首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
利用日本DDBJ数据库电子克隆了条斑紫菜的6-磷酸海藻糖合成酶基因(pytps),得到全长cDNA序列2727bp;经过ORF finder分析,获得了相应蛋白质的全长序列908Aa,分子量约为101.8kD。将条斑紫菜的6-磷酸海藻糖合成酶与多种模式生物大肠杆菌、裂殖酵母、拟南芥、水稻、秀丽隐杆线虫、黑腹果蝇的同源蛋白进行序列比对得到了聚类分析图表明它们之间具有一定的进化相关性功能结构域预测分析显示PyTPS拥有两个功能结构域Glyco.transf 20 domain和Trehalose.PPase domain,这对于进一步分析蛋白质结构与功能的关系将有很大的启示。  相似文献   

4.
垫状卷柏海藻糖-6-磷酸合成酶基因的克隆及功能分析   总被引:1,自引:0,他引:1  
林荆  付凤玲  蒋伟  牟禹  雍太明  李晚忱 《遗传》2010,32(5):498-504
海藻糖-6-磷酸合成酶(Trehalose-6-phosphate synthse, TPS)是植物海藻糖合成途径的关键酶, 在旱生卷柏等复苏植物对逆境胁迫应答中起重要作用。文章以我国特有旱生植物垫状卷柏(Selaginella pulvinata)为材料, 采用同源扩增与RACE技术相结合的方法克隆了海藻糖-6-磷酸合成酶基因SpTPS1, cDNA全长3 223 bp, 包括一个2 790 bp的开放阅读框, 推导的氨基酸序列与模式物种的海藻糖-6-磷酸合成酶具有较高的序列相似性, 催化活性中心保守位点基本一致。酵母功能互补实验证明, 用SpTPS1基因开放阅读框转化的海藻糖合成酶基因突变(tps1△)酵母菌株, 可恢复在以葡萄糖作为唯一碳源培养基上的生长, 说明垫状卷柏海藻糖-6-磷酸合成酶基因SpTPS1的编码蛋白具有生物活性, 可应用于植物抗逆性的转基因改良。  相似文献   

5.
In this paper, we investigated the properties of trehalose-6- phosphate synthase (SfTps1) inSaccharomycopsis fibuligera sdu a high-trehalose-accumulating strain. The purified SfTps1 showed a band on Native-PAGE and SDS-PAGE of about 66 kDa. The optimal pH and temperature of the purified enzyme were 6.6 and 37 °C, respectively. The enzyme was activated by Ca2+, K+ and Mg2+, inhibited by Mn2+, Cu2+, Fe3+, Hg2+ and Co2+. Iodoacetic acid, EDTA and PMSF had inhibitory effect on the enzyme activity. Km values of the enzyme for glucose-6-phosphate and UDP-glucose were 38.6 mM and 9.3 mM, respectively. The effects of various stress conditions on SfTps1 activity and trehalose content in this strain were also studied. Neither the activation of SfTps1 nor the change in trehalose content was observed under stress exposure ofSaccharomycopsis fibuligera cells. Our results indicate that the SfTps1 protein and trehalose metabolism in response to stress conditions inSaccharomycopsis fibuligera clearly differ from that ofSaccharomyces cerevisiae and most of other eukaryotes.  相似文献   

6.
7.
Ferritin, the iron storage protein, plays a key role in iron metabolism. A cDNA encoding ferritin (FcFer) was cloned from hepatopancreas of Chinese shrimp, Fenneropenaeus chinensis. The predicted protein contains 170 amino acid residues with a predicted molecular weight (MW) about 19, 422.89 Da and theoretical isoelectric point (PI) of 4.73. Amino acid alignment of FcFer revealed 97% homology with Litopenaeus vannamei ferritin. Results of the RT-PCR showed that the expression of FcFer mRNA was up-regulated after shrimp was challenged with either white spot syndrome virus (WSSV) or heavy metal ions (Zn2+ and Cu2+) in the laboratory. A fusion protein containing FcFer was produced and the purified recombinant protein exhibited similar function of iron uptake in vitro. The result of in-gel digestion and identification using LC-ESI-MS showed that two peptide fragments (-DDVALPGFAK- and -LLEDEYLEEQVDSIKK-) of the recombinant protein were identical to the corresponding sequence of L. vannamei ferritin. The recombinant FcFer protein will be proved useful for study on the structure and function of ferritin in F. chinensis.  相似文献   

8.
Mutant A11, a mutant of Saccharomycopsis fibuligera Sdu with low acid and neutral trehalase was found to accumulate over 18% (w/w) trehalose from starch in its cells. In this study, trehalose-6-phosphate synthase (Tps1) was purified to homogeneity from this mutant, with a 30-fold increase in the specific enzyme activity, as compared to the concentrated cell-free extract, from initial cells. The molecular mass of the purified enzyme as determined by SDS-PAGE was 66 kDa. The optimum pH and temperature of the purified enzyme were 6.6 and 37 degrees C, respectively. The enzyme was activated by Ca2+, K+ and Mg2+, with K+ showing the highest activation at 35 mM. On the other hand, Mn2+, Cu2+, Fe3+, Hg2+ and Co2+ inhibited the enzyme. The enzyme was also strongly inhibited by protease inhibitors such as iodoacetic acid, EDTA and PMSF.  相似文献   

9.
A homologous sequence was amplified from resurrection plant Selaginella pulvinta by RACE technique, proved to be the full-length cDNA of trehalose-6-phosphate synthase gene by homologous alignment and yeast complementation assay, and nominated as SpTPS1 gene. The open reading frame of this gene was truncated 225 bp at the 5′-end, resulting the N-terminal truncation modification of 75 amino acids for its encoding protein. The TPS1 deletion mutant strain YSH290 of the brewer's yeast transformed by the truncated gene SpTPS1Δ and its original full-length version restored growth on the medium with glucose as a sole carbon source and displayed growth curves with no significant difference, indicating their encoding proteins functioning as TPS enzyme. The TPS activity of the mutant strain transformed by the truncated gene SpTPS1Δ was about six fold higher than that transformed by its original version, reasoning that the extra N-terminal extension of the full-length amino acid sequence acts as an inhibitory domain to trehalose synthesis. However, the trehalose accumulation of the mutant strain transformed by the truncated gene SpTPS1Δ was only 8% higher than that transformed by its original version. This result is explained by the feedback balance of trehalose content coordinated by the comparative activities between trehalose synthase and trehalase. The truncated gene SpTPS1Δ is suggested to be used in transgenic operation, together with the inhibition of trehalase activity by the application of validamycin A or genetic deficiency of the endogenous trehalase gene, for the enhancement of trehalose accumulation and improvement of abiotic tolerance in transgenic plants.  相似文献   

10.
Trehalose is a non-reducing disaccharide of glucose that occurs in a large number of organisms, playing an important role in desiccation and heat stress protection. Trehalose accumulation has proven to be an effective way of increasing drought tolerance in both model plants such as tobacco and important crops such as potato or rice. In this work we aim to genetically engineer maize with the Arabidopsis thaliana trehalose phosphate synthase gene (AtTPS1), involved in trehalose biosynthesis via electroporation. A cassette harboring the AtTPS1 gene under the control of the CaMV35S promoter and the Bialaphos resistance gene Bar as a selective agent was inserted in the plasmid vector pGreen0229 and used to transform maize inbred line Pa91 via electroporation. Fifteen putative transgenic plants (T0 generation) were obtained. Transgene integration in T0 plants was analyzed by Southern-blot analysis. T0 plants had normal phenotypes, although smaller than wild type plants. Contrary to wild type plants, when sexual organs emerged, tassels appeared at least 15 days earlier than ears in the same plant, rendering impossible the self-pollination of the T0 plant. These plants were then crossed with wild type plants and in some cases T1 seeds were obtained. T1 seeds presented deformities, especially the lack of endosperm, but it was still possible to germinate some of these seeds. The so obtained plants were tested by Northern blot but no AtTPS1 gene expression was detected, a fact possibly due to the incomplete insertion of the AtTPS1 gene or an extremely low gene expression level.  相似文献   

11.
12.
13.
Trehalose-6-phosphate synthase activity was determined by colorimetric, spectrophotometric and trehalose specific assays. All methods gave comparable results thus confirming our previous findings (1) and those reported by Elander (2). Different strains and mutants of Saccharomyces were carefully re-investigated in relation with the recent claim made by Vandercammen et al. (3) that our spectrophotometric assay over-estimated the enzyme activity and that no differences exist between wild type and mutant strains. In this paper we also confirm the de-activation of the trehalose synthase complex in response to a "glucose signal", and present trehalose-6-phosphate synthase and trehalase activities in different strains measured during all phases of growth on glucose.  相似文献   

14.
15.
The genes for trehalose synthesis in Thermus thermophilus RQ-1, namely otsA [trehalose-phosphate synthase (TPS)], otsB [trehalose-phosphate phosphatase (TPP)], and treS [trehalose synthase (maltose converting) (TreS)] genes are structurally linked. The TPS/TPP pathway plays a role in osmoadaptation, since mutants unable to synthesize trehalose via this pathway were less osmotolerant, in trehalose-deprived medium, than the wild-type strain. The otsA and otsB genes have now been individually cloned and overexpressed in Escherichia coli and the corresponding recombinant enzymes purified. The apparent molecular masses of TPS and TPP were 52 and 26 kDa, respectively. The recombinant TPS utilized UDP-glucose, TDP-glucose, ADP-glucose, or GDP-glucose, in this order as glucosyl donors, and glucose-6-phosphate as the glucosyl acceptor to produce trehalose-6-phosphate (T6P). The recombinant TPP catalyzed the dephosphorylation of T6P to trehalose. This enzyme also dephosphorylated G6P, and this activity was enhanced by NDP-glucose. TPS had an optimal activity at about 98°C and pH near 6.0; TPP had a maximal activity near 70°C and at pH 7.0. The enzymes were extremely thermostable: at 100°C, TPS had a half-life of 31 min, and TPP had a half-life of 40 min. The enzymes did not require the presence of divalent cations for activity; however, the presence of Co2+ and Mg2+ stimulates both TPS and TPP. This is the first report of the characterization of TPS and TPP from a thermophilic organism.  相似文献   

16.
Trehalose is a disaccharide with potential applications in the biotechnology and food industries. We propose a method for industrial production of trehalose, based on improved strains of Corynebacterium glutamicum. This paper describes the heterologous expression of Escherichia coli trehalose-synthesizing enzymes trehalose-6-phosphate synthase (OtsA) and trehalose-6-phosphate phosphatase (OtsB) in C. glutamicum, as well as its impact on the trehalose biosynthetic rate and metabolic-flux distributions, during growth in a defined culture medium. The new recombinant strain showed a five- to sixfold increase in the activity of OtsAB pathway enzymes, compared to a control strain, as well as an almost fourfold increase in the trehalose excretion rate during the exponential growth phase and a twofold increase in the final titer of trehalose. The heterologous expression described resulted in a reduced specific glucose uptake rate and Krebs cycle flux, as well as reduced pentose pathway flux, a consequence of downregulated glucose-6-phosphate dehydrogenase and 6-phosphogluconate dehydrogenase. The results proved the suitability of using the heterologous expression of Ots proteins in C. glutamicum to increase the trehalose biosynthetic rate and yield and suggest critical points for further improvement of trehalose overproduction in C. glutamicum.  相似文献   

17.
Abstract A Saccharomyces cerevisiae gene for trehalose-6-phosphate synthase (TPS1) was sequenced. The gene appeared to code for a protein of 495 amino acid residues, giving the protein a molecular mass of 56 kDa. The TPS1 gene was able to restore both osmotolerance and trehalose accumulation during salt stress in an Escherichia coli strain mutated in the otsA gene encoding trehalose-6-phosphate synthase. Complementation studies with E. coli galU mutants showed that the TPS1-encoded trehalose-6-phosphate synthase is UDP-glucose-dependent. Sequence analysis and data base searches showed that TPS1 is allelic to GGS1, byp1, cif1 and fdp1 . A possible gene for trehalose-6-phosphate synthase in Methanobacterium thermoautotrophicum was identified.  相似文献   

18.
Antibacterial peptides crustins are the effector molecules of innate immunity in decapods. In this study, three crustin cDNA sequences (Fc-crus 1, Fc-crus 2, and Fc-crus 3) were cloned from the Chinese white shrimp Fenneropenaeus chinensis. The full-length cDNAs of Fc-crus 2 and 3 are 473 bp and 574 bp, respectively. The deduced peptides of Fc-crus 2 and 3 contain a signal peptide and a crustin domain at the C-terminal formed by twelve conserved cysteine residues. The partial sequence of Fc-cru 1 is 575 bp long and the deduced amino acids also contain a crustin domain. The expression profiles of these three crustins were studied with RT-PCR. Fc-crus 1 and Fc-crus 2 constitutively expressed in hemocytes with high levels, and the expression level is increased in the heart, stomach, intestine and ovaries when shrimp was challenged with Vibrio anguillarum, The expression of Fc-crus 1 and Fc-crus 2 was detected in each developmental stage. Fc-crus 3 was constitutively expressed in the ovaries and induced as an expression in the stomach. Unlike Fc-crus 1 and Fc-crus 2, the mRNA of Fc-crus 3 was not detected in the developmental stages extending from nauplii and mysis to post-larvae. The recombinant proteins containing mature Fc-crus 2 and Fc-crus 3 were recombinantly expressed in Escherichia coli and respectively purified. The antibacterial assays revealed that the recombinant mFc-crus could inhibit the growth of Gram-positive bacteria in vitro.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号