首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Mutations in the connexin 26 (Cx26) gene (GJB2) are associated with the type of autosomal recessive nonsyndromic neurosensory deafness known as "DFNB1." Studies indicate that DFNB1 (13q11-12) causes 20% of all childhood deafness and may have a carrier rate as high as 2. 8%. This study describes the analysis of 58 multiplex families each having at least two affected children diagnosed with autosomal recessive nonsyndromic deafness. Twenty of the 58 families were observed to have mutations in both alleles of Cx26. Thirty-three of 116 chromosomes contained a 30delG allele, for a frequency of .284. This mutation was observed in 2 of 192 control chromosomes, for an estimated gene frequency of .01+/-.007. The homozygous frequency of the 30delG allele is then estimated at .0001, or 1/10,000. Given that the frequency of all childhood hearing impairment is 1/1,000 and that half of that is genetic, the specific mutation 30delG is responsible for 10% of all childhood hearing loss and for 20% of all childhood hereditary hearing loss. Six novel mutations were also observed in the affected population. The deletions detected cause frameshifts that would severely disrupt the protein structure. Three novel missense mutations, Val84Met, Val95Met, and Ser113Pro, were observed. The missense mutation 101T-->C has been reported to be a dominant allele of DFNA3, a dominant nonsyndromic hearing loss. Data further supporting the finding that this mutation does not cause dominant hearing loss are presented. This allele was found in a recessive family segregating independently from the hearing-loss phenotype and in 3 of 192 control chromosomes. These results indicate that 101T-->C is not sufficient to cause hearing loss.  相似文献   

2.
3.
Severe to profound hearing impairment affects 1 of every 1000 newborn children each year. Inheritance accounts for 60% of these cases, of which 70% are nonsyndromic. The most common cause of autosomal recessive nonsyndromic hearing loss (ARNSHL) is mutation in GJB2, a gene on chromosome 13, which encodes a gap junction protein named Connexin 26. Mutations in GJB2 are responsible for 40% of genetic childhood deafness. The most common mutation, 35delG, predominates in many ethnic groups. Some families with linkage to the DFNB1 locus have none or only one mutated allele in GJB2, however, some subjects can exhibit a large deletion in another connexin gene, GJB6, resulting in a monogenic or digenic pattern of inheritance in this complex DFNB1 locus that contains both genes (GJB2 and GJB6). The aim of the study was to determine (1) the frequency for the 35delG (27.5%), del(GJB6-D13S1830) (2.5%) and del(GJB6-D13S1854) (0.0%) mutations in a cohort of 40 Venezuelan patients with ARNSHL and (2) the carrier frequency 35delG (4%), del(GJB6-D13S1830) (0%) and del(GJB6-D13S1854) (0%) in the Venezuelan population with no familial history of hearing impairment. One patient (2.5%) was detected as double heterozygote for the deletion del(GJB6-D13S1830) and 35delG mutation. This result has direct clinical implications because we include the molecular detection of the deletion del(GJB6-D13S1830) during the evaluation of the diagnosis of deafness in the Venezuelan population.  相似文献   

4.
5.
Hearing loss is the most frequent sensory disorder. It affects 3 in 1000 newborns. It is genetically heterogeneous with 60 causally-related genes identified to date. Mutations in GJB2 gene account for half of all cases of non-syndromic deafness. The aim of this study was to determine the relative frequency of GJB2 allele variants in Tunisia. In this study, we screened 138 patients with congenital hearing loss belonging to 131 families originating from different parts of Tunisia for mutations in GJB2 gene. GJB2 mutations were found in 39% of families (51/131). The most common mutation was c.35delG accounting for 35% of all cases (46/131). The second most frequent mutation was p.E47X present in 3.8% of families. Four identified mutations in our cohort have not been reported in Tunisia; p.V37I, c.235delC, p.G130A and the splice site mutation IVS1+1G>A (0.76%). These previously described mutations were detected only in families originating from Northern and not from other geographical regions in Tunisia. In conclusion we have confirmed the high frequency of c.35delG in Tunisia which represents 85.4% of all GJB2 mutant alleles. We have also extended the mutational spectrum of GJB2 gene in Tunisia and revealed a more pronounced allelic heterogeneity in the North compared to the rest of the country.  相似文献   

6.
The aim of this study was to investigate the allelic frequency of 35delG mutation in patients with recessive, nonsyndromic hearing loss (NSHL) compared to normal hearing individuals in the Croatian population. For this purpose, we analyzed 27 unrelated individuals with nonsyndromic hearing loss and 342 healthy individuals. The method we used is based on the principle of polymerase chain reaction (PCR)-mediated, site-directed mutagenesis, followed by a BsiYI digestion. Among patients with NSHL, the 35delG mutation was found on 51.85% alleles. Carrier frequency among healthy control individuals was 1 in 68.4 (1.5%). The patients, found to be wild-type, either in heterozygous or homozygous form, were further tested by direct sequencing. Among them, two different mutations were observed, W24X and 313del14. Relatively high prevalence of 35delG mutation among patients with NSHL indicate that it is an important cause of NSHL in Croatia. Early diagnosis by identification of the 35delG mutation would greatly improve genetic counseling, as well as treatment and management of deafness in Croatia.  相似文献   

7.
Mutations in the GJB2 gene are the most common cause of nonsyndromic autosomal recessive sensorineural hearing loss (HL). A few mutations in GJB2 have also been reported to cause dominant nonsyndromic HL. Here we report a large inbred family including two individuals with nonsyndromic sensorineural hearing loss. A dominant GJB2 mutation, c.551G>A (p.R184Q), was detected in the proband, yet his parents were negative for the mutation. The second affected person had heterozygous c.35delG mutation, which was inherited from his father. Large deletions of the GJB6 gene were not detected in this family. This study highlights the importance of mutation analysis in all affected cases within a pedigree.  相似文献   

8.
Mutations of GJB2 (encoding connexin 26) are the most common cause of hearing loss (HL) in different populations, and a broad spectrum of GJB2 mutations has been identified. We screened 204 consecutive patients with non-syndromic sensorineural hearing loss for GJB2 mutations. Causative GJB2mutations were identified in 31 (15.2%) patients, and two common mutations, c.35delG and L90P (c.269T>C), accounted for 72.1% and 9.8% of GJB2 disease alleles. In four additional patients (2.0%) only one recessive GJB2 mutation was identified, making genetic counselling difficult. No genotype-phenotype correlation was established. We found, however, that homozygotes for truncating mutations were more likely to have a more severe degree of HL compared with other genotypes. Moreover, we showed by co-segregation studies that L90P is a GJB2 disease allele, and that compound heterozygotes for L90P and any recessive mutation share a mild to moderate phenotype. GJB2-associated HL was linked with progressive HL or with recurrent sudden sensorineural hearing loss (SSNHL) in three of 15 cases being analysed retrospectively. We extended the phenotypic spectrum of GJB2-related disease and recommend GJB2 mutation screening also in cases of progressive HL, and recurrent SSNHL. In addition, a carrier frequency of 1/110 (0.9%) for the most common Caucasian mutation in this gene, c.35delG, was determined in 1,212 blood donors from West-Austria, supporting the prevailing hypothesis of a Mediterranean founder mutation. Based on population and patient data, an overall GJB2 mutation carrier frequency of 1.3% was estimated for West-Austria.  相似文献   

9.
KID syndrome (MIM 148210) is an ectodermal dysplasia characterized by the occurrence of localized erythematous scaly skin lesions, keratitis and severe bilateral sensorineural deafness. KID syndrome is inherited as an autosomic dominant disease, due to mutations in the gene encoding gap junction protein GJB2 (connexin 26, Cx26). Cx26 is a component of gap junction channels in the epidermis and in the stria vascularis of the cochlea. These channels play a role in the coordinated exchange of molecules and ions occurring in a wide spectrum of cellular activities. In this paper we describe two patients with Cx26 mutations cause cell death by the alteration of protein trafficking, membrane localization and probably interfering with intracellular ion concentrations. We discuss the pathogenesis of both the hearing and skin phenotypes.  相似文献   

10.
11.
High frequency hearing loss correlated with mutations in the GJB2 gene   总被引:18,自引:0,他引:18  
Genetic hearing impairment affects approximately 1/2000 live births. Mutations in one gene, GJB2, coding for connexin 26 cause 10%-20% of all genetic sensorineural hearing loss. Mutation analysis in the GJB2 gene and audiology were performed on 106 families presenting with at least one child with congenital hearing loss. The families were recruited from a hospital-based multidisciplinary clinic, which functions to investigate the aetiology of sensorineural hearing loss in children and which serves an ethnically diverse population. In 74 families (80 children), the aetiology was consistent with non-syndromic recessive hearing loss. Six different connexin 26 mutations, including one novel mutation, were identified. We show that GJB2 mutations cause a range of phenotypes from mild to profound hearing impairment and that loss of hearing in the high frequency range (4000-8000 Hz) is a characteristic feature in children with molecularly diagnosed connexin 26 hearing impairment. We also demonstrate that this type of audiology and high frequency hearing loss is found in a similar-sized group of deaf children in whom a mutation could only be found in one of the connexin 26 alleles, suggesting connexin 26 involvement in the aetiology of hearing loss in these cases. In our study of the M34T mutation, only compound heterozygotes exhibited hearing loss, suggesting autosomal recessive inheritance.  相似文献   

12.
Mutations in the gap junction β2 (GJB2) gene, encoding the connexin26 (CX26) protein, are the most common cause of non-syndromic hearing loss (HL) in many populations. In the East Asian population, two variants, p.V27I (c.79G>A) and p.E114G (c.341G>A), are considered benign polymorphisms since these variants have been identified in both HL patients and normal hearing controls. However, some studies have postulated that homozygotes carrying both p.V27I and p.E114G variants could cause HL. To elucidate possible roles of these variants, we used in vitro approaches to directly assess the pathogenicity of four haplotypes generated by the two polymorphisms: VE (wild type), I*E (p.V27I variant only), VG* (p.E114G variant only), I*G* (both variants). In biochemical coupling assays, the gap junctions (GJs) composed of VG* and I*G* types displayed defective channel activities compared with those of VE wild types or I*E types, which showed normal channel activities. Interestingly, the defect in hemichannel activity was a bit less severe in I*G* type than VG* type, suggesting that I* variant (p.V27I) may compensate for the deleterious effect of G* variant (p.E114G) in hemichannel activities. Our population studies using 412 Korean individuals showed that I*G* type was detected at around 20% in both HL patients and normal controls, suggesting that I*G* type may not be a pathogenic polymorphism. In contrast, VG* type was very rare (3/824) and detected only in HL patients, suggesting that VG* homozygotes (VG*/VG*) or compound heterozygotes carrying VG* type with other mutations may cause HL.  相似文献   

13.
The TMPRSS3 gene (DFNB8/10), which encodes a transmembrane serine protease, is a common hearing loss gene in several populations. Accurate functions of TMPRSS3 in the hearing pathway are still unknown, but TMPRSS3 has been reported to play a crucial role in inner ear development or maintenance. To date, 16 pathogenic mutations have been identified in many countries, but no mutational studies of the TMPRSS3 gene have been conducted in the Korean hearing loss population. In this study, we performed genetic analysis of TMPRSS3 in 40 unrelated Korean patients with autosomal recessive hearing loss to identify the aspect and frequency of TMPRSS3 gene mutations in the Korean population. A total of 22 variations were detected, including a novel variant (p.V291L) and a previously reported pathogenic mutation (p.A306T). The p.A306T mutation which has been detected in only compound heterozygous state in previous studies was identified in homozygous state for the first time in this study. Moreover, the clinical evaluation identified bilateral dilated vestibules in the patient with p.A306T mutation, and it suggested that p.A306T mutation of the TMPRSS3 gene might be associated with vestibular anomalies. In conclusion, this study investigated that only 2.5% of patients with autosomal recessive hearing loss were related to TMPRSS3 mutations suggesting low prevalence of TMPRSS3 gene in Korean hearing loss population. Also, it will provide the information of genotype–phenotype correlation to understand definite role of TMPRSS3 in the auditory system.  相似文献   

14.
15.
We report an analysis of 102 unrelated Polish patients with profound prelingual deafness for mutations in the GJB2 gene (OMIM #220290). Mutations were found in 41/102 (40%) subjects. Among mutated alleles, 35delG was prevalent and present in 88%. In nine alleles, different mutations were found: M34T, Q47X, R184P, and 313del14 (found in 6 patients). The results prove mutations in the GJB2 gene are responsible for much hereditary nonsyndromic deafness in Poland, with a strong prevalence of the 35delG mutation. We have also found a high carrier frequency (1/50) for the 35delG mutation in the Polish population.  相似文献   

16.
This study aimed to assess mutations in GJB2 gene (connexin 26), as well as A1555G mitochondrial mutation in both the patients with profound genetic nonsyndromic hearing loss and healthy controls. Ninety-five patients with profound hearing loss (>90 dB) and 67 healthy controls were included. All patients had genetic nonsyndromic hearing loss. Molecular analyses were performed for connexin 26 (35delG, M34T, L90P, R184P, delE120, 167delT, 235delC and IVS1+1 A-->G) mutations, and for mitochondrial A1555G mutation. Twenty-two connexin 26 mutations were found in 14.7% of the patients, which were 35delG, R184P, del120E and IVS1+1 A-->G. Mitochondrial A1555G mutation was not encountered. The most common GJB2 gene mutation was 35delG, which was followed by del120E, IVS1+1 A-->G and R184P, and 14.3% of the patients segregated with DFNB1. In consanguineous marriages, the most common mutation was 35delG. The carrier frequency for 35delG mutation was 1.4% in the controls. 35delG and del120E populations, seems the most common connexin 26 mutations that cause genetic nonsyndromic hearing loss in this country. Nonsyndromic hearing loss mostly shows DFNB1 form of segregation.  相似文献   

17.
Search for mutations in the connexin 26 gene (GJB2) is a routine molecular-genetic analysis ofthe hereditary deafness worldwide. However, till now there is no assessment of the diagnostic significance of this analysis for Russian patients, and there are difficulties in interpretation of the results of DNA diagnostics. In the present study, a sample of 705 patients with nonsyndromic autosomal recessive deafness from different regions of Russian Federation was investigated. A portion of deafness like DFNB1 caused by mutations in the GJB2 gene among the sample was 46%. The frequency of deafness of such genetic type was 1:1000, that is, the frequency of isolated autosomal recessive deafness was 1:500 in the population. It was found that each sixteenth individual in Russia is a heterozygous carrier of the mutation in the GJB2gene. Totally, 20 pathological GJB2 alleles were detected; among them, a c.35delG mutation with the allelic frequency 81% prevails. Six most frequent mutations (c.35delG, c.313_326de114, c.-23+1G>A (IVS1+1G>A), c.235delC, c.167delT, and p.Glul20del), which account for 95% of pathological GJB2 alleles, were detected. Mutations previously not described in the GJB2 gene (c.129delG, p.Gly200Arg, and c[Arg127His, Gly160Ser]) were found. An optimal algorithm of molecular investigation of Russian patients which detects up to 100% of mutations in the GJB2 gene was suggested. Data concerning a clinical significance of p.Met34Thr and p.Va137Ile mutations are confirmed in the study. Eight polymorphic substitutions in the GJB2gene which do not have clinical significance (p.Va127Ile, c.*3C>A, p.Va115311e, p.Gly160Ser, c.Arg127His, p.Glull4Gly (c.341A>G), c.-45C>A, and p.Ala149Thr) were also detected.  相似文献   

18.
Mutations in the GJB2 (connexin 26-Cx26) gene are responsible for 20-50% of cases with prelingual non-syndromic deafness in a large part of the world including Turkey. Although most of the cases with Cx26 deafness have a recessive mode of inheritance, a small group of families demonstrated dominant or pseudodominant inheritance. In this report we present a Turkish family in which the proband had congenital profound deafness and was found to be homozygous for the 35delG mutation, whereas the father and a paternal uncle who had milder, late-onset sensorineural hearing loss had compound heterozygous 35delG and L90P mutations. This family and previous reports with the L90P mutation demonstrate that the hearing loss associated with the L90P/35delG genotype is consistently milder than that of 35delG homozygotes. GJB2 gene screening should be considered in families with seemingly dominant inheritance and late-onset moderate hearing loss.  相似文献   

19.
Molecular testing for mutations in the connexin 26 gene (GJB2) is a routine diagnostic analysis for subjects with hereditary hearing loss worldwide. However, till now there is no assessment of the diagnostic significance of this analysis for Russian patients, and there are difficulties in interpretation of the results of DNA diagnostics. In the present study, a sample of 705 patients with nonsyndromic autosomal recessive hearing loss from different regions of Russian Federation was investigated. A portion of DFNB1 hearing loss caused by mutations in the GJB2 gene among the sample was 46%. The frequency of DFNB1 hearing loss was 1:1000, that is, the frequency of isolated autosomal recessive hearing loss 1:500 in the population. It was found that each sixteenth individual in Russia is a heterozygous carrier of the mutation in the GJB2 gene. Totally, 20 pathological GJB2 alleles were detected; among them, a c.35delG mutation with the allelic frequency 81% prevails. Six most frequent mutations (c.35delG, c.313_326del14, c.23+1G>A (IVS1+1G>A), c.235delC, c.167delT, and p.Glu120del), which account for 95% of pathological GJB2 alleles, were detected. Mutations previously not described in the GJB2 gene (c.129delG, p.Gly200Arg, and c[Arg127His, Gly160Ser]) were found. An optimal algorithm of molecular testing of Russian patients which detects up to 100% of mutations in the GJB2 gene was suggested. Data concerning a clinical significance of p.Met34Thr and p.Val37Ile mutations are confirmed in the study. Eight polymorphic substitutions in the GJB2 gene which do not have clinical significance (p.Val27Ile, c.*3C>A, p.Val153Ile, p.Gly160Ser, c.Arg127His, p.Glu114Gly (c.341A>G), c.-45C>A, and p.Ala149Thr) were also detected.  相似文献   

20.
Mutations in the GJB2 (Connexin 26) gene are responsible for more than half of all cases of prelingual, recessive, inherited, nonsyndromic deafness in Europe. This paper presents a mutation analysis of the GJB2 and GJB6 (Connexin 30) genes in 30 Greek Cypriot patients with sensorineural nonsyndromic hearing loss compatible with recessive inheritance. Ten of the patients (33.3%) had the 35delG mutation in the GJB2 gene. Moreover, 9 of these were homozygous for the 35delG mutation, whereas 1 patient was in the compound heterozygous state with the disease causing E47X nonsense mutation. Another patient with severe sensorineural hearing loss was heterozygous for the V153I missense mutation. Finally, no GJB6 mutations or the known del(GJB6-D13S1830) were identified in any of the investigated Greek Cypriot nonsyndromic hearing loss patients. This work confirms that the GJB2 35delG mutation is an important pathogenic mutation for hearing loss in the Greek Cypriot population. This finding will be used toward the effective diagnosis of nonsyndromic hearing loss, improve genetic counseling, and serve as a potential therapeutic platform in the future for the affected patients in Cyprus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号