首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Brassica rapa (2n = 20, AA genome) is an important oil yielding species of the family Brassicaceae and characterized by wide range of genetic and morphological subtypes suitable for cultivation under diverse agro-climatic regions of India. In this study, genetic diversity among three subspecies of B. rapa including yellow sarson, toria and outlier brown sarson was estimated using various agro-morphological traits and simple sequence repeat (SSR) markers. Maximum variability was recorded for siliqua angle (Coefficient of variation = 30.9%), followed by seeds/siliqua (CV = 18.8%), leaf length (CV = 10%) and plant height (CV = 16.8%). Principal component analysis explained more than 50% of the total observed morphological variability for first two components. Of the 107 SSR markers tested, 80 generated reproducible, clear and distinct amplicons of which, 65 (81.25%) were found polymorphic. The number of alleles at each locus ranged from 2 to 7, with an average of 3.03 alleles per marker. A total of 197 alleles were detected at 65 SSR loci with average PIC value of 0.457 and a mean resolving power of 3.04. Neighbor-Joining cluster analysis based on morphological traits and SSR markers separately classified all the 28 genotypes into five major groups. The population structure analysis resulted into three sub-populations with certain extent of admixture among the earlier established taxonomic sub-groups. Twenty-three unique alleles were detected in thirteen B. rapa varieties. The clustering analysis and principal coordinate analysis outlined the genetic relationships among different varieties belonging to the three subspecies of B. rapa. Genetically diverse genotypes as illustrated by score plots and from the clustering patterns brought out the wide range of diversity present among B. rapa genotypes and the underlying options available for selecting parental genotypes for hybridization and developing high yielding cultivars suitable for Indian conditions.  相似文献   

2.
Total seed storage proteins were studied in 50 accessions of A. hypogaea (11 A. hypogaea ssp. hypogaea var hypogaea, 13 A. hypogaea ssp. hypogaea var hirsuta, 11 A. hypogaea ssp. fastigiata var fastigiata and 15 A. hypogaea ssp. fastigiata var. vulgaris accessions) in SDS PAGE. These accessions were also analysed for albumin and globulin seed protein fractions. Among the six seed protein markers presently used, it was found that globulin fraction showed maximum diversity (77.2%) in A. hypogaea accessions followed by albumin (52.3%), denatured total soluble protein fraction in embryo (33.3%) and cotyledon (28.5%). The cluster analysis based on combined data of cotyledons, embryos, albumins and globulins seed protein fractions demarcated the accessions of two subspecies hypogaea and fastigiata into two separate clusters supported by 51% bootstrap value, with few exceptions, suggesting the genotypes to be moderately diverse. Native and denatured total soluble seed storage proteins were also electrophoretically analysed in 27 wild Arachis species belonging to six sections of the genus. Cluster analysis using different methods were performed for different seed proteins data alone and also in combination. Section Caulorrhizae (C genome) and Triseminatae (T genome) formed one, distantly related group to A. hypogaea and other section Arachis species in the dendrogram based on denatured seed storage proteins data. The present analysis has maintained that the section Arachis species belong to primary and secondary genepools and, sections Procumbenetes and Erectoides belong to tertiary gene pools.  相似文献   

3.
Molecular genetic polymorphism in three species and four subspecies of crested wheatgrass, Agropyron, was studied using 56K diversity array technology (DArT), and the results confirmed with four selected SNP Amplifluor markers. In total, 82 accessions from three species—A. desertorum, A. fragile, and two subspecies of A. cristatum (ssp. cristatum and ssp. pectinatum)—were collected from various regions of Kazakhstan or ordered from Genebank in Russia, for morphological taxonomy and molecular phylogenetic analyses. In the DArT clone analysis, two Agropyron species with narrow linear spikes, A. fragile and A. desertorum, were found to be genetically similar and fell within a single clade (A). Both species share similar eco-geographical origins. All samples of A. cristatum including the two subspecies, ssp. pectinatum and ssp. cristatum, which have short broad spikes, were interspersed within two other clades, B and C, more genetically distanced from the other species. Four SNP Amplifluor markers developed for genetic fragments on different chromosomes confirmed the distinction between the studied species. These results, derived from multiple molecular markers, suggest that the morphological taxonomy of these Agropyron species should be re-considered carefully in the future.  相似文献   

4.
Peach belongs to the genus Prunus, which includes Prunus persica and its relative species, P. mira, P. davidiana, P. kansuensis, and P. ferganensis. Of these, P. ferganensis have been classified as a species, subspecies, or geographical population of P. persica. To explore the genetic difference between P. ferganensis and P. persica, high-throughput sequencing was used in different peach accessions belonging to different species. First, low-depth sequencing data of peach accessions belonging to four categories revealed that similarity between P. ferganensis and P. persica was similar to that between P. persica accessions from different geographical populations. Then, to further detect the genomic variation in P. ferganensis, the P. ferganensis accession “Xinjiang Pan Tao 1” and the P. persica accession “Xia Miao 1” were sequenced with high depth, and sequence reads were assembled. The results showed that the collinearity of “Xinjiang Pan Tao 1” with the reference genome “Lovell” was higher than that of “Xia Miao 1” and “Lovell” peach. Additionally, the number of genetic variants, including single nucleotide polymorphisms (SNPs), structural variations (SVs), and the specific genes annotated from unmapped sequence in “Xia Miao 1” was higher than that in “Xinjiang Pan Tao 1” peach. The data showed that there was a close distance between “Xinjiang Pan Tao 1” (P. ferganensis) and reference genome which belong to P. persica, comparing “Xia Miao 1” (P. persica) and reference ones. The results accompany with phylogenetic tree and structure analysis confirmed that P. ferganensis should be considered as a geographic population of P. persica rather than a subspecies or a distinct species. Furthermore, gene ontology analysis was performed using the gene comprising large-effect variation to understand the phenotypic difference between two accessions. The result revealed that the pathways of gene function affected by SVs but SNPs and insertion-deletions markedly differed between the two peach accessions.  相似文献   

5.
FLOWERING LOCUS T (FT), a major effect gene, regulates flowering time in Arabidopsis. We analyzed evolutionary changes distinguishing two FT homeologous loci in B. rapa, described genetic variation in homologs isolated and reported expression pattern of FT in B. juncea. Synteny analysis confirmed presence of two FT genomic copies in B. rapa ssp. pekinensis and resolved pre-existing anomalies regarding copy number in “AA” genome. Synteny analysis of B. rapa homeologous regions CR1 (129 kb) and CR2 (232 kb) revealed differential gene fractionation and wide-spread re-arrangements. Seven genomic DNA (gDNA) variants (2.1–2.2 kb) and 10 complementary DNA (cDNA) variants (528 bp) were isolated from 6 Brassica species. The gDNA variants shared 72–99 % similarity within Brassica and 58–60 % between Arabidopsis and Brassica. FT cDNA variants shared 92–100 % similarity within Brassica and 87 % between Arabidopsis and Brassica. Phylogenetic analysis of FT gDNA, cDNA and protein sequences revealed two major clades, differentiating homologs derived from species containing shared “BB” and “CC” genomes. Phylogram based on Brassica FT gDNA differentiated homeologs derived from AA-LF (Least fractioned) and AA-MF1 (Moderately fractioned) sub-genomes. Analysis of FT expression pattern in B. juncea revealed increasing levels correlating with attainment of physiological maturity; highest levels were detected in older leaves implying conservation in spatio-temporal expression pattern vis-à-vis Arabidopsis. In conclusion, our study reveals that polyploidy in Brassicas resulted in expansion of FT gene copies with homologs charting independent evolutionary course through accumulation of mutations. However, expression domains of FT remained conserved across Brassicaceae to preserve the critical function of FT in controlling flowering time.  相似文献   

6.
Species misclassification (misidentification) and handling errors have been frequently reported in various plant species conserved at diverse gene banks, which could restrict use of germplasm for correct purpose. The objectives of the present study were to (i) determine the extent of genotyping error (reproducibility) on DArTseq-based single-nucleotide polymorphisms (SNPs); (ii) determine the proportion of misclassified accessions across 3134 samples representing three African rice species complex (Oryza glaberrima, O. barthii, and O. longistaminata) and an Asian rice (O. sativa), which are conserved at the AfricaRice gene bank; and (iii) develop species- and sub-species (ecotype)-specific diagnostic SNP markers for rapid and low-cost quality control (QC) analysis. Genotyping error estimated from 15 accessions, each replicated from 2 to 16 times, varied from 0.2 to 3.1%, with an overall average of 0.8%. Using a total of 3134 accessions genotyped with 31,739 SNPs, the proportion of misclassified samples was 3.1% (97 of the 3134 accessions). Excluding the 97 misclassified accessions, we identified a total of 332 diagnostic SNPs that clearly discriminated the three indigenous African species complex from Asian rice (156 SNPs), O. longistaminata accessions from both O. barthii and O. glaberrima (131 SNPs), and O. sativa spp. indica from O. sativa spp. japonica (45 SNPs). Using chromosomal position, minor allele frequency, and polymorphic information content as selection criteria, we recommended a subset of 24 to 36 of the 332 diagnostic SNPs for routine QC genotyping, which would be highly useful in determining the genetic identity of each species and correct human errors during routine gene bank operations.  相似文献   

7.
Starch synthase IIa, also known as starch granule protein 1 (SGP-1), plays a key role in amylopectin biosynthesis. The absence of SGP-1 in cereal grains is correlated to dramatic changes in the grains’ starch content, structure, and composition. An extensive investigation of starch granule proteins in this study revealed a polymorphism in the electrophoretic mobility of SGP-1 between two species of wheat, Triticum urartu and T. monococcum; this protein was, however, conserved among all other Triticum species that share the A genome inherited from their progenitor T. urartu. Two different electrophoretic profiles were identified: SGP-A1 proteins of T. urartu accessions had a SDS–PAGE mobility similar to those of tetraploid and hexaploid wheat species; conversely, SGP-A1 proteins of T. monococcum ssp. monococcum and ssp. boeoticum accessions showed a different electrophoretic mobility. The entire coding region of the two genes was isolated and sequenced in an attempt to explain the polymorphism identified. Several single nucleotide polymorphisms (SNPs) responsible for amino acid changes were identified, but no indel polymorphism was observed to explain the difference in electrophoretic mobility. Amylose content did not differ significantly among T. urartu, T. monococcum ssp. boeoticum and T. monococcum ssp. monococcum, except in one accession of the ssp. boeoticum. Conversely, several interspecific differences were observed in viscosity properties (investigated as viscosity profiles using a rapid visco analyzer—RVA profiles) of these cereal grains. T. monococcum ssp. boeoticum accessions had the lowest RVA profiles, T. urartu accessions had an intermediate RVA profile, whereas T. monococcum ssp. monococcum showed the highest RVA profile. These differences could be associated with the numerous amino acid and structural changes evident among the SGP-1 proteins.  相似文献   

8.
9.

Key message

A splicing site mutation in BrFLC5, a non-syntenic paralogue of FLOWERING LOCUS C, was demonstrated to be related to flowering time variation in Brassica rapa.

Abstract

Flowering time regulation in Brassica rapa is more complex than in Arabidopsis, as there are multiple paralogues of flowering time genes in B. rapa. Brassica rapa contains four FLOWERING LOCUS C (FLC) genes, three of which are syntenic orthologues of AtFLC, while BrFLC5 is not. BrFLC1, BrFLC2, and BrFLC3 have been reported to be involved in flowering time regulation. However, BrFLC5 has thus far been deemed a pseudogene. We detected two alternative splicing patterns of BrFLC5 resulting from a nucleotide mutation (G/A) at the first nucleotide of intron 3 (named as Pi3+1(G/A)). Genotyping of BrFLC5Pi3?+?1(G/A) for 301 B. rapa accessions showed that this single nucleotide polymorphism was significantly related to flowering time variation (p?<?0.001). In the collection, the frequency of the functional G allele (35.2%) was much lower than that of the nonfunctional A allele (59.1%); however, the frequency of the G allele was very high among the turnips (83.6%). An F2 population segregating at this locus was developed to analyze the genetic effect of BrFLC5. The result showed that the G allele individuals began to bolt two days later than the A allele individuals, indicating that BrFLC5 is a weak regulator of flowering time. BrFLC5 was expressed at the lowest level among the three analyzed BrFLCs. The late allele (G allele) was dominant to the early allele (A allele) at the BrFLC5 locus, which was in contrast to that of BrFLC1 and BrFLC2. This characteristic suggests that BrFLC5 would be more efficient for breeding premature bolting resistance in B. rapa.
  相似文献   

10.

Background

Map-based cloning of quantitative trait loci (QTLs) in polyploidy crop species remains a challenge due to the complexity of their genome structures. QTLs for seed weight in B. napus have been identified, but information on candidate genes for identified QTLs of this important trait is still rare.

Results

In this study, a whole genome genetic linkage map for B. napus was constructed using simple sequence repeat (SSR) markers that covered a genetic distance of 2,126.4 cM with an average distance of 5.36 cM between markers. A procedure was developed to establish colinearity of SSR loci on B. napus with its two progenitor diploid species B. rapa and B. oleracea through extensive bioinformatics analysis. With the aid of B. rapa and B. oleracea genome sequences, the 421 homologous colinear loci deduced from the SSR loci of B. napus were shown to correspond to 398 homologous loci in Arabidopsis thaliana. Through comparative mapping of Arabidopsis and the three Brassica species, 227 homologous genes for seed size/weight were mapped on the B. napus genetic map, establishing the genetic bases for the important agronomic trait in this amphidiploid species. Furthermore, 12 candidate genes underlying 8 QTLs for seed weight were identified, and a gene-specific marker for BnAP2 was developed through molecular cloning using the seed weight/size gene distribution map in B. napus.

Conclusions

Our study showed that it is feasible to identify candidate genes of QTLs using a SSR-based B. napus genetic map through comparative mapping among Arabidopsis and B. napus and its two progenitor species B. rapa and B. oleracea. Identification of candidate genes for seed weight in amphidiploid B. napus will accelerate the process of isolating the mapped QTLs for this important trait, and this approach may be useful for QTL identification of other traits of agronomic significance.
  相似文献   

11.
Candidate gene association studies implicate the detection of contributing single nucleotide polymorphism (SNP) for the target traits and have been recommended as a promising technique to anatomize the complex characters in plants. The ERECTA gene in plants controls different physiological functions. In this study, we identified SNPs in 1.1 kb partial sequences of TaER-1 and TaER-2 of wheat (Triticum aestivum L.). Thirty-nine SNPs were identified in the coding regions of TaER-1 gene in 33 wheat genotypes, of which 20 SNPs caused non-synonymous mutations while 19 SNPs produced synonymous mutations; 31 SNPs were located in the coding regions of TaER-2 gene in 26 genotypes, of which 18 SNPs caused non-synonymous mutations and 13 SNPs caused synonymous mutations. In addition, 32 SNPs in TaER-1 and 9 SNPs in TaER-2 were also identified in the non-coding regions. Moreover, the significant genetic associations of SNPs of TaER-1 and TaER-2 genes with carbon isotope discrimination, stomatal conductance, photosynthetic rate, transpiration rate, intrinsic water use efficiency (iWUE), leaf length, leaf width, stomatal density, epidermal cell density, and stomatal index were noted in wheat genotypes. This study confirms the importance of TaER-1 and TaER-2 genes which could improve iWUE of wheat by regulating leaf gas exchange and leaf structural traits. These identified SNPs may play a critical role in molecular breeding by means of marker-assisted selection.  相似文献   

12.
13.
BcMF11 is a long non-coding RNA that has been identified in Brassica rapa and shown to be involved in pollen development. Here, when re-cloned the gene sequence, multiple paralogous copies of BcMF11 were identified in B. rapa (A genome). Multiple paralogous copies of BcMF11 were also found in B. nigra (B genome) and Brassica oleracea (C genome), the other two primary diploids of Brassica U triangle. While in the early diverging Brassicaceae lineage including Arabidopsis thaliana, no BcMF11 homolog was found. Phylogenetic analysis showed that the BcMF11 homologous sequences cloned from A genome or C genome could be clustered into a separate branch, respectively. However, there was no distinct cluster defined for BcMF11 homologous sequences cloned from B genome. The expression of BcMF11 in B. rapa was investigated and revealed a different result in the previous study. In addition, 12 expressed sequence tags from B. napus and B. rapa showing high similarities with BcMF11 were identified in the NCBI database, which further verified that rather than the useless repeat fragments in the genome, the BcMF11 homologous genes could transcribe. It is possible that BcMF11 and its homologous sequences may form a large gene family which might be originated in the recent ancestral lineage of Brassica.  相似文献   

14.
15.
Clubroot disease, which is caused by Plasmodiophora brassicae Wor., a soil-borne microorganism, is one of the most severe diseases of Brassica crops. Combining of two and more dominant resistance loci is an efficient method in breeding for clubroot resistance. Several clubroot resistance loci were earlier identified on linkage groups 1, 2, 3, 6, and 8 of Brassica rapa by different research groups. In our previous studies, we found a dominant monogenic resistance locus in an inbred line 20-2ccl of Chinese cabbage. In this study, a SCAR marker tau_cBrCR404 tightly linked to clubroot resistance locus (2.9 cM) was identified by a bulked segregant analysis (BSA) of a backcross population (BC1). The position of this clubroot resistance locus, named CrrA5, was determined on the linkage group 5 of B. rapa genome using genetic mapping. The efficiency of the tau_cBrCR404 marker in marker-assisted selection was validated using a collection of different Chinese cabbage accessions.  相似文献   

16.
Polyploid Prunus spinosa (2n = 4×) and P. insititia (2n = 6×) represent enormous genetic potential in Central Europe, which can be exploited in breeding programmes. In Hungary, 17 cultivar candidates were selected from wild-growing populations including 10 P. spinosa, 4 P. insititia and three P. spinosa × P. domestica hybrids (2n = 5×). Their taxonomic classification was based on their phenotypic characteristics. Six simple sequence repeats (SSRs) and the multiallelic S-locus genotyping were used to characterize genetic variability and reliable identification of the tested accessions. A total of 98 SSR alleles were identified, which presents 19.5 average allele number per locus, and each of the 17 genotypes could be discriminated based on unique SSR fingerprints. A total of 23 S-RNase alleles were identified. The complete and partial S-genotype was determined for 8 and 9 accessions, respectively. The identification of a cross-incompatible pair of cultivar candidates and several semi-compatible combinations help maximize fruit set in commercial orchards. Our results indicate that the S-allele pools of wild-growing P. spinosa and P. insititia are overlapping in Hungary. A phylogenetic and principal component analysis confirmed the high level of diversity and genetic differentiation present within the analysed genotypes and helped clarify doubtful taxonomic identities. Our data confirm that S-locus genotyping is suitable for diversity studies in polyploid Prunus species. The analysed accessions represent huge genetic potential that can be exploited in commercial cultivation.  相似文献   

17.
The Opuntia (prickly pear) genus, an important horticultural crop in Mexico, is essentially a fruit crop with two variants: sweet (“tunas”) or acid (“xoconostles”) fruits; it is also a source of vegetables “nopalitos” or fodder for livestock, among other uses. Its taxonomical classification has been reported as complex, although few studies on the genetic structure of Mexican Opuntia are available, and genetic differences between the two types of fruits are unknown. Opuntia genotype identification and classification are still mainly based on morphological characters. In this study, the genetic diversity of Mexican Opuntia germplasm with agronomic and economic importance was revealed, using 88 accessions and 13 SSR markers, in an attempt to explore the genetic relationships among them. A total of 159 alleles were detected ranging from 7 to 23 per locus with an average of 12.2. The SSR markers generated unique fingerprints for each Opuntia accession confirming their usefulness for genetic analysis. The accessions’ grouping was defined by several complementary clustering methods, and the moderate incongruences between the different methods did not influence the overall clustering. DAPC and STRUCTURE analyses grouped the accessions into five groups, thus confirming the incorrect delimitation of species in this genus. The following species had no clear boundaries: Opuntia ficus-indica, Opuntia albicarpa, Opuntia megacantha, Opuntia streptacantha, Opuntia lasiacantha, and Opuntia hyptiacantha. However, Opuntia robusta was separated from the rest of the species. Opuntia joconostle and Opuntia matudae, which produce acid fruits, tended to differ from the others. Median-joining simulation classified all genotypes into a complex network, and both linear and reticular ties between Mexican Opuntia genotypes were revealed. The genetic distance revealed in the present study shows the importance of Mexican accessions for conservation and use in breeding programs.  相似文献   

18.
Ascorbic acid (AsA) is an inevitable antioxidant found abundantly in higher plants. Despite the importance of AsA in plants, how AsA biosynthesis (ABGs; d-mannose/l-galactose pathway) and AsA recycling genes (ARGs) evolved through polyploidization has not been addressed to date. Here, we evaluated the impacts of whole genome triplication (WGT) on ABGs and ARGs in Chinese cabbage (Brassica rapa ssp. pekinensis), which diverged from Arabidopsis thaliana before the WGT event. Twenty-three ABGs coded in 13 loci representing nine different enzyme classes and 29 ARGs coded in 19 loci representing five different enzyme classes were identified in the B. rapa genome by whole-genome screening through comparative genomic analyses. Five of these loci maintained three gene copies, 10 loci maintained two gene copies and the majority of the loci (n = 17) maintained single gene copies. Segmental (62 %) and tandem duplication (6 %), and fragment (21 %) and large-scale recombination (10 %) events accelerated the diversification of ABGs and ARGs. Thirteen of the 52 (25 %) identified genes experienced intron losses and two (4 %) experienced intron gains implying that intron losses outnumbered intron gains. The expansion and the retention of ABGs and ARGs were similar to the whole genome gene expansion and retention (P > 0.05). These findings provide new insights into the structural characteristics and evolutionary trends of ABGs and ARGs. In addition, our data could become a useful resource to further the functional characterization of these genes.  相似文献   

19.
A new subspecies in sect. Jacea (Mill.) DC., Centaurea cassia Boiss. subsp. dumanii M. Dinç, A. Duran &; B. Bilgili subsp. nov., collected by the authors from South Anatolia, is described and illustrated. The new subspecies is restricted to Abies cilicica (Ant. &; Kotschy) Carr. subsp. cilicica forest above Göller Yaylas? (C6 Adana-Kozan). Diagnostic morphological characters from C. cassia subsp. cassia are discussed. The ecology, biogeography and conservation status of the new taxon are also presented.  相似文献   

20.
Soybean mosaic virus (SMV) causes a substantial decrease in soybean yield and reduction of seed quality. The most effective management strategy to control the virus is the deployment of host resistance. Seven SMV strains and three independent multi-allelic loci for SMV resistance have been identified previously. The goal of this research was to detect single nucleotide polymorphisms (SNPs) associated with SMV resistance at the Rsv4 locus. Ten soybean accessions, with confirmed resistance genes, were used for sequencing the candidate gene Glyma.02g121400. Alignment of these sequences revealed three SNPs displaying 100% consistency for genotypes carrying the Rsv4 gene. These SNPs were applied for a rapid screen of diverse soybean germplasm using the Sequenom iPLEX Gold platform, phenotyped with SMV-G1 and G7 strains to determine phenotype and classified into several groups carrying the proposed R-gene. The population of V94-5152 (Rsv4) × Lee 68 (rsv) was screened using novel SNPs to create a genetic map with improved resolution to determine the location of the Rsv4. To observe the recombination frequencies within the population, three additional SNPs on both sides of the Glyma.02g121400 gene were added. A linkage map revealed a distance of 3.6 cM between the Rsv4 locus and the closest SNP, thus shifting the putative Rsv4 region downstream on chromosome 2. With this region, five candidate genes have been proposed. The genomic position of the discovered SNPs, linked to the Rsv4, could increase screening precision and accelerate breeding efforts to develop multi-strain-resistant crops.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号