首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The protection of telomeres 1 (Pot1) proteins specifically recognize the single-stranded 3' end of the telomere, an activity essential for sustained cellular viability and proliferation. The current model for the telomeric single-stranded DNA (ssDNA) binding activity of Schizosaccharomyces pombe Pot1 is based on a 20 kDa fragment, Pot1pN. Recent biochemical studies suggest that SpPot1 contains a larger ssDNA-binding domain and we have identified a novel ssDNA-binding domain similar in size to the human Pot1 domain. This domain, Pot1(1-389), binds extremely tightly to an oligonucleotide consisting of two conserved hexameric S. pombe telomere repeats, d(GGTTACGGTTAC), with an affinity approximately 4000-fold tighter than Pot1pN binds its cognate ssDNA. The Pot1(1-389)/ssDNA complex exhibits a half-life of 53 min, consistent with that estimated for full-length SpPot1 and significantly longer than that of Pot1pN. Single nucleotide substitutions reveal that, in contrast to Pot1pN, tandem trinucleotide repeats (GTT) within d(GGTTACGGTTAC) are specifically recognized by Pot1(1-389). Interestingly, certain single nucleotide substitutions that impacted Pot1pN binding exhibited no effect on binding affinity by Pot1(1-389). However, these substitutions reduced binding affinity when simultaneously substituted in each hexameric repeat. The non-additive nature of these substitutions suggests that certain nucleotides are coupled through the ability of the flexible ssDNA oligonucleotide to adopt alternate, thermodynamically equivalent conformations. The biochemical behavior of Pot1(1-389) is more similar to that of the full-length SpPot1 protein than to that of Pot1pN, making Pot1(1-389) a valuable domain for the future study of how full-length SpPot1 interacts with telomeric ssDNA.  相似文献   

2.
The Pot1 (protection of telomeres) protein binds to single-stranded telomeric DNA and is essential for the protection of chromosome ends from degradation and end-to-end fusions. The Pot1 amino-terminal DNA binding domain, Pot1N, adopts an oligonucleotide/oligosaccharide binding fold and binds GGTTAC motifs cooperatively and with exceptionally high sequence specificity. We have now examined DNA binding to naturally occurring telomeric substrates based on the analysis of 100 cloned chromosome ends and in the context of the full-length Pot1 protein. Here, we describe several important differences between Pot1 and Pot1N with apparent consequences for chromosome end protection. Specifically, full-length Pot1.DNA complexes are more stable, and the minimal binding site for a Pot1 monomer is extended into two adjacent telomeric repeats. We provide evidence that Pot1 contains a second DNA binding motif that recognizes DNA with reduced sequence specificity compared with the domain present in Pot1N. The two DNA binding motifs cooperate, whereby the amino-terminal oligonucleotide/oligosaccharide binding fold determines the registry of binding, and the internal DNA binding motif stabilizes the complex and expands the protected region toward the 3' -end. Consistent with a role in chromosome end capping, Pot1 prevents access of telomerase to the 3'-end and protects against exonucleolytic degradation.  相似文献   

3.
Lei M  Baumann P  Cech TR 《Biochemistry》2002,41(49):14560-14568
The fission yeast Pot1 (protection of telomeres) protein is a single-stranded telomeric DNA-binding protein and is required to protect the ends of chromosomes. Its N-terminal DNA-binding domain, Pot1pN, shows sequence similarity to the first OB fold of the telomere-binding protein alpha subunit of Oxytricha nova. The minimal-length telomeric ssDNA required to bind Pot1pN was determined to consist of six nucleotides, GGTTAC, by gel filtration chromatography and filter-binding assay (K(D) = 83 nM). Pot1pN is a monomer, and each monomer binds one hexanucleotide. Experiments with nucleotide substitutions demonstrated that the central four nucleotides are crucial for binding. The dependence of Pot1pN-ssDNA binding on salt concentration was consistent with a single ionic contact between the protein and the ssDNA phosphate backbone, such that at physiological salt condition 83% of the free energy of binding is nonelectrostatic. Subsequent binding experiments with longer ssDNAs indicated that Pot1pN binds to telomeric ssDNA with 3' end preference and in a highly cooperative manner that mainly results from DNA-induced protein-protein interactions. Together, the binding properties of Pot1pN suggest that the protein anchors itself at the very 3' end of a chromosome and then fills in very efficiently, coating the entire single-stranded overhang of the telomere.  相似文献   

4.
Croy JE  Fast JL  Grimm NE  Wuttke DS 《Biochemistry》2008,47(15):4345-4358
Linear chromosomes terminate in specialized nucleoprotein structures called telomeres, which are required for genomic stability and cellular proliferation. Telomeres end in an unusual 3' single-strand overhang that requires a special capping mechanism to prevent inappropriate recognition by the DNA damage machinery. In Schizosaccharomyces pombe, this protective function is mediated by the Pot1 protein, which binds specifically and with high affinity to telomeric ssDNA. We have characterized the thermodynamics and accommodation of both cognate and noncognate telomeric single-stranded DNA (ssDNA) sequences by Pot1pN, an autonomous ssDNA-binding domain (residues 1-187) found in full-length S. pombe Pot1. Direct calorimetric measurements of cognate telomeric ssDNA binding to Pot1pN show favorable enthalpy, unfavorable entropy, and a negative heat-capacity change. Thermodynamic analysis of the binding of noncognate telomeric ssDNA to Pot1pN resulted in unexpected changes in free energy, enthalpy, and entropy. Chemical-shift perturbation and structural analysis of these bound noncognate sequences show that these thermodynamic changes result from the structural rearrangement of both Pot1pN and the bound oligonucleotide. These data suggest that the ssDNA-binding interface is highly dynamic and, in addition to the conformation observed in the crystal structure of the Pot1pN/d(GGTTAC) complex, capable of adopting alternative thermodynamically equivalent conformations.  相似文献   

5.
Telomeric DNA can form duplex regions or single-stranded loops that bind multiple proteins, preventing it from being processed as a DNA repair intermediate. The bases within these regions are susceptible to damage; however, mechanisms for the repair of telomere damage are as yet poorly understood. We have examined the effect of three thymine (T) analogs including uracil (U), 5-fluorouracil (5FU) and 5-hydroxymethyluracil (5hmU) on DNA–protein interactions and DNA repair within the GGTTAC telomeric sequence. The replacement of T with U or 5FU interferes with Pot1 (Pot1pN protein of Schizosaccharomyces pombe) binding. Surprisingly, 5hmU substitution only modestly diminishes Pot1 binding suggesting that hydrophobicity of the T-methyl group likely plays a minor role in protein binding. In the GGTTAC sequence, all three analogs can be cleaved by DNA glycosylases; however, glycosylase activity is blocked if Pot1 binds. An abasic site at the G or T positions is cleaved by the endonuclease APE1 when in a duplex but not when single-stranded. Abasic site formation thermally destabilizes the duplex that could push a damaged DNA segment into a single-stranded loop. The inability to enzymatically cleave abasic sites in single-stranded telomere regions would block completion of the base excision repair cycle potentially causing telomere attrition.  相似文献   

6.
Eukaryotic chromosome ends are protected from illicit DNA joining by protein-DNA complexes called telomeres. In most studied organisms, telomeric DNA is composed of multiple short G-rich repeats that end in a single-stranded tail that is protected by the protein POT1. Mammalian POT1 binds two telomeric repeats as a monomer in a sequence-specific manner, and discriminates against RNA of telomeric sequence. While addressing the RNA discrimination properties of SpPot1, the POT1 homolog in Schizosaccharomyces pombe, we found an unanticipated ssDNA-binding mode in which two SpPot1 molecules bind an oligonucleotide containing two telomeric repeats. DNA binding seems to be achieved via binding of the most N-terminal OB domain of each monomer to each telomeric repeat. The SpPot1 dimer may have evolved to accommodate the heterogeneous spacers that occur between S. pombe telomeric repeats, and it also has implications for telomere architecture. We further show that the S. pombe telomeric protein Tpz1, like its mammalian homolog TPP1, increases the affinity of Pot1 for telomeric single-stranded DNA and enhances the discrimination of Pot1 against RNA.  相似文献   

7.
Speck C  Messer W 《The EMBO journal》2001,20(6):1469-1476
The initiator protein DnaA of Escherichia coli binds to a 9mer consensus sequence, the DnaA box (5'-TT(A/T)TNCACA). If complexed with ATP it adopts a new binding specificity for a 6mer consensus sequence, the ATP-DnaA box (5'-AGatct). Using DNase footprinting and surface plasmon resonance we show that binding to ATP-DnaA boxes in the AT-rich region of oriC of E.coli requires binding to the 9mer DnaA box R1. Cooperative binding of ATP-DnaA to the AT-rich region results in its unwinding. ATP-DnaA subsequently binds to the single-stranded region, thereby stabilizing it. This demonstrates an additional binding specificity of DnaA protein to single-stranded ATP-DnaA boxes. Binding affinities, as judged by the DnaA concentrations required for site protection in footprinting, were approximately 1 nM for DnaA box R1, 400 nM for double-stranded ATP-DnaA boxes and 40 nM for single-stranded ATP-DnaA boxes, respectively. We propose that sequential recognition of high- and low-affinity sites, and binding to single-stranded origin DNA may be general properties of initiator proteins in initiation complexes.  相似文献   

8.
To understand the range of possible and probable A1 functions in pre-mRNA biogenesis, it is important that we quantify the relative ability (or inability) of A1 to bind high affinity RNA target sequences and/or structures. Using a fluorescence competition assay we have determined apparent binding affinities for a wide range of 20mer oligos containing putative and possible A1 targets including the high affinity 'winner' sequence identified by selection/amplification [Burd,C.G and Dreyfuss,G. (1994) EMBO J. 13, 1197-1204], AUUUA sequences found in 3'-UTRs of labile mRNAs, 5'- and 3'-splice sites and telomeric sequences. With the exception of a 20mer 'winner' sequence, all other 20mers examined bind A1 with a narrow, approximately 10-fold range of affinities extending from 3.2 x 10(6) to 4.2 x 10(7) M(-1). Studies with homo-oligomers suggest this range reflects nucleotide base rather than sequence specificity and hence, it was possible to predict reasonably accurate affinities for all other 20mers examined except for the 'winner', whose unusually high affinity of 4.0 x 10(8) M(-1) results from a unique higher order structure and sequence. Since there is no known physiological role for the 'winner' 20mer sequence, these data suggest A1 generally binds indiscriminately to all available pre-mRNA sequences. Both the large abundance of A1 in vivo and its binding properties are thus consistent with it playing a structural role in pre-mRNA biogenesis.  相似文献   

9.
The single-strand overhang present at telomeres plays a critical role in mediating both the capping and telomerase regulation functions of telomeres. The telomere end-binding proteins, Cdc13 in Saccharomyces cerevisiae, Pot1 in higher eukaryotes, and TEBP in the ciliated protozoan Oxytricha nova, exhibit sequence-specific binding to their respective single-strand overhangs. S. cerevisiae telomeres are composed of a heterogeneous mixture of GT-rich telomeric sequence, unlike in higher eukaryotes which have a simple repeat that is maintained with high fidelity. In yeast, the telomeric overhang is recognized by the essential protein Cdc13, which coordinates end-capping and telomerase activities at the telomere. The Cdc13 DNA-binding domain (Cdc13-DBD) binds these telomere sequences with high affinity (3 pM) and sequence specificity. To better understand the basis for this remarkable recognition, we have investigated the binding of the Cdc13-DBD to a series of altered DNA substrates. Although an 11-mer of GT-rich sequence is required for full binding affinity, only three of these 11 bases are recognized with high specificity. This specificity differs from that observed in the other known telomere end-binding proteins, but is well suited to the specific role of Cdc13 at yeast telomeres. These studies expand our understanding of telomere recognition by the Cdc13-DBD and of the unique molecular recognition properties of ssDNA binding.  相似文献   

10.
Short oligonucleotides that can bind to adjacent sites on target mRNA sequences are designed and evaluated for their binding affinity and biological activity. Sequence-specific binding of short tandem oligonucleotides is compared with a full-length single oligonucleotide (21mer) that binds to the same target sequence. Two short oligonucleotides that bind without a base separation between their binding sites on the target bind cooperatively, while oligonucleotides that have a one or two base separation between the binding oligonucleotides do not. The binding affinity of the tandem oligonucleotides is improved by extending the ends of the two oligonucleotides with complementary sequences. These extended sequences form a duplex stem when both oligonucleotides bind to the target, resulting in a stable ternary complex. RNase H studies reveal that the cooperative oligonucleotides bind to the target RNA with sequence specificity. A short oligonucleotide (9mer) with one or two mismatches does not bind at the intended site, while longer oligonucleotides (21mers) with one or two mismatches still bind to the same site, as does a perfectly matched 21mer, and evoke RNase H activity. HIV-1 inhibition studies reveal an increase in activity of the cooperative oligonucleotide combinations as the length of the dimerization domain increases.  相似文献   

11.
The Zab domain of the editing enzyme ADAR1 binds tightly and specifically to Z-DNA stabilized by bromination or supercoiling. A stoichiometric amount of protein has been shown to convert a substrate of suitable sequence to the Z form, as demonstrated by a characteristic change in the CD spectrum of the DNA. Now we show that Zab can bind not only to isolated Z-forming d(CG)(n) sequences but also to d(CG)(n) embedded in B-DNA. The binding of Zab to such sequences results in a complex including Z-DNA, B-DNA, and two B-Z junctions. In this complex, the d(CG)(n) sequence, but not the flanking region, is in the Z conformation. The presence of Z-DNA was detected by cleavage with a Z-DNA specific nuclease, by undermethylation using Z-DNA sensitive SssI methylase, and by circular dichroism. It is possible that Zab binds to B-DNA with low affinity and flips any favorable sequence into Z-DNA, resulting in a high affinity complex. Alternatively, Zab may capture Z-DNA that exists transiently in solution. The binding of Zab to potential as well as established Z-DNA segments suggests that the range of biological substrates might be wider than previously thought.  相似文献   

12.
POT1 (protection of telomere 1) is a highly conserved single-stranded telomeric binding protein that is essential for telomere end protection. Here, we report the cloning and characterization of a second member of the mouse POT family. POT1b binds telomeric DNA via conserved DNA binding oligonucleotide/oligosaccharide (OB) folds. Compared to POT1a, POT1b OB-folds possess less sequence specificity for telomeres. In contrast to POT1a, truncated POT1b possessing only the OB-folds can efficiently localize to telomeres in vivo. Overexpression of a mutant Pot1b allele that cannot bind telomeric DNA initiated a DNA damage response at telomeres that led to p53-dependent senescence. Furthermore, a reduction of the 3' G-rich overhang, increased chromosomal fusions and elevated homologous recombination (HR) were observed at telomeres. shRNA mediated depletion of endogenous Pot1b in Pot1a deficient cells resulted in increased chromosomal aberrations. Our results indicate that POT1b plays important protective functions at telomeres and that proper maintenance of chromosomal stability requires both POT proteins.  相似文献   

13.
Telomere protection and length regulation are important processes for aging, cancer and several other diseases. At the heart of these processes lies the single-stranded DNA (ssDNA)-binding protein Pot1, a component of the telomere maintenance complex shelterin, which is present in species ranging from fission yeast to humans. Pot1 contains a dual OB-fold DNA-binding domain (DBD) that fully confers its high affinity for telomeric ssDNA. Studies of S. pombe Pot1-DBD and its individual OB-fold domains revealed a complex non-additive behavior of the two OB-folds in the context of the complete Pot1 protein. This behavior includes the use of multiple distinct binding modes and an ability to form higher order complexes. Here we use NMR and biochemical techniques to investigate the structural features of the complete Pot1-DBD. These experiments reveal one binding mode characterized by only subtle alternations to the individual OB-fold subdomain structures, resulting in an inaccessible 3′ end of the ssDNA. The second binding mode, which has equivalent affinity, interacts differently with the 3′ end, rendering it available for interaction with other proteins. These findings suggest a structural switch that contributes to telomere end-protection and length regulation.  相似文献   

14.
The cyanobacterial protein MVL inhibits HIV-1 envelope-mediated cell fusion at nanomolar concentrations by binding to high mannose N-linked carbohydrate on the surface of the envelope glycoprotein gp120. Although a number of other carbohydrate-binding proteins have been shown to inhibit HIV-1 envelope-mediated cell fusion, the specificity of MVL is unique in that its minimal target comprises the Man(alpha)(1-->6)Man(beta)(1-->4)GlcNAc(beta)(1-->4)GlcNAc tetrasaccharide core of oligomannosides. We have solved the crystal structures of MVL free and bound to the pentasaccharide Man3GlcNAc2 at 1.9- and 1.8-A resolution, respectively. MVL is a homodimer stabilized by an extensive intermolecular interface between monomers. Each monomer contains two structurally homologous domains with high sequence similarity connected by a short five-amino acid residue linker. Intriguingly, a water-filled channel is observed between the two monomers. Residual dipolar coupling measurements indicate that the structure of the MVL dimer in solution is identical to that in the crystal. Man3GlcNAc2 binds to a preformed cleft at the distal end of each domain such that a total of four independent carbohydrate molecules associate with each homodimer. The binding cleft provides shape complementarity, including the presence of a deep hydrophobic hole that accommodates the N-acetyl methyl at the reducing end of the carbohydrate, and specificity arises from 7-8 intermolecular hydrogen bonds. The structures of MVL and the MVL-Man3GlcNAc2 complex further our understanding of the molecular basis of high affinity and specificity in protein-carbohydrate recognition.  相似文献   

15.
In yeast (Saccharomyces cerevisiae), the branchpoint binding protein (BBP) recognizes the conserved yeast branchpoint sequence (UACUAAC) with a high level of specificity and affinity, while the human branchpoint binding protein (SF1) binds the less-conserved consensus branchpoint sequence (CURAY) in human introns with a lower level of specificity and affinity. To determine which amino acids in BBP provide the additional specificity and affinity absent in SF1, a panel of chimeric SF1 proteins was tested in RNA binding assays with wild-type and mutant RNA substrates. This approach revealed that the QUA2 domain of BBP is responsible for the enhanced RNA binding affinity and specificity displayed by BBP compared with SF1. Within the QUA2 domain, a transposition of adjacent arginine and lysine residues is primarily responsible for the switch in RNA binding between BBP and SF1. Alignment of multiple branchpoint binding proteins and the related STAR/GSG proteins suggests that the identity of these two amino acids and the RNA target sequences of all of these proteins are correlated.  相似文献   

16.
17.
18.
The specificity of SH3 domain complex formation plays an important role in determining signal transduction events. We have previously identified a highly specific interaction between the first CrkSH3 domain [CrkSH3(1)] and proline-rich sequences in the guanine nucleotide exchange factor C3G. A 10 amino acid peptide derived from the first proline-rich sequence (P3P4P5A6L7P8P9K10K11R12) bound with a Kd of 1.89 +/- 0.06 microM and fully retained the high affinity and unique selectivity for the CrkSH3(1) domain. Mutational analysis showed that P5, P8, L7 and K10 are critical for high affinity binding. A conservative mutation, K10R, significantly decreased the affinity for the CrkSH3(1) domain while increasing the affinity for Grb2. Comparative binding studies with the K10R and K10A mutant peptides to c-Crk and v-Crk further suggested that K10 binds via a charge-dependent and a charge-independent interaction to the RT loop of the CrkSH3(1) domain. Besides determining important structural features necessary for high affinity and specificity binding to the CrkSH3(1) domain, our results also demonstrate that a conservative mutation in a single amino acid can significantly alter the specificity of an SH3 binding peptide.  相似文献   

19.
SRF and MCM1 have related but distinct DNA binding specificities.   总被引:8,自引:0,他引:8       下载免费PDF全文
  相似文献   

20.
Binding specificity of integration host factor (IHF) to oligo DNAs has been studied by circular dichroism (CD) spectroscopy and filter binding experiment. CD difference spectra of IHF-DNA complexes demonstrated that a conformational change in DNA was induced by binding of IHF when DNA had a consensus sequence for the binding sites of IHF, but that such conformational change was not observed for consensus DNA 20 mer as well as nonconsensus DNA 45 mer. Dissociation constants for IHF-DNA complexes determined by filter binding assay showed that IHF has indeed stronger affinity to DNA with the consensus binding site than to nonconsensus DNA, but the difference in its affinity between consensus and nonconsensus DNAs was rather small, 3.4-fold. It was, therefore, concluded that the flanking regions of the consensus sequence are important for the specific binding of IHF and that its binding specificity is well characterized by the induced conformational change in DNA rather than by dissociation constants for IHF-DNA complexes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号