首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The synthesis of polyamide-oligonucleotide conjugate molecules.   总被引:3,自引:2,他引:1       下载免费PDF全文
We have developed methods for the synthesis of peptide-oligodeoxyribonucleotide conjugate molecules in particular, and polyamide-oligonucleotide conjugates in general. Synthesis is carried out by a solid-phase procedure and involves the assembly of a polyamide on the solid support, conversion of the terminal amino group to a protected primary aliphatic hydroxy group by reaction with alpha, omega-hydroxycarboxylic acid derivatives, and finally oligonucleotide synthesis using phosphoramidite chemistry. The conjugate molecules can be used as DNA probes, with the polyamide component carrying one or more non-radioactive markers. These conjugates also have the potential to be used as anti-sense inhibitors of gene expression, with the peptide segment acting as a targeting moiety.  相似文献   

2.
Qiu B  Brunner M  Zhang G  Sigal L  Stein S 《Biopolymers》2000,55(4):319-333
Continuous epitope sequences were selected from immunogenic Bb proteins by epitope mapping. The identified epitope sequences were synthesized by solid phase peptide synthesis and purified by high performance liquid chromatography. Each epitope was conjugated individually to a multifunctional poly(ethylene glycol) (PEG) carrier. The result PEG-peptide conjugates were used as antigens in ELISA for diagnosis of Lyme disease. The results showed that the defined epitope peptides were Lyme disease specific and could be used in a format of PEG-peptide conjugate as the antigen to achieve improved sensitivity and specificity.  相似文献   

3.
The F(ab')2 fragment of murine monoclonal antibody A7 was covalently bonded to polyethylene glycol (PEG, molecular weight: 5000) and the conjugate was compared to the parent F(ab')2 fragment by in vitro and in vivo studies. PEG-conjugated antibody fragment retained its antigen-binding activity in a competitive radioimmunoassay. The conjugate had a longer half-life and showed increased accumulation in tumors. Although the tumor: blood ratio for parent F(ab')2 fragment was higher than that for the conjugate, it showed higher value than whole MAb A7. The tissue: blood ratios were kept low with the conjugate, indicating that the conjugate was uptaken to normal organ with lesser extent, as compared with parent F(ab')2 fragment. Our findings indicate that this PEG-conjugated F(ab')2 fragment could be a promising carrier for use in targeting cancer chemotherapy.  相似文献   

4.
To improve the targeting properties of receptor-directed drug-peptide conjugates, a multiligand approach was proposed and a model "scorpion" conjugate (6, Figure 1), consisting of two peptide "claws" and a paclitaxel (PTX) "tail", was synthesized. The cell surface receptor-directed peptide used in this single-drug multiligand (SDML) model was a segment of the amphibian peptide bombesin (BBN) which had the Y6Q7W8A9V10G11H12L13M14-NH2 sequence, designated here as BBN[6-14] (2, Figure 2). Due to the lipophilic nature of both PTX and BBN[6-14], compound 6 had a low water solubility. To enhance the solubility, PEG derivatives of this conjugate were prepared with the polymer inserted either in the claws or in the tail regions. In a preliminary random screening, conjugate 6 showed superior cytotoxic activity in several GRPR-positive human cancer cell lines as compared to free PTX and two single-drug single-ligand (SDSL) conjugates. In a receptor blocking experiment, addition of excess unconjugated BBN[6-14] ligand reduced the cytotoxicity of conjugate 6, indicating the receptor-mediated mechanism of drug delivery. The PEG-derived conjugates showed activities which were intermediate between SDSL and the SDML congeners. Also, an increase in the number of the PEG segments lowered cytotoxicity, possibly due to steric hindrance against ligand-receptor binding. Taken together, these results demonstrate the potential of the multiligand approach in the design of receptor-targeting conjugates for tumor-specific drug delivery.  相似文献   

5.
Solid phase peptide synthesis method, which was introduced by Merrifield in 1963, has spawned the concept of combinatorial chemistry. In this review, we summarize the present technologies of solid phase peptide synthesis (SPPS) that are related to combinatorial chemistry. The conventional methods of peptide library synthesis on polymer support are parallel synthesis, split and mix synthesis and reagent mixture synthesis. Combining surface chemistry with the recent technology of microelectronic semiconductor fabrication system, the peptide microarray synthesis methods on a planar solid support are developed, which leads to spatially addressable peptide library. There are two kinds of peptide microarray synthesis methodologies: pre-synthesized peptide immobilization onto a glass or membrane substrate and in situ peptide synthesis by a photolithography or the SPOT method. This review also discusses the application of peptide libraries for high-throughput bioassays, for example, peptide ligand screening for antibody or cell signaling, enzyme substrate and inhibitor screening as well as other applications.  相似文献   

6.
We present a new procedure for the preparation of 3'-conjugates of oligonucleotides through solid-phase synthesis. A suitable universal solid support was readily prepared using a series of peptide-like coupling reactions to incorporate first a spacer and then an L-homoserine branching unit. The N-alpha-position of the homoserine carries an Fmoc protecting group that is removed by treatment with piperidine to liberate an amino group suitable for attachment of the conjugate (e.g., small organic molecule, fluorescent group, cholesterol, biotin, amino acid, etc.) or for assembly of a short peptide. The side-chain hydroxyl group of the homoserine carries a trityl protecting group. After TFA deprotection, the hydroxyl group acts as the site for oligonucleotide assembly. An additional spacer, such as aminohexanoyl, may be incorporated easily between the conjugate molecule and the oligonucleotide. A number of examples of synthesis of 3'-conjugates of oligonucleotides and their analogues are described that involve standard automated oligonucleotide assembly and use of commercially available materials. The linkage between oligonucleotide and 3'-conjugate is chirally pure and is stable to conventional ammonia treatment used for oligonucleotide deprotection and release from the solid support. The homoserine-functionalized solid support system represents a simple and universal route to 3'-conjugates of oligonucleotides and their derivatives.  相似文献   

7.
Materials used in various biological applications are often modified with proteins to regulate biomolecular and cellular adhesion. Conventional strategies of protein conjugation accompany monovalent bifunctional protein linkers, which present several limitations in molecular synthesis and protein conjugation. Herein, we present a new strategy of preparing multivalent polyaspartamide linkers in a simple top-down manner, and also demonstrate that the resulting polymer linkers allow us to readily conjugate proteins to both organic and inorganic materials. The top-down synthesis of polyaspartamide linkers was performed by partially opening succinimidyl ring moieties of polysuccinimide (PSI) with the controlled number of nucleophiles reactive to photo-cross-linked hydrogel or gold-coated inorganic materials: (1) Poly(2-hydroxyethyl-co-2-methacryloxyethyl aspartamide) (PHMAA) presenting methacrylate was used to micropattern fibronectin or collagen on a hydrogel in order to regulate cell adhesion and growth area on a micrometer scale. (2) Poly(2-hydroxyethyl-co-2-mercaptoethyl aspartamide) (PHMCA) presenting thiol functional groups was used to link fibronectin to a gold-coated silicon microelectromechanical probe designed to measure cell traction force. Overall, these multivalent polyaspartamide protein linkers will greatly assist efforts to analyze and regulate the cellular adhesion to and phenotypic activities of a wide array of substrates and devices.  相似文献   

8.
Polyethylene glycol (PEG)-peptides are under development as components of nonviral gene delivery systems. Several earlier reports have demonstrated that covalent attachment of PEG to the surface of peptide condensed DNA particles blocks non-specific biodistribution during gene targeting. In this study, we report an improved large-scale synthesis and purification of a DNA condensing PEG-peptide used for gene delivery. The new method takes advantage of low-pressure cation-exchange chromatography to isolate dimeric Cys-Trp-Lys(18). The dimeric peptide was reduced and directly conjugated with PEG-maleimide resulting in PEG-Cys-Trp-Lys(18). The PEG-peptide was purified by low-pressure chromatography affording 50 mumol (400 mg) quantities of PEG-peptide in >95% purity. The approach offers the advantage of avoiding preparative high-performance liquid chromatography (HPLC) purifications of polylysine peptides to increase yield and capacity.  相似文献   

9.
Surface modification of amine-terminated polyamidoamine (PAMAM) dendrimers by poly(ethylene glycol) (PEG) groups generally enhances water-solubility and biocompatibility for drug delivery applications. In order to provide guidelines for designing appropriate dendritic scaffolds, a series of G3 PAMAM-PEG dendrimer conjugates was synthesized by varying the number of PEG attachments and chain length (shorter PEG 550 and PEG 750 and longer PEG 2000). Each conjugate was purified by size exclusion chromatography (SEC) and the molecular weight (MW) was determined by (1)H NMR integration and matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS). NOESY experiments performed in D 2O on selected structures suggested no penetration of PEG chains to the central PAMAM domain, regardless of chain length and degree of substitution. CHO cell cultures exposed to PAMAM-PEG derivatives (< or =1 microM) showed a relatively high cell viability. Generally, increasing the degree of PEG substitution reduced cytotoxicity. Moreover, compared to G3 PAMAM dendrimers that were N-acetylated to varying degrees, a lower degree of surface substitution with PEG was needed for a similar cell viability. Interestingly, when longer PEG 2000 was fully incorporated on the surface, cell viability was reduced at higher concentrations (32 muM), suggesting increased toxicity potentially by forming intermolecular aggregates. A similar observation was made for anionic carboxylate G5.5 PAMAM dendrimer at the same dendrimer concentration. Our findings suggest that a lower degree of peripheral substitution with shorter PEG chains may suffice for these PAMAM-PEG conjugates to serve as efficient universal scaffolds for drug delivery, particularly valuable in relation to targeting or other ligand-receptor interactions.  相似文献   

10.
Poly(N,N-bisethylamine) dendrimers with high content of poly(ethylene glycol) were synthesized on 3-(Acryloyloxy)-2-hydroxypropylmethacrylate-crosslinked polystyrene (PS-AHMA) resin and tested in various conditions of solid phase peptide synthesis. The dendritic templates were generated to the second generation on cross-linker active site of 3-(Acryloyloxy)-2-hydroxypropylmethacrylate (AHMA). First generation dendrimer was designed by series of four-stage reactions, such as Schiff base incorporation, acidolytic cleavage, diazotization and thionyl chloride treatment and same synthetic routes were followed for second generation also. Poly(ethylene glycol) (PEG1000) has been grafted to second-generation dendrimer and used to check various physico-chemical parameters in Fmoc/Boc peptide synthetic conditions. The utility of PEGylated dendrimer support was demonstrated by synthesizing biologically potent linear as well as disulfide-bonded peptide by Fmoc method.  相似文献   

11.
A new approach to the liquid phase synthesis of oligonucleotide is described, it is based on oxidative coupling using alkyl H-phosphonate synthon and polyethylene glycol (PEG5000) as a soluble support. Nucleoside alkyl H-phosphonate undergoes oxidative coupling in presence of NBS. The use of polyethylene glycol as a soluble polymeric support preserves some convenient features of the solid phase synthesis with new interesting advantages. This liquid phase method appears effective in terms of speed and coupling yield and can be evaluated for the production of large amount of oligonucleotide (100 microM).  相似文献   

12.
The application of light-directed combinatorial peptide synthesis to epitope mapping is described. Photolithography and solid phase peptide synthesis were combined in an automated fashion to assemble arrays containing 1024 peptide sequences on a glass support in ten steps with the precise location of each peptide known. The simultaneous synthesis of two slides containing three arrays of peptidtes each allowed for the independent screening of both a monoclonal antibody (mAb) and its Fab fragment at two different concentrations. A binary synthesis strategy was used to assemble the arrays, resulting in all deletions and truncations possible within the FLRRQFKVVT sequence being present and available for screening. The relative binding interactions of each peptide was determined by incubating the arrays with either mAb D32.39 and goat antimouse immunoglobulin G–FITC or mAb D32.39 Fab-FITC conjugate, followed by scanning the surface for fluorescence with an epifluorescence microscope. The fragment RQFKVVT was found to bind lightly to both the mAb and Fab fragment while tethered to the surface, and was measured to have 0.49 n M affinity in solution. The frame-shifted RRQFKVV sequence was found to have lower affinity both in solution (1.3 m M) and on the surface. The fragment RQFKVV was determined to be responsible for antibody recognition and was found to bind tightly when tethered to the surface, yet exhibited no binding in solution as the free acid, suggesting the requirement of an amidated C-terminus or an additional flunking residue. A deletion analysis revealed that the novel RQFKVT sequence exhibited higher affinity than the RQFKVV sequence while tethered to the surface. © 1994 John Wiley & Sons, Inc.  相似文献   

13.
PEGylation of cholecystokinin prolongs its anorectic effect in rats   总被引:2,自引:0,他引:2  
The anorectic compound CCK-9 was coupled to polyethylene glycol 5 kDa, 10 kDa, 20 kDa and 30 kDa, under different reaction conditions. Conjugates were purified by HPLC and characterized by MALDI-TOF MS. A 96% PEGylation yield was obtained in buffer pH 7.5 after 6h reaction at 20 degrees C. The anorectic activity was tested in vivo in rats. A single bolus intra-peritoneal injection of non-modified CCK-9 resulted in a significant initial food intake reduction 30 min after food presentation (87% compared to paired control group). When PEG-CCK-9 conjugates modified with polymers of molecular weight up to 20 kDa were injected, lower but statistically significant initial food intake reductions were obtained (76% for PEG 10 kDa-CCK-9 conjugate compared to control group). The cumulative food intake reduction of non-modified CCK-9 is normalized within 1-2h, whereas the PEG-CCK-9 molecules showed a prolonged anorectic activity lasting for 6h for PEG 5 kDa-CCK-9; 23 h for PEG 10 kDa-CCK-9 and between 8h and 23 h for PEG 20 kDa-CCK-9. For PEG 30 kDa-CCK-9 conjugate, neither an initial nor a cumulative FI reduction was observed. PEG-CCK-9 conjugates show a significantly prolonged anorectic activity in comparison to the non-modified peptide. This effect is most evident for the PEG 10 kDa-CCK-9 conjugate.  相似文献   

14.
Established methodology for the preparation of peptide thioesters requires the use of t-butoxycarbonyl chemistry owing to the lability of thioester linkers to the nucleophilic reagents used in Fmoc solid phase peptide synthesis. Both the greater ease of use and the broad applicability of the method has led to the development of an Fmoc-based methodology for direct peptide thioester synthesis. It was found that successful preparation of a peptide thioester could be achieved when the non-nucleophilic base, 1,8-diazabicyclo[5.4.0]undec-7-ene, together with 1-hydroxybenzotriazole in dimethylformamide, were used as the N(alpha)-Fmoc deprotection reagent. Native chemical ligation of the resulting thioester product to an N-terminal cysteine-containing peptide was successfully performed in aqueous solution to produce a fragment peptide of human alpha-synuclein. The formation of aspartimide (cyclic imide) in a base-sensitive hexapeptide fragment of scorpion toxin II was found to be significant under the deprotection conditions used. However, this could be controlled by the judicious protection of sensitive residues using the 2-hydroxy-4-methoxybenzyl group.  相似文献   

15.
With the aim to improve the performance of enzyme bound to hydrophilic solid phases, their immobilization with polyethylene glycol (PEG) tether have been studied. Sweet potato β-amylase, which hydrolyses the high molecular weight substrate starch and β-galactosidase, which acts on low molecular weight substrates, were used as model enzymes and beaded thiol–agarose as solid phase. Several two step methods for the introduction of the tether using a bis-oxirane homobifunctional PEG as well as a heterobifunctional derivative with a hydroxysuccinimide ester and a maleimide group have been evaluated. Amino groups, native and de novo thiol groups in the enzymes were utilized for immobilization.

The best approach was found to be to first introduce the PEG derivative via one of its reactive groups to the enzyme. Subsequently the formed conjugate was bound to the solid phase by the remaining reactive group.

Attempts to first introduce the PEG tether into the solid phase were not successful.

A high degree of substitution with PEG chains on the enzyme leads to high immobilization yields for both β-amylase and β-galactosidase, but relatively lower gel-bound activity for the former enzyme which is acting on a high molecular weight substrate and thus more sensitive for steric shielding effects. With optimal degree of PEG substitution (which occurred at five times molar excess of the heterobifunctional reagent) the gel-bound activity of β-amylase was increased from 12% (for the derivative without tether) to 31%.  相似文献   


16.
Polyelectrolyte complex (PEC) micelles modified with cancer cell targeting moieties were prepared for intracellular delivery of vascular endothelial growth factor (VEGF) small interfering RNA (siRNA). A luteinizing hormone-releasing hormone (LHRH) peptide analogue was coupled as a cancer targeting ligand to the distal end of the poly(ethylene glycol) (PEG)-siRNA conjugate. The siRNA-PEG-LHRH conjugate self-assembled to form nanosized PEC micelles upon mixing with poly(ethylenimine) (PEI) via ionic interactions. The PEC micelles showed spherical morphology with a hydrodynamic diameter of ca. 150 nm. For LHRH receptor overexpressing ovarian cancer cells (A2780), the PEC micelles with LHRH exhibited enhanced cellular uptake compared to those without LHRH, resulting in increased VEGF gene silencing efficiency via receptor-mediated endocytosis. This study showed that PEC micelles decorated with specific cell-recognizable targeting ligands could be used for targeted delivery of siRNA.  相似文献   

17.
Chlorophyllide a was coupled with alpha-(3-aminopropyl)-omega-methoxypoly(oxyethylene) (PEG-NH2) to form a PEG-chlorophyllide conjugate through an acid-amide bond. The conjugate catalyzed the reduction of methylviologen in the presence of 2-mercaptoethanol. It also catalyzed the photoreduction of NADP+ or NAD+ in the presence of ascorbate as an electron donor and ferredoxin-NADP+ reductase as the coupling enzyme. Utilizing the reducing power of NADPH generated by PEG-chlorophyllide conjugate under illumination, glutamate was synthesized from 2-oxoglutarate and NH4+ in the presence of glutamate dehydrogenase. PEG-chlorophyllide conjugate was quite stable toward light illumination compared with chlorophyll a. The increase in the molecular weight of PEG in the PEG-chlorophyllide conjugates was accompanied by the enhancement of photostability of the conjugate and also by the increased solubility in the aqueous solution.  相似文献   

18.
Polymer-drug conjugates (polymer therapeutics) are finding increasing use as novel anticancer agents. Here a series of poly(ethylene glycol) PEG-doxorubicin (Dox) conjugates were synthesized using polymers of linear or branched architecture (molecular weight 5000-20000 g/mol) and with different peptidyl linkers (GFLG, GLFG, GLG, GGRR, and RGLG). The resultant conjugates had a drug loading of 2.7-8.0 wt % Dox and contained <2.0% free drug (% total drug). All conjugates containing a GFLG linker showed approximately 30% release of Dox at 5 h irrespective of PEG molecular weight or architecture. The GLFG linker was degraded more quickly (approximately 57% Dox release at 5 h), and the other linkers more slowly (<16% release at 5 h), by lysosomal enzymes in vitro. In vitro there was no clear relationship between cytotoxicity toward B16F10 cells and the observed Dox release rate. All PEG conjugates were more than 10-fold less toxic (IC50 values > 2 microg/mL) than free Dox (IC50 value = 0.24 microg/mL). Biodistribution in mice bearing sc B16F10 tumors was assessed after administration of PEGs (5000, 10000, or 20000 g/mol) radioiodinated using the Bolton and Hunter reagent or PEG-Dox conjugates by HPLC. The 125I-labeled PEGs showed a clear relationship between Mw and blood clearance and tumor accumulation. The highest Mw PEG had the longest plasma residence time and consequently the greatest tumor targeting. The PEG-Dox conjugates showed a markedly prolonged plasma clearance and greater tumor targeting compared to free Dox, but there was no clear molecular weight-dependence on biodistribution. This was consistent with the observation that the PEG-Dox conjugates formed micelles in aqueous solution comprising 2-20 PEG-Dox molecules depending on polymer Mw and architecture. Although PEG-Dox showed greater tumor targeting than free Dox, PEG conjugation led to significantly lower anthracycline levels in heart. Preliminary experiments to assess antitumor activity against sc B16F10 in vivo showed the PEG5000linear (L)-GFLG-Dox and PEG10000branched (B)-GLFG-Dox (both 5 mg/kg Dox-equiv) to be the most active with T/C values of 146 and 143%, respectively. Free Dox did not show significant activity in this model (T/C = 121%). Dose escalation of PEG5000(L)-GFLG-Dox to 10 mg/kg Dox-equiv prolonged further animal survival (T/C = 161%). Using the Dox-sensitive model ip L1210 (where Dox displayed a T/C = 150% after single ip dose), the PEG5000(L)-GFLG-Dox displayed a maximum T/C of 141% (10 mg/kg Dox-equiv) using a once a day (x3) schedule. Further studies are warranted with PEG5000(L)-GFLG-Dox to determine its spectrum of antitumor activity and also the optimum dosing schedule before clinical testing.  相似文献   

19.
The use of antibody molecules in immunoassay, molecular targeting, or detection techniques encompasses a broad variety of applications affecting nearly every field of medical science. In cancer therapy, monoclonal antibodies (mAb) have been used as vehicles to deliver radionuclides, toxins, or drugs to the target cancer cells. New conjugation methods are most needed to conjugate a wide variety of targeting small molecules and peptidomimatic compounds. Here, we exploited a keto-oxime method for conjugation of protease susceptible linkers to an antibody. This modified method involves two steps: (i) introduction of methyl ketone linkers (referred to as linker moiety) to the primary amines present in the antibody and (ii) conjugation of ketone linkers to aminoxy functional group present in the conjugated moiety (referred to as functional moiety). We have optimized this conjugation method and shown that approximately 10 functional moieties can be conjugated to antibody. Conjugation was verified by MALDI-TOF MS and Western blot analysis. The acidic pH conditions used in this method did not change the immune reactivity of the Ab. In addition, in vitro protease susceptibility assay was performed to validate this method for prodrug release assay as well as to remove excess radioimmune conjugates from circulation. This orthogonal method is compatible with peptides containing a thiol, amino, or carboxyl groups in the conjugation moiety.  相似文献   

20.
A highly flexible, mechanically and chemically stable copolymer, tri(propylene glycol) glycerolate diacrylate cross-linked polystyrene (PS-TRPGGDA), was synthesized by the suspension polymerization and employed as a solid support for peptide synthesis. The beaded polymer support containing secondary hydroxyl functional groups in the cross-linker was used as the growth site for peptide synthesis. The procedure is unique and cost-effective in that it avoids the initial functionalization steps required for most of the styrene-based polymer supports. The resin was characterized by 13C-CP-MAS NMR spectroscopy and the morphologic features of the resin were investigated using scanning electron microscopy. Swelling studies conducted on the new support revealed that the PS-TRPGGDA resin undergoes more effective swelling and solvation than PS-DVB resin in all solvents used in peptide synthesis. The efficiency of the new support was demonstrated by synthesizing a 'difficult' sequence Ala-Arg-(Ala)6-Lys and comparing it with commercially available Merrifield and Sheppard resins. The synthetic efficiency was further demonstrated by the synthesis of a 24-residue NR 2A peptide substrate of calcium/calmodulin-binding peptide. The high yield and purity of the peptide synthesized on the novel support indicates the positive role of the flexible and hydrophilic cross-linking agent in the solid support.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号