首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 32 毫秒
1.
Hexosaminidases are involved in important biological processes catalyzing the hydrolysis of N-acetyl-hexosaminyl residues in glycosaminoglycans and glycoconjugates. The GH20 enzymes present diverse domain organizations for which we propose two minimal model architectures: Model A containing at least a non-catalytic GH20b domain and the catalytic one (GH20) always accompanied with an extra α-helix (GH20b-GH20-α), and Model B with only the catalytic GH20 domain. The large Bifidobacterium bifidum lacto-N-biosidase was used as a model protein to evaluate the minimal functional unit due to its interest and structural complexity. By expressing different truncated forms of this enzyme, we show that Model A architectures cannot be reduced to Model B. In particular, there are two structural requirements general to GH20 enzymes with Model A architecture. First, the non-catalytic domain GH20b at the N-terminus of the catalytic GH20 domain is required for expression and seems to stabilize it. Second, the substrate-binding cavity at the GH20 domain always involves a remote element provided by a long loop from the catalytic domain itself or, when this loop is short, by an element from another domain of the multidomain structure or from the dimeric partner. Particularly, the lacto-N-biosidase requires GH20b and the lectin-like domain at the N- and C-termini of the catalytic GH20 domain to be fully soluble and functional. The lectin domain provides this remote element to the active site. We demonstrate restoration of activity of the inactive GH20b-GH20-α construct (model A architecture) by a complementation assay with the lectin-like domain. The engineering of minimal functional units of multidomain GH20 enzymes must consider these structural requirements.  相似文献   

2.
Chitinase C from Ralstonia sp. A-471 (Ra-ChiC) has a catalytic domain sequence similar to goose-type (G-type) lysozymes and, unlike other chitinases, belongs to glycohydrolase (GH) family 23. Using NMR spectroscopy, however, Ra-ChiC was found to interact only with the chitin dimer but not with the peptidoglycan fragment. Here we report the crystal structures of wild-type, E141Q, and E162Q of the catalytic domain of Ra-ChiC with or without chitin oligosaccharides. Ra-ChiC has a substrate-binding site including a tunnel-shaped cavity, which determines the substrate specificity. Mutation analyses based on this structural information indicated that a highly conserved Glu-141 acts as a catalytic acid, and that Asp-226 located at the roof of the tunnel activates a water molecule as a catalytic base. The unique arrangement of the catalytic residues makes a clear contrast to the other GH23 members and also to inverting GH19 chitinases.  相似文献   

3.
Family 7 glycoside hydrolases (GH7) are among the principal enzymes for cellulose degradation in nature and industrially. These enzymes are often bimodular, including a catalytic domain and carbohydrate-binding module (CBM) attached via a flexible linker, and exhibit an active site that binds cello-oligomers of up to ten glucosyl moieties. GH7 cellulases consist of two major subtypes: cellobiohydrolases (CBH) and endoglucanases (EG). Despite the critical importance of GH7 enzymes, there remain gaps in our understanding of how GH7 sequence and structure relate to function. Here, we employed machine learning to gain data-driven insights into relationships between sequence, structure, and function across the GH7 family. Machine-learning models, trained only on the number of residues in the active-site loops as features, were able to discriminate GH7 CBHs and EGs with up to 99% accuracy, demonstrating that the lengths of loops A4, B2, B3, and B4 strongly correlate with functional subtype across the GH7 family. Classification rules were derived such that specific residues at 42 different sequence positions each predicted the functional subtype with accuracies surpassing 87%. A random forest model trained on residues at 19 positions in the catalytic domain predicted the presence of a CBM with 89.5% accuracy. Our machine learning results recapitulate, as top-performing features, a substantial number of the sequence positions determined by previous experimental studies to play vital roles in GH7 activity. We surmise that the yet-to-be-explored sequence positions among the top-performing features also contribute to GH7 functional variation and may be exploited to understand and manipulate function.  相似文献   

4.
A two-domain family GH19 chitinase from Japanese cedar (Cryptomeria japonica) pollen, CJP-4, which consists of an N-terminal CBM18 domain and a GH19 catalytic domain, is known to be an important allergen, that causes pollinosis. We report here the resonance assignments of the NMR spectrum of CJP-4. The backbone resonances were almost completely assigned, and the secondary structure was estimated based on the chemical shift values. The addition of a chitin dimer to the enzyme solution perturbed the chemical shifts of the resonances of amino acid residues forming a long extended binding site spanning from the CBM18 domain to the GH19 catalytic domain.  相似文献   

5.
Arabinogalactan proteins (AGPs) are plant proteoglycans with functions in growth and development. However, these functions are largely unexplored, mainly because of the complexity of the sugar moieties. These carbohydrate sequences are generally analyzed with the aid of glycoside hydrolases. The exo-β-1,3-galactanase is a glycoside hydrolase from the basidiomycete Phanerochaete chrysosporium (Pc1,3Gal43A), which specifically cleaves AGPs. However, its structure is not known in relation to its mechanism bypassing side chains. In this study, we solved the apo and liganded structures of Pc1,3Gal43A, which reveal a glycoside hydrolase family 43 subfamily 24 (GH43_sub24) catalytic domain together with a carbohydrate-binding module family 35 (CBM35) binding domain. GH43_sub24 is known to lack the catalytic base Asp conserved among other GH43 subfamilies. Our structure in combination with kinetic analyses reveals that the tautomerized imidic acid group of Gln263 serves as the catalytic base residue instead. Pc1,3Gal43A has three subsites that continue from the bottom of the catalytic pocket to the solvent. Subsite −1 contains a space that can accommodate the C-6 methylol of Gal, enabling the enzyme to bypass the β-1,6–linked galactan side chains of AGPs. Furthermore, the galactan-binding domain in CBM35 has a different ligand interaction mechanism from other sugar-binding CBM35s, including those that bind galactomannan. Specifically, we noted a Gly → Trp substitution, which affects pyranose stacking, and an Asp → Asn substitution in the binding pocket, which recognizes β-linked rather than α-linked Gal residues. These findings should facilitate further structural analysis of AGPs and may also be helpful in engineering designer enzymes for efficient biomass utilization.  相似文献   

6.
纤维素酶的分子改造是其催化性能改进及催化效率提升的重要手段。近年来,组学技术与结构测定技术的迅速发展,人们已建立了包括糖苷水解酶(Glycoside hydrolase,GH)在内的碳水化合物活性酶组分数据库。通过对同一蛋白家族进行序列比对、分子进化分析与祖先基因重构,以结构模建分析为指导的纤维素酶分子改造,可以明显缩小序列或结构的搜索空间,加快酶分子改造的速度,增大理性设计成功的概率;同时针对催化中心活性架构的分析可以进一步阐明纤维素酶的催化机理与酶分子持续性降解机制。文中主要对纤维素酶家族及其催化结构域的分子改造取得的最新进展作了综述。在后基因组时代基于蛋白质家族中的海量数据分析,以其保守结构信息为指导的理性设计,将会成为纤维素酶分子改造的重要方向,从而推动生物质转化工艺的快速发展。  相似文献   

7.
Cellulases are the key enzymes used in the biofuel industry. A typical cellulase contains a catalytic domain connected to a carbohydrate-binding module (CBM) through a flexible linker. Here we report the structure of an atypical trimodular cellulase which harbors a catalytic domain, a CBM46 domain and a rigid CBM_X domain between them. The catalytic domain shows the features of GH5 family, while the CBM46 domain has a sandwich-like structure. The catalytic domain and the CBM46 domain form an extended substrate binding cleft, within which several tryptophan residues are well exposed. Mutagenesis assays indicate that these residues are essential for the enzymatic activities. Gel affinity electrophoresis shows that these tryptophan residues are involved in the polysaccharide substrate binding. Also, electrostatic potential analysis indicates that almost the entire solvent accessible surface of CelB is negatively charged, which is consistent with the halophilic nature of this enzyme.  相似文献   

8.
The breakdown of β-1,4-mannoside linkages in a variety of mannan-containing polysaccharides is of great importance in industrial processes such as kraft pulp delignification, food processing and production of second-generation biofuels, which puts a premium on studies regarding the prospection and engineering of β-mannanases. In this work, a two-domain β-mannanase from Thermotoga petrophila that encompasses a GH5 catalytic domain with a C-terminal CBM27 accessory domain, was functionally and structurally characterized. Kinetic and thermal denaturation experiments showed that the CBM27 domain provided thermo-protection to the catalytic domain, while no contribution on enzymatic activity was observed. The structure of the catalytic domain determined by SIRAS revealed a canonical (α/β)(8)-barrel scaffold surrounded by loops and short helices that form the catalytic interface. Several structurally related ligand molecules interacting with TpMan were solved at high-resolution and resulted in a wide-range representation of the subsites forming the active-site cleft with residues W134, E198, R200, E235, H283 and W284 directly involved in glucose binding.  相似文献   

9.
Degradation of recalcitrant polysaccharides in nature is typically accomplished by mixtures of processive and nonprocessive glycoside hydrolases (GHs), which exhibit synergistic activity wherein nonprocessive enzymes provide new sites for productive attachment of processive enzymes. GH processivity is typically attributed to active site geometry, but previous work has demonstrated that processivity can be tuned by point mutations or removal of single loops. To gain additional insights into the differences between processive and nonprocessive enzymes that give rise to their synergistic activities, this study reports the crystal structure of the catalytic domain of the GH family 18 nonprocessive endochitinase, ChiC, from Serratia marcescens. This completes the structural characterization of the co-evolved chitinolytic enzymes from this bacterium and enables structural analysis of their complementary functions. The ChiC catalytic module reveals a shallow substrate-binding cleft that lacks aromatic residues vital for processivity, a calcium-binding site not previously seen in GH18 chitinases, and, importantly, a displaced catalytic acid (Glu-141), suggesting flexibility in the catalytic center. Molecular dynamics simulations of two processive chitinases (ChiA and ChiB), the ChiC catalytic module, and an endochitinase from Lactococcus lactis show that the nonprocessive enzymes have more flexible catalytic machineries and that their bound ligands are more solvated and flexible. These three features, which relate to the more dynamic on-off ligand binding processes associated with nonprocessive action, correlate to experimentally measured differences in processivity of the S. marcescens chitinases. These newly defined hallmarks thus appear to be key dynamic metrics in determining processivity in GH enzymes complementing structural insights.  相似文献   

10.
Rigden DJ  Franco OL 《FEBS letters》2002,530(1-3):225-232
X-ray crystallography and bioinformatics studies reveal a tendency for the right-handed β-helix domain architecture to be associated with carbohydrate binding proteins. Here we demonstrate the presence of catalytic β-helix domains in glycoside hydrolase (GH) families 49, 55 and 87 and provide evidence for their sharing a common evolutionary ancestor with two structurally characterized GH families, numbers 28 and 82. This domain assignment helps assign catalytic residues to each family. Further analysis of domain architecture reveals the association of carbohydrate binding modules with catalytic GH β-helices, as well as an unexpected pair of β-helix domains in GH family 55.  相似文献   

11.
Fold recognition results allocate catalytic triose phosphate isomerase (TIM) barrels to seven previously unassigned glycoside hydrolase (GH) families, numbers 29, 44, 50, 71, 84, 85 and 89, enabling prediction of catalytic residues. Modelling of GH family 50 suggests that it may be the common evolutionary ancestor of families 42 and 14. TIM barrels now comprise the catalytic domains of more than half of the assigned GH families, and catalyse a much larger variety of GH reactions than any other catalytic domain architecture. Only 327 GH sequences still have no structurally identified catalytic domain.  相似文献   

12.
Glycoside phosphorylases (GPs) with specificity for β-(1 → 3)-gluco-oligosaccharides are potential candidate biocatalysts for oligosaccharide synthesis. GPs with this linkage specificity are found in two families thus far—glycoside hydrolase family 94 (GH94) and the recently discovered glycoside hydrolase family 149 (GH149). Previously, we reported a crystallographic study of a GH94 laminaribiose phosphorylase with specificity for disaccharides, providing insight into the enzyme's ability to recognize its' sugar substrate/product. In contrast to GH94, characterized GH149 enzymes were shown to have more flexible chain length specificity, with preference for substrate/product with higher degree of polymerization. In order to advance understanding of the specificity of GH149 enzymes, we herein solved X-ray crystallographic structures of GH149 enzyme Pro_7066 in the absence of substrate and in complex with laminarihexaose (G6). The overall domain organization of Pro_7066 is very similar to that of GH94 family enzymes. However, two additional domains flanking its catalytic domain were found only in the GH149 enzyme. Unexpectedly, the G6 complex structure revealed an oligosaccharide surface binding site remote from the catalytic site, which, we suggest, may be associated with substrate targeting. As such, this study reports the first structure of a GH149 phosphorylase enzyme acting on β-(1 → 3)-gluco-oligosaccharides and identifies structural elements that may be involved in defining the specificity of the GH149 enzymes.  相似文献   

13.
Glycoside hydrolase family 19 chitinases (EC 3.2.1.14) widely distributed in plants, bacteria and viruses catalyse the hydrolysis of chitin and play a major role in plant defense mechanisms and development. Rice possesses several classes of chitinase, out of which a single structure of class I has been reported in PDB to date. In the present study an attempt was made to gain more insight into the structure, function and evolution of class I, II and IV chitinases of GH family 19 from rice. The three-dimensional structures of chitinases were modelled and validated based on available X-ray crystal structures. The structural study revealed that they are highly α-helical and bilobed in nature. These enzymes are single or multi domain and multi-functional in which chitin-binding domain (CBD) and catalytic domain (CatD) are present in class I and IV whereas class II lacks CBD. The CatD possesses a catalytic triad which is thought to be involved in catalytic process. Loop III, which is common in all three classes of chitinases, reflects that it may play a significant role in their function. Our study also confirms that the absence and presence of different loops in GH family 19 of rice may be responsible for various sized products. Molecular phylogeny revealed chitinases in monocotyledons and dicotyledons differed from each other forming two different clusters and may have evolved differentially. More structural study of this enzyme from different plants is required to enhance the knowledge of catalytic mechanism and substrate binding.  相似文献   

14.
The endo-β-1,4-mannanase from the hyperthermostable bacterium Thermotoga petrophila (TpMan) is an enzyme that catalyzes the hydrolysis of mannan and heteromannan polysaccharides. Of the three domains that comprise TpMan, the N-terminal GH5 catalytic domain and the C-terminal carbohydrate-binding domain are connected through a central ancillary domain of unknown structure and function. In this study, we report the partial crystal structure of the TpMan at 1.45 Å resolution, so far, the first modular hyperthermostable endo-β-1,4-mannanase structure determined. The structure exhibits two domains, a (β/α)8-barrel GH5 catalytic domain connected via a linker to the central domain with an immunoglobulin-like β-sandwich fold formed of seven β-strands. Functional analysis showed that whereas the immunoglobulin-like domain does not have the carbohydrate-binding function, it stacks on the GH5 catalytic domain acting as a thermostabilizing domain and allowing operation at hyperthermophilic conditions. The carbohydrate-binding domain is absent in the crystal structure most likely due to its high flexibility around the immunoglobulin-like domain which may act also as a pivot. These results represent new structural and functional information useful on biotechnological applications for biofuel and food industries.  相似文献   

15.
Based on sequence and phylogenetic analyses, glycoside hydrolase (GH) family 3 can be divided into several clusters that differ in the length of their primary sequences. However, structural data on representatives of GH3 are still scarce, since only three of their structures are known and only one of them has been thoroughly characterized—that of an exohydrolase from barley. To allow a deeper structural understanding of the GH3 family, we have determined the crystal structure of the thermostable β-glucosidase from Thermotoga neapolitana, which has potentially important applications in environmentally friendly industrial biosynthesis at a resolution of 2.05 Å. Selected active-site mutants have been characterized kinetically, and the structure of the mutant D242A is presented at 2.1 Å resolution. Bgl3B from Th. neapolitana is the first example of a GH3 glucosidase with a three-domain structure. It is composed of an (α/β)8 domain similar to a triose phosphate isomerase barrel, a five-stranded α/β sandwich domain (both of which are important for active-site organization), and a C-terminal fibronectin type III domain of unknown function. Remarkably, the direction of the second β-strand of the triose phosphate isomerase barrel domain is reversed, which has implications for the active-site shape. The active site, at the interface of domains 1 and 2, is much more open to solvent than the corresponding site in the structurally homologous enzyme from barley, and only the − 1 site is well defined. The structures, in combination with kinetic studies of active-site variants, allow the identification of essential catalytic residues (the nucleophile D242 and the acid/base E458), as well as other residues at the − 1 subsite, including D58 and W243, which, by mutagenesis, are shown to be important for substrate accommodation/interaction. The position of the fibronectin type III domain excludes a direct participation of this domain in the recognition of small substrates, although it may be involved in the anchoring of the enzyme on large polymeric substrates and in thermostability.  相似文献   

16.
The human colonic bacterium Bacteroides thetaiotaomicron, which plays an important role in maintaining human health, produces an extensive array of exo-acting glycoside hydrolases (GH), including 32 family GH2 glycoside hydrolases. Although it is likely that these enzymes enable the organism to utilize dietary and host glycans as major nutrient sources, the biochemical properties of these GH2 glycoside hydrolases are currently unclear. Here we report the biochemical properties and crystal structure of the GH2 B. thetaiotaomicron enzyme BtMan2A. Kinetic analysis demonstrates that BtMan2A is a beta-mannosidase in which substrate binding energy is provided principally by the glycone binding site, whereas aglycone recognition is highly plastic. The three-dimensional structure, determined to a resolution of 1.7 A, reveals a five-domain structure that is globally similar to the Escherichia coli LacZ beta-galactosidase. The catalytic center is housed mainly within a (beta/alpha)8 barrel although the N-terminal domain also contributes to the active site topology. The nature of the substrate-binding residues is quite distinct from other GH2 enzymes of known structure, instead they are similar to other clan GH-A enzymes specific for manno-configured substrates. Mutagenesis studies, informed by the crystal structure, identified a WDW motif in the N-terminal domain that makes a significant contribution to catalytic activity. The observation that this motif is invariant in GH2 mannosidases points to a generic role for these residues in this enzyme class. The identification of GH-A clan and GH2 specific residues in the active site of BtMan2A explains why this enzyme is able to harness substrate binding at the proximal glycone binding site more efficiently than mannan-hydrolyzing glycoside hydrolases in related enzyme families. The catalytic properties of BtMan2A are consistent with the flexible nutrient acquisition displayed by the colonic bacterium.  相似文献   

17.
Huang QS  Xie XL  Liang G  Gong F  Wang Y  Wei XQ  Wang Q  Ji ZL  Chen QX 《Glycobiology》2012,22(1):23-34
The glycoside hydrolase 18 (GH18) family of chitinases is a multigene family that plays various roles, such as ecdysis, embryonic development, allergic inflammation and so on. Efforts are still needed to reveal their functional diversification in an evolutionary and systematic manner. We collected 85 GH18 genes from eukaryotic representatives. The domain architectures of GH18 proteins were analyzed and several conserved patterns were identified. It was observed that some (11 proteins) GH18 members in Ecdysozoa or fungi possess repeats of catalytic domains and/or chitin-binding domains (ChtBs). The domain repeats are likely to meet requirements for higher efficiency of chitin degradation in chitin-containing species. On the contrary, all vertebrate GH18 proteins contain no more than one catalytic domain or ChtB. The results from homologous analysis, domain architectures, exon arrangements and synteny loci supported two evolutionary paths for the GH18 family. One path experienced gene expansion and contraction several times during evolution, covering most of GH18 members except CHID1 (stabilin-1 interacting partner) and its homologs. Proteins in this path underwent frequent domain gain and loss, as well as domain recombination, that could achieve versatility in function. The other path is comparatively conserved. The CHID1 gene evolved without gene duplication except in Danio rerio. Domain architectures of CHID1 orthologs are all identical. The diverse phylogeny of the GH18 family in arthropod is also presented.  相似文献   

18.
Guanylate-kinase-associated protein (GKAP) is a scaffolding protein that links NMDA receptor-PSD-95 to Shank–Homer complexes by protein–protein interactions at the synaptic junction. GKAP family proteins are characterized by the presence of a C-terminal conserved GKAP homology domain 1 (GH1) of unknown structure and function. In this study, crystal structure of the GH1 domain of GKAP from Rattus norvegicus was determined in fusion with an N-terminal maltose-binding protein at 2.0 Å resolution. The structure of GKAP GH1 displays a three-helix bundle connected by short flexible loops. The predicted helix α4 which was not visible in the crystal structure associates weakly with the helix α3 suggesting dynamic nature of the GH1 domain. The strict conservation of GH1 domain across GKAP family members and the lack of a catalytic active site required for enzyme activity imply that the GH1 domain might serve as a protein–protein interaction module for the synaptic protein clustering.  相似文献   

19.
Chitinase B of "Microbulbifer degradans" 2-40 is a modular protein that is predicted to contain two glycoside hydrolase family 18 (GH18) catalytic domains, two polyserine domains, and an acidic repeat domain. Each of the GH18 domains was shown to be catalytically active against chitin. Activity assays reveal that the amino-terminal catalytic domain (GH18(N)) releases methylumbelliferone from 4'-methylumbelliferyl-N,N'-diacetylchitobiose 13.6-fold faster than the carboxy-terminal catalytic domain (GH18(C)) and releases chitobiose from the nonreducing end of chitooligosaccharides, therefore functioning as an exochitinase. GH18(C) releases methylumbelliferone from 4'-methylumbelliferyl-N,N',N"-triacetylchitotriose 2.7-fold faster than GH18(N) and cleaves chitooligosaccharides at multiple bonds, consistent with endochitinolytic activity. Each domain was maximally active from 30 to 37 degrees C and from pH 7.2 to 8.0 and was not affected by Mg(2+), Mn(2+), Ca(2+), K(+), EDTA, EGTA, or 1.0 M NaCl. The activity of each domain was moderately inhibited by Ni(2+), Sr(2+), and Cu(2+), while Hg(2+) completely abolished activity. When the specific activities of various recombinant portions of ChiB were calculated by using native chitin as a substrate, the polypeptide containing the endo-acting domain was twofold more active on native chitin than the other containing the exo-acting domain. The presence of both domains in a single reaction increased the amount of reducing sugars released from native chitin to 140% above the theoretical combined rate, indicating that the domains function cooperatively to degrade chitin. These data demonstrate that the GH18 domains of ChiB have different activities on the same substrate and function cooperatively to enhance chitin depolymerization.  相似文献   

20.
Non-productive adsorption of cellulases onto lignins is an important mechanism that negatively affects the enzymatic hydrolysis of lignocellulose biomass. Here, we examined the non-productive adsorption of two bacterial β-glucosidases (GH1 and GH3) on lignins. The results showed that β-glucosidases can adsorb to lignins through different mechanisms. GH1 β-glucosidase adsorption onto lignins was found to be strongly pH-dependent, suggesting that the adsorption is electrostatically modulated. For GH3 β-glucosidase, the results suggested that the fibronectin type III-like domain interacts with lignins through electrostatic and hydrophobic interactions that can partially, or completely, overcome repulsive electrostatic forces between the catalytic domain and lignins. Finally, the increase of temperature did not result in the increase of β-glucosidases adsorption, probably because there is no significant increase in hydrophobic regions in the β-glucosidases structures. The data provided here can be useful for biotechnological applications, especially in the field of plant structural polysaccharides conversion into bioenergy and bioproducts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号