首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Cold acclimation is necessary for chrysanthemum to achieve its genetically determined maximum freezing tolerance, but the underlying physiological and molecular mechanisms are unclear. The aim of this study was to discover whether changes in antioxidative enzymes, proline metabolism and frost-related gene expression induced by cold acclimation are related to freezing tolerance. Our results showed that the semi-lethal temperature (LT50) decreased from ?7.3 to ?23.5 °C in Chrysanthemum dichrum and ?2.1 to ?7.1 °C in Chrysanthemum makinoi, respectively, after cold acclimation for 21 days. The activities of SOD, CAT and APX showed a rapid and transient increase in the two chrysanthemum species after 1 day of cold acclimation, followed by a gradual increase during the subsequent days and then stabilization. qRT-PCR analysis showed that the expression levels of some isozyme genes (Mn SOD, CAT and APX) were upregulated, which was consistent with the SOD, CAT and APX activities, while others remained relatively constant (Fe SOD and Cu/Zn SOD). P5CS and PDH expression were increased under cold acclimation and the level of P5CS presented similar trends as proline content, indicating proline accumulation was via P5CS and PDH cooperation. Cold acclimation also promoted DREB, COR413 and CSD gene expression. The activities of three enzymes and gene expression were higher in C. dichrum than in C. makinoi after cold acclimation. Our data suggested that cold-inducible freezing-tolerance could be attributed to higher activity of antioxidant enzymes, and increased proline content and frost-related gene expression during different periods.  相似文献   

3.
4.
The psychrophilic yeast Glaciozyma antarctica demonstrated high antifreeze activity in its culture filtrate. The culture filtrate exhibited both thermal hysteresis (TH) and ice recrystallization inhibition (RI) properties. The TH of 0.1 °C was comparable to that previously reported for bacteria and fungi. A genome sequence survey of the G. antarctica genome identified a novel antifreeze protein gene. The cDNA encoded a 177 amino acid protein with 30 % similarity to a fungal antifreeze protein from Typhula ishikariensis. The expression levels of AFP1 were quantified via real time-quantitative polymerase chain reaction (RT-qPCR), and the highest expression levels were detected within 6 h of growth at ?12 °C. The cDNA of the antifreeze protein was cloned into an Escherichia coli expression system. Expression of recombinant Afp1 in E. coli resulted in the formation of inclusion bodies that were subsequently denatured by treatment with urea and allowed to refold in vitro. Activity assays of the recombinant Afp1 confirmed the antifreeze protein properties with a high TH value of 0.08 °C.  相似文献   

5.
6.
Bermudagrass cultivars vary greatly in their ability to survive freezing temperatures as a result of a differential ability to cold acclimate (CA) at temperatures slightly above 0°C. Little information exists on the genetic and physiological mechanisms associated with the cold acclimation process in bermudagrass. Experiments were conducted to study the changes in chitinase gene expression during cold acclimation of freeze-tolerant bermudagrass cultivars. A chitinase gene (CynCHT1) was isolated from ’Midiron’ bermudagrass. Because the hydrophilic protein putatively encoded by the gene lacked an N-terminal cysteine-rich domain and a hydrophobic C-terminal extension, it was classified a class II chitinase. The expression patterns of this and related chitinase genes in response to CA, drought, and ABA were investigated in freeze-tolerant ’MSU’ (LT50=?11°C), Midiron (LT50=?10°C) and ’Uganda’ (LT50=?8°C) bermudagrasses. Northern-blot analysis indicated expression in the crown tissues induced by CA at 8°C/2°C day/night temperature cycles. Induction of gene expression was evident in tissues sampled at 2 and 28 days after initiating CA. Expression after 2-days de-acclimation at 28°C/24°C was similar to control levels. Significantly higher levels of CA-induced chitinase gene expression were observed in MSU and Midiron, compared to Uganda. Similar expression patterns were observed among the cultivars in responses to drought and ABA. These results suggest that chitinases have important roles in bermudagrass response to low temperature and dehydration stresses.  相似文献   

7.
Anaerobic conditions in soil commonly occur even in upland environments. Physiological and biogeochemical properties of individual anaerobic bacteria, however, have been poorly understood due to difficulties in culture. This study aimed to isolate anaerobic bacteria in the Arctic tundra soil and to identify their physiological characteristics. Anaerobic culture and 16S rRNA gene sequence-based phylogenetic analysis showed that total 33 bacterial strains were affiliated with 15 species from the following 8 genera: Bacillus, Carnobacterium, Clostridium, Paenibacillus, and Trichococcus (Firmicutes), Pseudomonas and Rahnella (Gamma-proteobacteria), and Cellulomonas (Actinobacteria). All isolates were identified as facultatively anaerobic bacteria; this finding might be partially attributed to the characteristics of sampling sites, which temporarily developed anaerobic conditions because of the presence of stagnant melting snow. Six of the 33 bacterial strains were revived subsequently from glycerol stocks held ?80 °C, and these were used for the physiological study: four isolates from Firmicutes, one isolate from Gamma-proteobacteria, and one isolate from Actinobacteria. Five isolates except KOPRI 80146 (Bacillus sp.) could grow at either 4 or 10 °C within a week. All six isolates showed cellulase or protease activities at 10 or 15 °C. Endospores were observed from four isolates belonging to Firmicutes. These physiological characteristics may contribute to the survival of these organisms at low temperatures and to their involvement in biogeochemical cycles in the tundra soil. These isolates may be used for further detailed studies for identifying their cold adaptation mechanisms and ecological roles in the Arctic.  相似文献   

8.
In temperate-zone mountains, summer frosts usually occur during unpredictable cold spells with snow-falls. Earlier studies have shown that vegetative aboveground organs of most high-mountain plants tolerate extracellular ice in the active state. However, little is known about the impact of frost on reproductive development and reproductive success. In common plant species from the European Alps (Cerastium uniflorum, Loiseleuria procumbens, Ranunculus glacialis, Rhododendron ferrugineum, Saxifraga bryoides, S. moschata, S. caesia), differing in growth form, altitudinal distribution and phenology, frost resistance of reproductive and vegetative shoots was assessed in different reproductive stages. Intact plants were exposed to simulated night frosts between ?2 and ?14 °C in temperature-controlled freezers. Nucleation temperatures, freezing damage and subsequent reproductive success (fruit and seed set, seed germination) were determined. During all reproductive stages, reproductive shoots were significantly less frost resistant than vegetative shoots (mean difference for LT50 ?4.2 ± 2.7 K). In most species, reproductive shoots were ice tolerant before bolting and during fruiting (mean LT50 ?7 and ?5.7 °C), but were ice sensitive during bolting and anthesis (mean LT50 around ?4 °C). Only R. glacialis remained ice tolerant during all reproductive stages. Frost injury in reproductive shoots usually led to full fruit loss. Reproductive success of frost-treated but undamaged shoots did not differ significantly from control values. Assessing the frost damage risk on the basis of summer frost frequency and frost resistance shows that, in the alpine zone, low-statured species are rarely endangered as long as they are protected by snow. The situation is different in the subnival and nival zone, where frost-sensitive reproductive shoots may become frost damaged even when covered by snow. Unprotected individuals are at high risk of suffering from frost damage, particularly at higher elevations. It appears that ice tolerance in reproductive structures is an advantage but not an absolute precondition for colonizing high altitudes with frequent frost events.  相似文献   

9.
10.
The cold shock protein family consists of the transfer of the foodborne pathogen Listeria monocytogenes from 37 to 4 and ?20?°C and was characterized by the sharp induction of a low molecular mass protein. This major cold shock protein ferritin-like protein (Flp) has an important role in regulation of various microbial physiological processes. Flp have a molecular mass of about 18?kDa, as observed on SDS?CPAGE. The purification procedure including ammonium sulfate fractionation was used. Monospecific polyclonal antibodies raised in rabbits against the purified new Flp immunostained a single 18-kDa Flp band in extracts from different cytoplasmic proteins blotted onto nitrocellulose. A 411-bp cDNA fragment that corresponds to an internal region of an flp gene was obtained by RT-PCR. Our result indicated a surexpression of major cold shock protein and an important increase in flp mRNA amount after a downshift temperature especially at ?20?°C.  相似文献   

11.
Glycogen serves as a metabolic reserve and is involved in macromolecular synthesis. Glycogen phosphorylase (GPase) is a key enzyme involved in intracellular glycogen catabolism, catalyzing the first step in glycogen degradation. In the diapause, GPase catalyzes glycogen into the closely related molecule, sorbitol. In this study, the full-length cDNA of the GPase gene (2,790 bp) was isolated from Artemia sinica for the first time by rapid amplification of cDNA ends technology. The GPase gene encoded a protein of 853 amino acids belonging to the Glycosyltransferase GTB type superfamily. The expression pattern and location of GPase were investigated at various stages during the embryonic development of A. sinica using real-time PCR and in situ hybridization. High GPase expression was detected at the 0 and 5 h stages. Subsequently, expression declined and was maintained at a low level during the stages from 10 to 40 h following by a small increase at day 3. Expression was downregulated at temperatures ranging from 25 to 20 °C and was subsequently upregulated in the range 15–5 °C. In situ hybridization assays showed wide distribution of the GPase gene during different developmental stages. From the results of this study, we conclude that the GPase gene expression is stress-related and might play an important role in Artemia development and metabolism.  相似文献   

12.
13.
14.
Anaerobic ammonium-oxidizing (anammox) process plays an important role in the nitrogen cycle of the worldwide anoxic and mesophilic habitats. Recently, the existence and activity of anammox bacteria have been detected in some thermophilic environments, but their existence in the geothermal subterranean oil reservoirs is still not reported. This study investigated the abundance, distribution and functional diversity of anammox bacteria in nine out of 17 high-temperature oil reservoirs by molecular ecology analysis. High concentration (5.31–39.2 mg l?1) of ammonium was detected in the production water from these oilfields with temperatures between 55°C and 75°C. Both 16S rRNA and hzo molecular biomarkers indicated the occurrence of anammox bacteria in nine out of 17 samples. Most of 16S rRNA gene phylotypes are closely related to the known anammox bacterial genera Candidatus Brocadia, Candidatus Kuenenia, Candidatus Scalindua, and Candidatus Jettenia, while hzo gene phylotypes are closely related to the genera Candidatus Anammoxoglobus, Candidatus Kuenenia, Candidatus Scalindua, and Candidatus Jettenia. The total bacterial and anammox bacterial densities were 6.4?±?0.5?×?103 to 2.0?±?0.18?×?106 cells ml?1 and 6.6?±?0.51?×?102 to 4.9?±?0.36?×?104 cell ml?1, respectively. The cluster I of 16S rRNA gene sequences showed distant identity (<92%) to the known Candidatus Scalindua species, inferring this cluster of anammox bacteria to be a new species, and a tentative name Candidatus “Scalindua sinooilfield” was proposed. The results extended the existence of anammox bacteria to the high-temperature oil reservoirs.  相似文献   

15.
16.
17.
In order to elucidate the role of Cyp19a in sex differentiation of Schizothorax kozlovi, the full length cDNA of Cyp19a was cloned from the mature ovary of S. kozlovi by using rapid amplification of cDNA ends method, and then its relative mRNA expression levels among tissues and temperature groups were determined by using quantitative real-time PCR. The complete Cyp19a cDNA of 1795 bp of S. kozlovi was obtained, which encoded 517 amino acids and belonged to gonadal aromatase. Its deduced amino acid sequence had the above 70 % identity compared with gonadal aromatase genes of teleost fishes, but only 62–67 % when compared with brain aromatase genes of fishes. It was expressed only in heart and gonad, but no expression in other tissues, presenting relatively high tissue specificity. It also exhibited sex-specific expression pattern in gonads, but no sex differences in heart. Comparing with the Cyp19a expression levels at 12 days post hatching (dph), significant temperature effects were revealed in low temperature group (10 °C) at 18 dph, and in high temperature group (26 °C) at 40 dph. It suggested that gonadal aromatase Cyp19a gene may play important roles on the feminization or masculinization of S. kozlovi affected by temperature during the early developmental stage.  相似文献   

18.
19.
Salmonella enteritidis is a major foodborne microbial pathogen that can grow and survive at low temperatures for a considerable period of time. Increased survival was evidenced from a frozen S. enteritidis culture when treated at 10°C prior to freezing. Western blot analysis with Escherichia coli CspA antibody and analysis of radiolabeled proteins from S. enteritidis cultures after cold shock at 10°C and 5°C showed increased expression of a 7.4-kDa major cold shock protein, CS7.4, similar in size to that reported for E. coli. Cloning followed by nucleotide sequence analysis of the cspA gene from S. enteritidis showed a 100% nucleotide sequence identity in the promoter elements (−35 and −10) and the amino acid sequence encoded by the open reading frame (ORF) with the E. coli cspA gene. However, the differences in the nucleotide sequences between E. coli and S. enteritidis cspA genes in the putative repressor protein binding domain, the fragment 7, and in various segments throughout the upstream 0.642-kbp DNA may contribute to the expression of CS7.4 at less stringent temperatures in S. enteritidis. As in E. coli, the actual role of CS7.4 in protecting S. enteritidis from the damaging effects of cold or freezing temperatures is not yet understood. Received: 14 March 1997 / Accepted: 10 July 1997  相似文献   

20.
Low temperature is one of the major environmental challenges that Antarctic bacteria must face. Detailed studies of cold shock responses of cold-adapted microorganisms are still insufficient. Here, we cloned three cold shock protein (CSP) genes (Csp1137, Csp2039, and Csp2531) in the Antarctic bacterium Psychrobacter sp. G and their regulatory sequences were identified. The three CSPs were highly conserved with other known CspAs. qRT-PCR was performed to evaluate their expression characteristics under stress conditions, and the potential influence of regulatory sequences also was analyzed. The expression of Csp1137 was enhanced both by low (0, 10?°C) and high temperature (30?°C). The expression of Csp2039 was enhanced by low temperature (0?°C), but was lower than that of Csp1137. This can be explained by the absence in Csp2039 of the AT-rich UP element. Different from Csp1137, the expression of Csp2531 was inhibited by low temperature (0?°C), even with the presence of AT-rich UP element, and it was not sensitive to high temperature (30?°C). The expression of Csp1137 was enhanced by high salinity (90, 120), whereas that of Csp2531was enhanced by low salinity (0, 15). At 0?°C and a salinity of 15, the expression of Csp1137 was repressed initially, but then it increased greatly during the next 10?h. The expressions of Csp2039 and Csp2531 were repressed significantly under four different combinations of stress conditions. Our results showed that the role of the upstream regulation sequences were much more complex than previously thought. Also, gene expressions were also affected by the environmental salinity. These are helpful in further clarification of the adaptation mechanism of Psychrobacter sp. G.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号