis, in which uncoupling protein (UCP) is known to play an important role. We have examined UCP2 and UCP3 expressions in brown adipose tissue (BAT), white adipose tissue (WAT), and skeletal muscle (MSL) during the acute and chronic phases of STZ-induced diabetes in rats. The long-term effect and the effect of insulin treatment thereafter were also unexplored previously and are examined in this study. In the acute phase of diabetes (2.5 days after STZ injection), UCP2 gene expression in BAT, WAT, and MSL, and UCP3 expression in the muscle were significantly increased. In the chronic phase of diabetes (21 days after STZ injection), UCP2 and UCP3 expression in the MSL were restored to the control levels without insulin supplementation. UCP2 in BAT and WAT remained high in the chronic phase, whereas UCP3 expression in BAT and WAT, which did not change in the acute phase, was significantly decreased. Insulin supplementation restored UCP2 expression in BAT and WAT, but over-corrected UCP3 in WAT above the control and did not affect UCP3 expression in BAT. Insulin supplementation depressed UCP3 expression in the MSL below control. These results indicate that the effects of STZ-induced diabetes on UCPs gene expression are tissue-specific as well as dependent on the duration of diabetes.  相似文献   

9.
The aim of the present work was to assess whether changes in adipose tissue gene expression related with adipogenesis and/or thermogenesis could be involved in the mechanism conferring susceptibility or resistance to develop obesity in high-fat fed outbreed rats. For this purpose, male Wistar rats were fed with standard laboratory diet (control group) or high fat diet. After 15 days, two groups of rats with significant differences on body weight gain in response to the high fat diet were characterized and identified as diet-induced obesity (DIO) and diet resistant (DR) rats. A significant increase in visceral white adipose tissue (WAT) PPARgamma and aP2 (p < 0.05) mRNA levels associated to a decrease in RARgamma expression (p < 0.05) was observed in DIO rats, suggesting an increase of adipogenesis. Furthermore, our data showed a marked increase in brown adipose tissue (BAT) of UCP1 mRNA in DIO animals (p < 0.01) (without affecting PGC-1alpha gene expression), whereas no changes were found in WAT UCP2 gene expression. All these data suggest that the variations found in the expression pattern of PPARgamma, aP2 and RARgamma by high-fat diet could be involved, at least in part, in the differences in body weight gain and adiposity observed between DR and DIO animals. The compensatory adaptations through the increase in energy expenditure by changes on the expression levels of UCP1 seem not to be enough to avoid the obesity onset in the DIO group.  相似文献   

10.
We tested the hypothesis that leptin, in addition to reducing body fat by restraining food intake, reduces body fat through a peripheral mechanism requiring uncoupling protein 1 (UCP1). Leptin was administered to wild-type (WT) mice and mice with a targeted disruption of the UCP1 gene (UCP1 deficient), while vehicle-injected control animals of each genotype were pair-fed to each leptin-treated group. Leptin reduced the size of white adipose tissue (WAT) depots in WT mice but not in UCP1-deficient animals. This was accompanied by a threefold increase in the amount of UCP1 protein and mRNA in the brown adipose tissue (BAT) of WT mice. Leptin also increased UCP2 mRNA in WAT of both WT and UCP1-deficient mice but increased UCP2 and UCP3 mRNA only in BAT from UCP1-deficient mice. These results indicate that leptin reduces WAT through a peripheral mechanism requiring the presence of UCP1, with little or no involvement of UCP2 or UCP3.  相似文献   

11.
To determine if the age-dependent increase of adiposity is directly related to altered obese (ob) and fatty acid synthase (FAS) gene expression, we assessed an adiposity index, leptin and FAS mRNA levels, FAS activity in perirenal adipose tissue and serum leptin concentration in rats aged 1, 2, 3, 6 and 20 months. The results indicate that there are two distinct phases of changes in perirenal white adipose tissue leptin mRNA level and serum leptin concentration. The first phase, between 1 and 3 months of the animals' lives, was characterized by a strong positive correlation between adiposity index and leptin mRNA level as well as serum leptin concentration. In the second phase (over 3 months) no significant changes of leptin mRNA and serum concentration occurred. A close correlation between the age-induced increase of leptin mRNA abundance and serum leptin concentration and the age-induced suppression of FAS gene expression in the same tissue was observed. This suggests that the changes of FAS gene expression occur in response to serum leptin concentration and that in mature rats the high level of ob gene expression and consequently the high leptin concentration protect the white adipose tissue cells against fat overload by two independent mechanisms: (a) preventing an increase of food intake through the leptin action on the hypothalamus; (b) inhibiting FAS gene expression and consequently decreasing the rate of lipogenesis.  相似文献   

12.
13.
14.
To examine the involvement of ghrelin in obesity, we investigated the effects of treatment with peripherally administered ghrelin on food intake, adiposity, and expression of uncoupling protein (UCP) mRNA in brown (BAT) and white (WAT) adipose tissue in mice. Acute bolus administration of ghrelin at a dose of 120 nmol/kg increased cumulative food intake over 4 and 24 h as compared to controls (p<0.05 for each), whereas 12 nmol/kg/day ghrelin showed no remarkable effect (p>0.1). Chronic repeated treatment with 12 nmol/kg/day ghrelin for 7 days increased body weight and adiposity assessed by the weight of adipose tissue, triglyceride content in WAT (p<0.05 for each versus control). In addition, the same treatment decreased and increased mRNA expression of BAT UCP1 and WAT UCP2, respectively (p<0.05 for each). In conclusion, ghrelin can regulate body weight, adiposity and UCPs mRNA expression in mice. The present results provide evidence for a new regulatory loop involving ghrelin and UCP, and add novel insights into the regulatory mechanisms of obesity.  相似文献   

15.
Mitochondrial uncoupling protein 1 (UCP1) is usually expressed only in brown adipose tissue (BAT) and a key molecule for metabolic thermogenesis to avoid an excess of fat accumulation. However, there is little BAT in adult humans. Therefore, UCP1 expression in tissues other than BAT is expected to reduce abdominal fat. Here, we show reduction of abdominal white adipose tissue (WAT) weights in rats and mice by feeding lipids from edible seaweed, Undaria pinnatifida. Clear signals of UCP1 protein and mRNA were detected in WAT of mice fed the Undaria lipids, although there is little expression of UCP1 in WAT of mice fed control diet. The Undaria lipids mainly consisted of glycolipids and seaweed carotenoid, fucoxanthin. In the fucoxanthin-fed mice, WAT weight significantly decreased and UCP1 was clearly expressed in the WAT, while there was no difference in WAT weight and little expression of UCP1 in the glycolipids-fed mice. This result indicates that fucoxanthin upregulates the expression of UCP1 in WAT, which may contribute to reducing WAT weight.  相似文献   

16.
17.
Mitochondrial uncoupling protein 3 (UCP3) is expressed in skeletal muscles. We have hypothesized that increased glucose flux in skeletal muscles may lead to increased UCP3 expression. Male transgenic mice harboring insulin-responsive glucose transporter (GLUT4) minigenes with differing lengths of 5'-flanking sequence (-3237, -2000, -1000 and -442 bp) express different levels of GLUT4 protein in various skeletal muscles. Expression of the GLUT4 transgenes caused an increase in UCP3 mRNA that paralleled the increase of GLUT4 protein in gastrocnemius muscle. The effects of increased intracellular GLUT4 level on the expression of UCP1, UCP2 and UCP3 were compared in several tissues of male 4 month-old mice harboring the -1000 GLUT4 minigene transgene. In the -1000 GLUT4 transgenic mice, expression of GLUT4 mRNA and protein in skeletal muscles, brown adipose tissue (BAT), and white adipose tissue (WAT) was increased by 1.4 to 4.0-fold. Compared with non-transgenic littermates, the -1000 GLUT4 mice exhibited about 4- and 1.8-fold increases of UCP3 mRNA in skeletal muscle and WAT, respectively, and a 38% decrease of UCP1 mRNA in BAT. The transgenic mice had a 16% increase in oxygen consumption and a 14% decrease in blood glucose and a 68% increase in blood lactate, but no change in FFA or beta-OHB levels. T3 and leptin concentrations were decreased in transgenic mice. Expression of UCP1 in BAT of the -442 GLUT4 mice, which did not overexpress GLUT4 in this tissue, was not altered. These findings indicate that overexpression of GLUT4 up-regulates UCP3 expression in skeletal muscle and down-regulates UCP1 expression in BAT, possibly by increasing the rate of glucose uptake into these tissues.  相似文献   

18.
Nonshivering thermogenesis induced in brown adipose tissue (BAT) during high-fat feeding is mediated through uncoupling protein 1 (UCP1). UCP2 is a recently identified homologue found in many tissues. To determine the role of UCP1 and UCP2 in thermoregulation and energy balance, we investigated the long-term effect of high-fat feeding on mRNA levels in mice at two different ambient temperatures. We also treated mice with the anorectic peptide enterostatin and compared mRNA levels in BAT, white adipose tissue (WAT), stomach, and duodenum. Here, we report that high-fat feeding at 23 degrees C increased UCP1 and UCP2 levels in BAT four- and threefold, respectively, and increased UCP2 levels fourfold in WAT. However, at 29 degrees C, UCP1 decreased, whereas UCP2 remained unchanged in BAT and increased twofold in WAT. Enterostatin increased UCP1 and decreased UCP2 mRNA in BAT. In stomach and duodenum, high-fat feeding decreased UCP2 mRNA, whereas enterostatin increased it. Our results suggest that the regulation of uncoupling protein mRNA levels by high-fat feeding is dependent on ambient temperature and that enterostatin is able to modulate it.  相似文献   

19.
Objective: The aim of this study was to determine the sex‐dependent differences in the response of key parameters involved in thermogenesis and control of body weight in brown adipose tissue (BAT) and white adipose tissue (WAT) in postcafeteria‐fed rats, a model of dietary obesity. Research Methods and Procedures: BAT and WAT were obtained from male and female control and postcafeteria‐fed Wistar rats. Postcafeteria‐fed rats were initially fed with cafeteria diet from day 10 of life until day 110 (cafeteria period) and with standard chow diet from then until day 180 of life (postcafeteria period). Body mass and energy intake were evaluated. Biometric parameters were analyzed in interscapular BAT (IBAT). Levels of uncoupling protein 1 (UCP1), α2‐adrenergic receptor (AR), and β3‐AR proteins and UCP1, UCP2, UCP3, β3‐AR, and leptin mRNAs, in IBAT or WAT, were studied by Western blot and Northern blot analyses, respectively. Results: Rats attained 59% (females) and 39% (males) increase in body weight at the end of the cafeteria period. During the postcafeteria period, the rats showed a loss of body weight, which was higher in females. Postcafeteria‐fed female rats also presented higher activation of thermogenic parameters in IBAT, including UCP1, UCP2, and UCP3 mRNAs. Female control rats showed lower levels of both α2 and β3‐ARs in BAT compared with male rats, but these levels in postcafeteria‐fed female and male rats were the same, because males tended to down‐regulate them. Levels of leptin mRNA in response to the postcafeteria state depended on gender and the specific WAT depot studied. Discussion: It is suggested that in postcafeteria‐fed female rats, BAT thermogenic capacity becomes more efficiently activated than in males. Female rats also showed a bigger weight loss. The parallel regulation of the levels of UCP2 and UCP3 mRNAs, with respect to UCP1 mRNA, with higher activation in female postcafeteria‐fed rats, suggests a possible role of both UCP2 and UCP3 in the regulation of energy expenditure and in the control of body weight. The distinct responses to overweight of α2 and β3‐ARs—which were sex dependent—and leptin mRNA—which depended on both sex and WAT depot—also support the different response of thermogenesis‐related parameters between overweight males and females.  相似文献   

20.
Retinoic acid (RA) administration and chronic vitamin A supplementation were reported to inhibit adipose tissue leptin expression in rodents, but the impact of this effect on food intake and its relationship with changes of body adiposity was not analyzed. Here, we have studied the effects of RA administration at three different doses on body weight, adipose tissue mass, food intake, adipose tissue leptin expression and circulating leptin levels in NMRI mice; the effects of chronic vitamin A supplementation with a 40-fold excess retinyl palmitate on the same parameters in NMRI and C57BL/6J mice; and the effects of RA and retinoid receptors agonists on leptin expression in brown and white adipocyte cell model systems. The results show that vitamin A down-regulates leptin expression in white and brown adipose tissue and circulating leptin levels independently of changes of adipose tissue mass and, for the first time to our knowledge, that this effect does not correlate with increased food intake. They also demonstrate a direct inhibitory effect of RA on leptin expression in both white and brown adipocyte cell cultures, and constitute first proof of the involvement of both RA receptors (RARs) and rexinoid receptors (RXRs) in this effect. Reduction of leptin levels by specific nutrients is of potential interest from a clinical point of view.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号