首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Adaptor protein complex 4 (AP-4) plays a key role in vesicle formation, trafficking, and sorting processes that are critical for brain development and function. AP-4 consists of four subunits encoded by the AP4E1, AP4B1, AP4M1, and AP4S1 genes. A number of studies have pointed to the involvement of AP-4–mediated vesicular trafficking pathways in the etiology of cerebral palsy (CP), the most notable of which are the causative mutations that have recently been identified in each of the AP-4 genes in different CP families. We postulated, therefore, that variations in AP-4 genes might influence an indivual’s susceptibility to CP. In the present study, 16 SNPs were genotyped among 517 CP patients and 502 healthy controls from the Han Chinese population. We systematically analyzed the association of the AP4E1, AP4B1, AP4M1, and AP4S1 genes with CP on the basis of clinical characteristics. No significant associations were found between these variants and the overall risk of CP. Subgroup analysis showed that rs1217401 of AP4B1 was significantly associated with CP as a sequela of hypoxic-ischemic encephalopathy (HIE) (CP + HIE) (allele: p = 0.042151; genotype: p = 4.46 × 10?6). Our results indicate that the 16 variants studied in the genes of the four subunits of AP-4 have no detectable effects on the overall susceptibility to CP, but AP4B1 appears to be a susceptibility gene for CP + HIE in the Han Chinese population.  相似文献   

2.
The α-glucosidase II (GII) is a heterodimer of α- and β-subunits and important for N-glycosylation processing and quality control of nascent glycoproteins. Although high concentration of α-glucosidase inhibitors from mulberry leaves accumulate in silkworms (Bombyx mori) by feeding, silkworm does not show any toxic symptom against these inhibitors and N-glycosylation of recombinant proteins is not affected. We, therefore, hypothesized that silkworm GII is not sensitive to the α-glucosidase inhibitors from mulberry leaves. However, the genes for B. mori GII subunits have not yet been identified, and the protein has not been characterized. Therefore, we isolated the B. mori GII α- and β-subunit genes and the GII α-subunit gene of Spodoptera frugiperda, which does not feed on mulberry leaves. We used a baculovirus expression system to produce the recombinant GII subunits and identified their enzyme characteristics. The recombinant GII α-subunits of B. mori and S. frugiperda hydrolyzed p-nitrophenyl α-d-glucopyranoside (pNP-αGlc) but were inactive toward N-glycan. Although the B. mori GII β-subunit was not required for the hydrolysis of pNP-αGlc, a B. mori GII complex of the α- and β-subunits was required for N-glycan cleavage. As hypothesized, the B. mori GII α-subunit protein was less sensitive to α-glucosidase inhibitors than was the S. frugiperda GII α-subunit protein. Our observations suggest that the low sensitivity of GII contributes to the ability of B. mori to evade the toxic effect of α-glucosidase inhibitors from mulberry leaves.  相似文献   

3.
4.
The “Ming” lethal egg mutant (l-em) is a vitelline membrane mutant in silkworm, Bombyx mori. The eggs laid by the l-em mutant lose water, ultimately causing death within an hour. Previous studies have shown that the deletion of BmEP80 is responsible for the l-em mutation in silkworm, B. mori. In the current study, digital gene expression (DGE) was performed to investigate the difference of gene expression in ovaries between wild type and l-em mutant on the sixth day of the pupal stage to obtain a global view of gene expression profiles using the ovaries of three l-em mutants and three wild types. The results showed a total of 3,463,495 and 3,607,936 clean tags in the wild type and the l-em mutant libraries, respectively. Compared with those of wild type, 239 differentially expressed genes were detected in the l-em mutant, wherein 181 genes are up-regulated and 58 genes are down-regulated in the mutant strain. The Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis results showed that no pathway was significantly enriched and three pathways are tightly related to protein synthesis among the five leading pathways. Moreover, the expression profiles of eight important differentially expressed genes related to oogenesis changed. These results provide a comprehensive gene expression analysis of oogenesis and vitellogenesis in B. mori which facilitates understanding of both the specific molecular mechanism of the 1-em mutant and Lepidopteran oogenesis in general.  相似文献   

5.
Zhang X  Xue R  Cao G  Hu X  Wang X  Pan Z  Xie M  Yu X  Gong C 《Gene》2012,491(2):272-277
This study investigated the effects of gain of ecdysteroid UDP-glucosyltransferase (EGT) gene function mutation on the development of the silkworm, Bombyx mori. A novel piggyBac-derived plasmid containing the egt gene from B. mori nucleopolyhedrovirus (BmNPV) driven by a heat-shock protein (hsp) 23.7 promoter, with a neomycin-resistance gene (neo) controlled by the BmNPV ie-1 promoter and a green fluorescent protein gene (gfp) under the control of the B. mori actin 3 (A3) promoter was constructed. The vector was transferred into silkworm eggs by sperm-mediated gene transfer. Transgenic silkworms were produced after screening for neo and gfp genes and gene transfer was verified by polymerase chain reaction, dot-blot hybridization and western blotting. The hatching rate of G1 generation silkworm eggs was about 60% lower than that of normal silkworm eggs. The duration of the G1 generation larval period was extended, and the G2 generation pupal stage lasted four days longer than that in non-transgenic silkworms. The ecdysone blood level in G2 silkworms in the third instar molting stage was reduced by up to 90%. These results show that EGT suppressed transgenic silkworm molting, and that egt expression in egt-transgenic silkworms resulted in arrest of metamorphosis from pupae to moths.  相似文献   

6.
7.
8.
Adaptor protein (AP) complexes are key factors for the spatial and temporal regulation of intracellular trafficking events. Four complexes (AP-1, -2, -3, -4) are known, among which AP-4 is only poorly characterized. Recent work suggests a role for AP-4 in the intracellular trafficking of the β-amyloid precursor protein and molecular genetics showed that the loss of functional AP-4 is associated with congenital neuronal disorders of severe cognitive dysfunction. To unravel the molecular mechanisms controlling AP-4 functions, we established the intracellular expression of recombinant AP-4 complex. This approach combined with the analysis of mutant complexes allowed us to discover that the epsilon adaptin hinge-ear region has a function in membrane recruitment of AP-4. We further show that this process is phosphorylation dependent and involves PP2A-like protein phosphatases and a staurosporine-sensitive kinase. Deletion of the residues 839-871 in the carboxy-terminal region of the hinge of epsilon adaptin abrogated the membrane/cytosol recycling of AP-4. As targets of phosphorylation, we identified three serine residues: S847, S868 and S871. We conclude that the terminal hinge region and the appendage of the AP-4 epsilon subunit are involved in membrane association in a process that is controlled by phosphorylation and dephosphorylation events.  相似文献   

9.
The adaptor protein-2 (AP-2) complex is a heterotetramer involved in clathrin-mediated endocytosis of cargo proteins from the plasma membrane in animal cells. The homologous genes of AP-2 subunits are present in the genomes of plants; however, their identities and roles in endocytic pathways are not clearly defined in plants. Here, we reveal the molecular composition of the AP-2 complex of Arabidopsis thaliana and its dynamics on the plasma membrane. We identified all of the α-, β-, σ-, and μ-subunits of the AP-2 complex and detected a weak interaction of the AP-2 complex with clathrin heavy chain. The μ-subunit protein fused to green fluorescent protein (AP2M-GFP) was localized to the plasma membrane and to the cytoplasm. Live-cell imaging using a variable-angle epifluorescence microscope revealed that AP2M-GFP transiently forms punctate structures on the plasma membrane. Homozygous ap2m mutant plants exhibited abnormal floral structures, including reduced stamen elongation and delayed anther dehiscence, which led to a failure of pollination and a subsequent reduction of fertility. Our study provides a molecular basis for understanding AP-2–dependent endocytic pathways in plants and their roles in floral organ development and plant reproduction.  相似文献   

10.
11.
The ENF peptide family, so termed after the consensus sequence in their amino termini (Glu-Asn-Phe-), is assumed to play multiple important roles in defense reactions, growth regulation, and homeostasis of Lepidopteran insects. The paralytic peptide of Bombyx mori (BmPP) is one such peptide that is involved in the paralytic and plasmatocyte-spreading activities in the hemocyte immune reaction. The growth-blocking peptide of Pseudaletia separata (PsGBP), which is also a member of the ENF peptide family, has similar functions that can reportedly be attenuated by the growth-blocking peptide-binding protein (GBP-BP). Using the fluorescent differential display (FDD) technique, the differential expression pattern of genes in highly susceptible silkworm strain 306 were analyzed, following infection with B. mori nuclear polyhedrosis virus (BmNPV), and a differential band (G12782) was obtained from the hemolymph RNA pools. Using 5′-RACE with a specially designed primer based on the FDD study, a 1 401 bp cDNA clone was obtained containing a 1 311 bp open reading frame (ORF, GenBank accession number DQ306881). The deduced protein was highly homologous in primary structure to GBP-BP and was termed B. mori paralytic peptide-binding protein (PP-BP). The B. mori PP-BP gene is organized into two exons and only one intron, using bioinformatics searches.Using RT-PCR analysis, it was found that the B. mori PP-BP gene was expressed almost exclusively in the hemolymph. Real-time quantitative PCR analysis indicated that the B. mori PP-BP mRNA level in B. mori strain 306 exposed to BmNPV was much higher than that in B. mori strain without the virus infection. This result implies that the B. mori PP-BP is related to the cellular immune response after BmNPV invades the hemolymph.  相似文献   

12.
The adaptor protein (AP) complexes AP-1, AP-2, and AP-3 mediate coated vesicle formation and sorting of integral membrane proteins in the endocytic and late exocytic pathways in mammalian cells. A search of the Drosophila melanogaster expressed sequence tag (EST) database identified orthologs of family members mammalian medium (μ) chain families μ1, μ2, and μ3, of the corresponding AP complexes, and δ-COP, the analogous component of the coatomer (COPI) complex. The Drosophila orthologs exhibit a high degree of sequence identity to mammalian medium chain and δ-COP proteins. Northern analysis demonstrated that medium chain and δ-COP mRNAs are expressed uniformly throughout fly development. Medium chain and δ-COP genes were cytologically mapped and the μ3 gene was found to localize to a region containing the pigmentation locus carmine (cm). Analysis of genomic DNA of the cm 1 mutant allele indicated the presence of a large insertion in the coding region of the μ3 gene and Northern analysis revealed no detectable μ3 mRNA. Light microscopy of the cm 1 mutant showed a reduction in primary, secondary, and tertiary pigment granules in the adult eye. These findings provide evidence of a role for μ3 in the sorting processes required for pigment granule biogenesis in Drosophila.  相似文献   

13.
14.
15.
Soluble N-ethylmaleimide-sensitive-factor Attachment protein Receptors (SNAREs) participate in the specificity of membrane fusions in the cell. The mechanisms of specific SNARE sorting are still however poorly documented. We investigated the possible role of Adaptor Protein (AP) complexes in sorting of the Dictyostelium discoideum v-SNARE VAMP7. In live cells, GFP-VAMP7 is observed in the membrane of endocytic compartments. It is also observed in the plasma membrane of a small proportion of the cells. Mutation of a potential dileucine motif dramatically increases the proportion of cells with GFP-VAMP7 in their plasma membrane, strongly supporting the participation of an AP complex in VAMP7 sorting to the endocytic pathway. A partial increase occurs in knockout cells for the medium subunits of AP-2 and AP-3 complexes, indicating a role for both AP-2 and AP-3. VAMP7, as well as its t-SNAREs partners syntaxin 8 and Vti1, are co-immunoprecipitated with each of the medium subunits of the AP-1, AP-2, AP-3 and AP-4 complexes. This result supports the conclusion that VAMP7 directly interacts with both AP-2 and AP-3. It also raises the hypothesis of an interaction with AP-1 and AP-4. GFP-VAMP7 is retrieved from the endocytic pathway at and/or before the late post-lysosomal stage through an AP-independent mechanism.  相似文献   

16.
17.
18.
AP-1 and AP-2 adaptor protein (AP) complexes mediate clathrin-dependent trafficking at the trans-Golgi network (TGN) and the plasma membrane, respectively. Whereas AP-1 is required for trafficking to plasma membrane and vacuoles, AP-2 mediates endocytosis. These AP complexes consist of four subunits (adaptins): two large subunits (β1 and γ for AP-1 and β2 and α for AP-2), a medium subunit μ, and a small subunit σ. In general, adaptins are unique to each AP complex, with the exception of β subunits that are shared by AP-1 and AP-2 in some invertebrates. Here, we show that the two putative Arabidopsis thaliana AP1/2β adaptins co-assemble with both AP-1 and AP-2 subunits and regulate exocytosis and endocytosis in root cells, consistent with their dual localization at the TGN and plasma membrane. Deletion of both β adaptins is lethal in plants. We identified a critical role of β adaptins in pollen wall formation and reproduction, involving the regulation of membrane trafficking in the tapetum and pollen germination. In tapetal cells, β adaptins localize almost exclusively to the TGN and mediate exocytosis of the plasma membrane transporters such as ATP-binding cassette (ABC)G9 and ABCG16. This study highlights the essential role of AP1/2β adaptins in plants and their specialized roles in specific cell types.

Arabidopsis AP1/2β adaptins are shared by the AP-1 and AP-2 complexes and required for pollen development by mediating the trafficking of ABCG transporters in tapetal cells.

IN A NUTSHELL Background: Adaptor protein (AP) complexes are critical for the recruitment of cargo proteins during vesicle trafficking. AP-1 and AP-2 mediate clathrin-dependent trafficking at the trans-Golgi network (TGN) and the plasma membrane, respectively. Whereas AP-1 regulates trafficking to the plasma membrane (exocytosis) and vacuole, AP-2 mediates endocytosis. These AP complexes consist of four subunits (adaptins): two large subunits (β1 and γ for AP-1, β2, and α for AP-2), a medium subunit μ, and a small subunit σ. The general roles of some AP-1 and AP-2 adaptins in vegetative and reproductive development have been characterized in plants. However, the function of the large β subunits and whether they are shared by the two AP-1 and AP-2 complexes in plants is currently unknown. Questions: Are β adaptins shared by AP-1 and AP-2 complexes in Arabidopsis thaliana? What function do they play in plant development? Findings: We found that the two putative Arabidopsis AP1/2β adaptins co-assemble with both AP-1 and AP-2 subunits and regulate exocytosis and endocytosis in root cells, consistent with their dual localization to the TGN and the plasma membrane. However, in tapetal cells of developing anthers, AP1/2β adaptins localize almost exclusively to TGN. Mutations in AP1/2β adaptins result in collapsed pollen grains with abnormal walls and reduced pollen germination due to impaired exocytosis of the tapetum-specific plasma membrane transporters ABCG9 and ABCG16, highlighting the essential role of AP1/2β adaptins in plants and their specialized roles in specific cell types. Next steps: We will investigate the mechanism by which AP1/2β adaptins recognize cargo proteins and their role in female gametophyte and embryonic development.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号