首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The carbon content of microbial biomass and the kinetic characteristics of microbial respiration response to substrate addition have been estimated for chernozem soils under different land use: arable lands used for 10, 46, and 76 years, mowed meadow, natural forest, and forest shelter belt. Microbial biomass and the content of microbial carbon in humus (Cmic /Corg) decreased in the following order: soils under forest cenoses—mowed meadow—10-year arable land—46- and 75-year arable land. The amount of microbial carbon in the long-plowed horizon was 40% of its content in the upper horizon of natural forest. Arable soils were characterized by a lower metabolic diversity of microbial community and by the highest portion of microorganisms able to grow directly on glucose introduced into soil. The effects of different scenarios of carbon sequestration in soil on the amounts and activity of microbial biomass are discussed.  相似文献   

2.
The main goal of the study was to find differences in the bacterial community structure resulting from different ways of meadow management in order to get the first insight into microbial biodiversity in meadow samples. The next generation sequencing technique (454-pyrosequencing) was accompanied with the community level physiological profiling (CLPP) method in order to acquire combined knowledge of both genetic and catabolic bacterial fingerprinting of two studied meadows (hayland and pasture). Soil samples (FAO: Mollic Gleysol) were taken in April 2015 from the surface layer (0–20 cm). Significant differences of the bacterial community structure between the two analyzed meadows resulted from different land mode were evidenced by pyrosequencing and CLPP techniques. It was found that Alpha- and Gammaproteobacteria dominated in the hayland, whereas Delta- and Betaproteobacteria prevailed in the pasture. Additionally, the hayland displayed lower Firmicutes diversity than the pasture. Predominant bacterial taxa: Acidobacteria, together with Chloroflexi and Bacteroidetes seemed to be insensitive to the mode of land use, because their abundance remained at a similar level in the both studied meadows. The CLPP analysis confirmed much faster degradation of the carbon sources by microorganisms from the hayland rather than from the pasture. Amino acids were the most favoured carbon source groups utilized by microorganisms in contrast to carbohydrates, which were utilized to the lowest extent. The study clearly proved that the consequences of even moderate anthropogenic management are always changes in bacterial community structure and their metabolic activity. Bacterial taxa that are sensitive and resistant on modes of land use were determined.  相似文献   

3.
不同利用方式对红壤坡地微生物多样性和硝化势的影响   总被引:6,自引:0,他引:6  
采集了中国科学院桃源农业生态试验站红壤坡地农田、自然恢复林和茶园土壤样品,采用末端限制性酶切片段长度多态性分析(T.RFLP)技术分析土壤细菌、古菌、氨氧化细菌(AOB)和氨氧化古菌(AOA)的多样性,采用好气培养法测定不同土壤的硝化势,研究不同土地利用方式对微生物多样性和硝化势的影响.结果表明:土壤AOB和AOA多样性指数差异不显著,且在3种不同土地利用方式中呈现相同的趋势,均为农田=茶园>自然恢复林;通过RDA分析发现,不同利用方式造成土壤理化性状的改变是影响土壤AOA和AOB群落结构的主要原因;好气培养法测得不同土壤硝化势农田最高,茶园次之而自然恢复林最低;相关性分析显示,硝化势与细菌16S rRNA、AOA和AOB amoA基因多样性指数呈显著正相关,其中与AOA amoA基因关系最为密切;总体来说,红壤坡地不同利用方式改变了土壤细菌、古菌、AOA和AOB的多样性,土壤AOB和AOA积极参与了土壤的硝化过程,且AOA在氨氧化微生物群落生态功能中占有重要地位,AOA比AOB与硝化势的关系更为密切.  相似文献   

4.
Biogeochemistry - Input of organic carbon (C) to the soil stimulates soil microbial activity leading to changes in turnover of soil organic matter, a phenomenon referred to as priming effect (PE)....  相似文献   

5.
洞庭湖区不同利用方式对土壤微生物生物量碳氮磷的影响   总被引:17,自引:3,他引:17  
以湖南省沅江市典型湖垸为代表,通过密集取样分析,研究了洞庭湖区不同利用方式条件下农田土壤微生物生物量碳、氮、磷的变化及其和土壤碳、氮、磷的关系,发现水田土壤碳、氮和微生物生物量碳、氮明显高于旱地,水田土壤中双季稻高于一季稻;土壤磷的含量旱地稍高于水田,但土壤微生物生物量磷水田稍高于旱地.尽管在水田土壤中微生物生物量碳、氮有明显的不同,但水田土壤微生物生物量磷维持在相对稳定的水平.典型样区土壤微生物生物量碳占有机碳的比例为0.65%~7.24%,平均3.00%;土壤微生物生物量氮占全氮的比例为0.98%~7.41%,平均3.81%;土壤微生物生物量磷占全磷的比例为0.16%~7.54%,平均2.80%.土壤C/N为3.87~17.31,平均9.15;BC/BN为4.06~9.29,平均7.26.土壤微生物生物量碳、氮与土壤碳、氮之间存在极其显著的线性相关关系,但土壤微生物生物量磷占全磷之间相关关系不显著.土壤微生物生物量碳、氮、磷之间的相关关系达到了极显著水平.不同的利用方式和耕作制度导致了土壤碳、氮和微生物生物量碳、氮的差异,土壤微生物生物量碳、氮能够很好地反映洞庭湖区农田土壤碳、氮水平.  相似文献   

6.
7.
低纬高原不同利用方式土壤对烟草生长及光合生理的影响   总被引:1,自引:0,他引:1  
以取自低纬高原云南玉溪烟区不同地域稻田(峨山,E)、麦田(北城1,B1;北城2,B2)、山坡旱地(新平,X)和菜地(通海四街,T1;通海桑园,T2)的6种不同利用方式土壤盆栽种植烟草品种K326,研究了在相同气候背景和水肥管理条件下,不同土壤对K326生长和光合生理的影响。结果表明:K326在山坡旱地土、稻田土和麦田土上生长较菜地土上好(北城1除外),且新平烟叶净光合速率(Pn)较高,新平和峨山烟叶气孔导度(Gs)、胞间CO2浓度(Ci)和蒸腾速率(Tr)较大,而气孔限制值(Ls)、水分利用效率(WUE)和内在水分利用效率(IWUE)较小。分析表明,麦田和菜地土壤上生长的K326其Pn主要受气孔因素的影响,而稻田土壤上K326的Pn主要受羧化能力低、光合色素和可溶性蛋白含量低等非气孔因素的影响。峨山和新平K326的气孔调节能力较差,其较高的土壤含水量使Gs增大,Tr上升,从而导致WUE下降。各土壤处理烟叶的鲜重含水量和自然水分饱和亏没有显著差异,菜地土烟叶单位面积含水量显著低于稻田土,与其比叶重(SLM)有一定联系。结果说明了土壤对烟草的影响较为复杂,既与土壤本身的特性有关,又与不同土壤条件下植物本身的生理特性有关。  相似文献   

8.
The chitinolytic prokaryotic and eukaryotic microbial complex of chernozem soil has been investigated in the course of a succession initiated by the introduction of chitin and humidification. The dynamics of the cell numbers of chitinolytic microorganisms and of their biomass was assessed by fluorescent microscopy and by inoculation of selective media. Emission of carbon dioxide and nitrous oxide, as well as dinitrogen fixation, was assessed by gas chromatography. It was found that, when the succession was initiated by the introduction of both chitin and humidification, it resulted in greater cell numbers and biomass of chitinolytic microorganisms and higher levels of CO2 and N2O emission and of nitrogen fixation than when the succession was initiated by humidification alone. As compared to the control samples, a significant (twofold) increase in the prokaryote cell number and biomass was found on the fourth day of the succession initiated by humidification and introduction of chitin. One week after the initiation of succession, the fungal biomass and length of mycelium were twice as high as those in the control samples. These results led to the conclusion that chitin utilization in chernozem soil starts during the initial stages of succession and is performed by both prokaryotic and eukaryotic microorganisms.  相似文献   

9.
不同退化沙地土壤碳的矿化潜力   总被引:21,自引:0,他引:21  
通过实验室土壤培养试验 ,研究了科尔沁退化沙质草地不同生境 (流动沙地 ,半固定沙地 ,固定沙地和丘间低地 )下土壤碳的矿化潜力及不同凋落物在沙地土壤中的分解。经 33d的室内培养 ,不同生境土壤 CO2 - C的释放有极显著的差异 ,与生境植被盖度 ,凋落物积累 ,土壤沙化程度 ,土壤有机碳和全氮含量的分布有显著相关。流动沙地土壤有极低的土壤有机碳和氮的含量及其微弱的土壤微生物呼吸 ,表明土地沙漠化不仅导致土壤有机碳库衰竭 ,也使土壤微生物活性丧失。在有机质含量很低的流动沙地和半固定沙地土壤中 ,含氮量高的小叶锦鸡儿 (Caragana microphylla)凋落物比含氮量低、C/N比高的差巴嘎蒿(Artemisia halodendron)和 1年生植物凋落物有较快的分解。在沙漠化的演变中 ,土壤的粗粒化 ,有机物质和养分及微生物活性的丧失制约着凋落物在土壤中的矿化潜力。灌木的存在使更多的有机物质和养分积聚在灌丛下 ,形成灌丛肥岛 ,因而显著贡献于碳的固存。  相似文献   

10.
Wu B  Yi S  Fane AG 《Bioresource technology》2011,102(13):6808-6814
Microbial community developments and biomass characteristics (concentration, particle size, extracellular polymeric substances (EPS), and membrane fouling propensity) were compared when three MBRs were fed with the synthetic wastewater at different organic loadings. Results showed that the bacterial communities dynamically shifted in different ways and the EPS displayed dissimilar profiles under various organic loadings, which were associated with the ratios of food to microorganism and dissolved oxygen levels in the MBRs. The membrane fouling tendency of biomass in the low-loading MBR (0.57 g COD/L day) was insignificantly different from that in the medium-loading MBR (1.14 g COD/L day), which was apparently lower than that in the high-loading MBR (2.28 g COD/L day). The membrane fouling propensity of biomass was strongly correlated with their bound EPS contents, indicating cake layer fouling (i.e., deposition of microbial flocs) was predominant in membrane fouling at a high flux of 30 L/m2 h.  相似文献   

11.
Three upland soils from Thailand, a natural forest, a 16-year-old reforested site, and an agricultural field, were studied with regard to methane uptake and the community composition of methanotrophic bacteria (MB). The methane uptake rates were similar to rates described previously for forest and farmland soils of the temperate zone. The rates were lower at the agricultural site than at the native forest and reforested sites. The sites also differed in the MB community composition, which was characterized by denaturing gradient gel electrophoresis (DGGE) of pmoA gene fragments (coding for a subunit of particulate methane monooxygenase) that were PCR amplified from total soil DNA extracts. Cluster analysis based on the DGGE banding patterns indicated that the MB communities at the forested and reforested sites were similar to each other but different from that at the farmland site. Sequence analysis of excised DGGE bands indicated that Methylobacter spp. and Methylocystis spp. were present. Sequences of the "forest soil cluster" or "upland soil cluster alpha," which is postulated to represent organisms involved in atmospheric methane consumption in diverse soils, were detected only in samples from the native forest and reforested sites. Additional sequences that may represent uncultivated groups of MB in the Gammaproteobacteria were also detected.  相似文献   

12.
Khomutova  T. E.  Shirshova  L. T.  Tinz  S.  Rolland  W.  Richter  J. 《Plant and Soil》2000,219(1-2):13-19
The conversion of natural forests into cultivated lands causes changes of the carbon cycle, which are of particular importance for fragile landscapes. We examined the mobilization of organic carbon in undisturbed soil monoliths of a deciduous forest, a pine plantation, and a pasture under constant temperature (20°C) and moisture via a leaching experiment. Soil percolation was performed with synthetic rainfall solution (pH 5) for a period of 20 weeks. The leachates of the first 12 weeks were analyzed for the pH, DOC content, light absorbance at 260 and 330 nm. At the end of the experiment soil pH, total carbon, C:N ratio, content of fractions of humic substances were examined. After 20 weeks of the leaching experiment the decrease of soil total Corg reached 29, 23, and 50% in soil monoliths of deciduous forest, pasture, and coniferous forest, respectively. The amounts of DOC removed constituted 6.4, 3.8, and 6.2% of initial soil Corg, respectively. Cumulative values of DOC production decreased in the sequence coniferous forest > deciduous forest > pasture. UV-Vis absorptivities of DOC were similar in both forests and differed from those in pasture. UV-Vis characteristics showed that DOC composition changed during the experiment. The intensive soil percolation caused alterations of the properties of soil organic matter, in particular a change of fraction composition of humic substances occurred.  相似文献   

13.
We have measured total soil organic carbon (SOC), dissolved organic carbon (DOC), and microbial lipid contents (as indices of microbial biomass and community structure), and their distributions to 60 cm depth in soils from replicated medium-term (2003?C2008) experimental arable plots subject to different tillage regimes in Scotland. The treatments were zero tillage (ZT), minimum tillage (MT; cultivation to 7 cm), the conventional tillage (CT) practice of ploughing to 20 cm, and deep ploughing (DP) to 40 cm depth. In the 0?C30 cm depth range, SOC content (corrected for bulk density differences between tillage treatments) was greatest under ZT and MT, but over 0?C60 cm depth the SOC contents of these treatments were similar to the CT and DP treatments. DOC concentrations declined with increasing depth in ZT and MT above 20 cm, but there were no significant differences with depth in the CT and DP treatments. Beneath 20 cm, there was little change in DOC concentration with depth for all treatments, although for the MT treatment, there was less DOC beneath the depth of cultivation. The total microbial biomass decreased with increasing depth over the 0?C60 cm range in the ZT and MT treatments, whereas it decreased with depth only below 30?C40 cm in the CT and DP treatments. The microbial biomass was significantly different only between 0?C5 cm in the ZT, CT and DP treatments, but not for other depths between all treatments. The bacterial biomass was greater in the ZT treatment than in MT, CT and DP near the soil surface, but not significantly different over the whole profile (0?C60 cm). The fungal biomass decreased with depth in the ZT and MT treatments over the whole 0?C60 cm depth range, whereas it decreased with depth only below 20 cm in the CT and DP treatments.  相似文献   

14.
15.
上海世博会规划区是工厂和居民区混杂的典型老城区.对其主要土地利用方式下附属绿地土壤的重金属进行调查分析.结果表明:部分样点的Ni、Cr、Cu、Zn、Pb和Cd含量超标,Hg和As的含量均没有超标;大部分绿地土壤没有出现重金属的污染,其中清洁安全和尚清洁占了69.83%和6.94%,轻度污染、中度污染和重度污染的分别占了12.87%、2.56%和7.81%;周边利用类型不同的附属绿地土壤重金属含量差别很大,居民办公区的绿地土壤没有出现重金属污染,试剂溶剂类工厂局部有重金属污染,重金属污染主要集中在造船厂、机械厂、钢铁厂等重型工厂的附属绿地;利用类型不同绿地土壤重金属的相关性也不同,重金属的相关性基本与产生污染的土地利用类型一致;污染源的距离以及对污染源保护不当是导致绿地土壤重金属污染的主要因素,注意对污染源的集中堆置或采取隔离措施,能有效减少重金属对绿地的污染.  相似文献   

16.
Concentrations of Natural stable and unstable carbon in ecosystems have been used extensively to help to understand a wide range of soil processes and functions. This study was conducted to explore the effects of land use changes on different carbon fractions (F1, F2, F3 and F4), permanganate oxidizable carbon (POXC), soil organic carbon (SOC) and total organic carbon (TOC) associated with soils in calcareous soils of western Iran. Four popular land uses in the selected site including natural forest, range land, dryland farming and irrigated farming systems were employed as the basis of soil sampling. The results showed a strong relationship between land use conversion and SOC stocks changes. The greatest mean values for carbon content and the least mean values of CaCO3 in bulk topsoil (0–15 cm) in the forest land were observed. Dryland farming had the least both active and passive pools of C in comparison with the other land uses. The positive and significant correlations was observed between SOC, Total C and POXC contents and different C fractions. Taking C and POXC pools into account, a more definitive picture of the soil C is obtained than when only total C is measured. The influence of land use changes on overall soil carbon stocks could be helpful for making management decision for farmers and policy makers in the future, for enhancing the potential of C sequestration in western Iran.  相似文献   

17.
广东省不同土地利用方式对土壤微生物量碳氮的影响   总被引:16,自引:0,他引:16  
通过野外调查与室内分析,研究了广东省韶关红壤、广州赤红壤、雷州砖红壤3个地区4种不同土地利用方式(林地、果园、草地和农田)表层土壤(0~20cm)微生物量C、N特征.研究结果表明:不同土壤类型和不同土地利用方式对土壤微生物量C、N均有一定影响,其中土地利用方式影响更为明显.不同土地利用方式下土壤微生物量C、N差异显著,均表现为果园和林地高于农田和草地.土壤有机C、全N同样以果园较高.而对微生物商分析结果表明,不同的土地利用方式对土壤有机C总量和微生物生物量C的影响程度并不一致.相关分析表明,土壤微生物量C、N与全N、有机C、速效N显著正相关;土壤微生物量C、N之间显著相关,证实土壤微生物量C、N是可以表征土壤肥力的敏感因子.  相似文献   

18.
Growth mechanisms and growth kinetics of filamentous microorganisms   总被引:4,自引:0,他引:4  
Filamentous microorganisms are of major biotechnological importance, being responsible for production of the majority of secondary metabolites, particularly antibiotics. Two main groups are involved, filamentous fungi and filamentous actinomycetes, particularly the streptomycetes. In terms of cellular growth mechanisms, these groups differ greatly. Eukaryotic fungi possess subcellular organelles and cytoskeletal structures directing growth while prokaryotic streptomycetes have no such cellular organization. Despite these fundamental differences, both groups exhibit similar morphologies, growth patterns, growth forms, and hyphal and mycelial growth kinetics on solid media and in liquid culture both grow as dispersed mycelia and pellets. The article therefore discusses the relationship between cellular growth mechanisms and vegetative growth in both filamentous fungi and actinomycetes, the conceptual and theoretical models applicable to both groups, and the significance of such models in industrial fermentation processes.  相似文献   

19.
不同节水灌溉方式对干旱山地板栗生长结实的影响   总被引:1,自引:0,他引:1  
在山东省泰安市半干旱、半湿润气候区的山地果园,以板栗为试材,研究了陶罐贮水、蓄水穴和畦灌覆盖3种节水灌溉方式下栗园土壤水分特征及对板栗根系、树体生长和结实的影响.结果表明:与畦灌(对照)相比,3种节水灌溉方式均能延长果园土壤保湿时间,其中陶罐贮水处理效果最明显,保湿时间长达32 d,较对照延长13 d.节水处理下,板栗结果枝长度和数量、叶片面积和质量、果前梢混合芽数量等均较对照明显增加.陶罐贮水和蓄水穴处理能对深层土壤根系进行灌溉并诱导深层根系生长,降低了浅层干旱对根系的胁迫.3种节水灌溉均能大幅度提高板栗果实产量,陶罐贮水、蓄水穴和畦灌覆盖处理的产量分别较对照提高18.8%、16.5%和14.2%.  相似文献   

20.
西双版纳不同土地利用方式下土壤氮矿化作用研究   总被引:21,自引:4,他引:17  
氮在森林生态系统的养分循环中很重要,常把土壤氮矿化速率作为生态系统中氮有效性和氮损失的指标.在云南省中国科学院西双版纳热带生态站周围,用顶盖埋管法,对季风常绿阔叶林、季节雨林、橡胶林、受过严重干扰的季节雨林、鸡血藤次生林和旱谷地的氮矿化速率进行研究.结果表明,在6种土地利用方式下,净氮矿化速率和硝化速率由大到小依次为受过严重干扰的季节雨林>鸡血藤次生林>季节雨林>季风常绿阔叶林>橡胶林>旱谷地.在西双版纳地区橡胶林和旱谷地被认为是受人为干扰较严重的土地利用方式,这两种土地利用方式与各种森林下土壤中的氮矿化速率和氮储量相比均低,达到显著水平.较低的氮矿化速率与土壤本底氮储量低有关,也与土壤中真菌数量较少有关.对西双版纳6种常见土地利用方式的土壤氮储量和氮循环速率的研究表明,受过严重干扰的季节雨林在恢复多年后土壤中养分的转化速率与原生林接近,而林地被转化为农业或经济林用地后氮储量和氮矿化速率均显著降低.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号