首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Extraction of good-quality metagenomic DNA from extreme environments is quite challenging, particularly from high elevation hot spring sediments. Low microbial load, high humic acid content and other contaminants complicate the process of extraction of metagenomic DNA from hot spring sediments. In the present study, efficacy of five manual DNA extraction protocols with modifications has been evaluated for metagenomic DNA extraction from boron–sulfur rich high elevation Puga hot spring sediments. Best suited protocol was identified based on the cell lysis efficiency, DNA yield, humic acid content, PCR reproducibility and representation of bacterial diversity. Quantity as well as quality of crude metagenomic DNA differed remarkably between various protocols used and were not pure enough to give PCR amplification using 16S rRNA bacterial and archaeal primers. Crude metagenomic DNA extracted using five different DNA extraction protocols was purified using spin column based purification method. Even after purification, only three protocols C, D and E yielded metagenomic DNA that could be amplified using both archaeal and bacterial primers. To evaluate the degree of microbial diversity represented by protocols C, D and E, phylogenetic genes amplified were subjected to amplified ribosomal DNA restriction analysis (ARDRA) and denaturing gradient gel electrophoresis analysis (DGGE) analysis. ARDRA banding pattern of amplicons generated for all the three extraction protocols, i.e., C, D and E were found to be similar. DGGE of protocol E derived amplicons resulted in the similar number of dominant bands but a greater number of non-dominant bands, i.e., the highest microbial diversity in comparison to protocols C and D, respectively. In the present study, protocol E developed from Yeates et al. protocol has been found to be best in terms of DNA yield, DNA purity and bacterial diversity depiction associated with boron–sulfur rich sediment of high elevation hot springs.  相似文献   

2.
Successful and accurate analysis and interpretation of metagenomic data is dependent upon the efficient extraction of high-quality, high molecular weight (HMW) community DNA. However, environmental mat samples often pose difficulties to obtaining large concentrations of high-quality, HMW DNA. Hypersaline microbial mats contain high amounts of extracellular polymeric substances (EPS)1 and salts that may inhibit downstream applications of extracted DNA. Direct and harsh methods are often used in DNA extraction from refractory samples. These methods are typically used because the EPS in mats, an adhesive matrix, binds DNA during direct lysis. As a result of harsher extraction methods, DNA becomes fragmented into small sizes. The DNA thus becomes inappropriate for large-insert vector cloning. In order to circumvent these limitations, we report an improved methodology to extract HMW DNA of good quality and quantity from hypersaline microbial mats. We employed an indirect method involving the separation of microbial cells from the background mat matrix through blending and differential centrifugation. A combination of mechanical and chemical procedures was used to extract and purify DNA from the extracted microbial cells. Our protocol yields approximately 2 μg of HMW DNA (35-50 kb) per gram of mat sample, with an A(260/280) ratio of 1.6. Furthermore, amplification of 16S rRNA genes suggests that the protocol is able to minimize or eliminate any inhibitory effects of contaminants. Our results provide an appropriate methodology for the extraction of HMW DNA from microbial mats for functional metagenomic studies and may be applicable to other environmental samples from which DNA extraction is challenging.  相似文献   

3.
Zhao F  Xu K D 《农业工程》2012,32(4):209-214
The evaluation of microbial molecular diversity has been mainly based on the extraction of total DNA from environmental samples. The indirect extraction methods, which have been used for prokaryotes, have never been used to recover soil microeukaryotic DNA. We evaluated the efficiency of an improved indirect DNA extraction protocol developed herein and the direct lysis (the sodium dodecyl sulfate (SDS)-based method and commercial DNA extraction kit) on estimating the molecular diversity of soil microbial eukaryotes. DNA quality and quantity as well as denaturing gradient gel electrophoresis (DGGE) profiles were determined using three soil samples from different stations. The indirect method detected the highest DGGE bands in spite of the low DNA yield. The commercial kit detected a lower number of DGGE bands than the indirect method. The SDS-based method produced the lowest DGGE bands and DNA purity but the highest yield. Using the indirect method, we further evaluated the effect of freezing and air-dried preservations on estimating the microeukaryotic diversity. In spite of the low DNA yield obtained from the air-dried preservation, no significant differences were found in either the number of DGGE bands or the DNA purity between two manners. Our results indicate that the improved indirect method could obtain a high purity of intracellular DNA and high efficiency in the estimation of molecular diversity of soil microbial eukaryotes.  相似文献   

4.
The use of internal standards both during DNA extraction and PCR-DGGE procedure gives the opportunity to analyse the relative abundance of individual species back to the original sample, thereby facilitating relative comparative analysis of diversity. Internal standards were used throughout the DNA extraction and PCR-DGGE to compensate for experimental variability. Such variability causes decreased reproducibility among replicate samples as well as compromise comparisons between samples, since experimental errors cannot be differentiated from actual changes in the community abundance and structure. The use of internal standards during DNA extraction and PCR-DGGE is suitable for ecological and ecotoxicological experiments with microbial communities, where relative changes in the community abundance and structure are studied. We have developed a protocol Internal Standards in Molecular Analysis of Diversity (ISMAD) that is simple to use, inexpensive, rapid to perform and it does not require additional samples to be processed. The internal standard for DNA extraction (ExtrIS) is a fluorescent 510-basepair PCR product which is added to the samples prior to DNA extraction, recovered together with the extracted DNA from the samples and analysed with fluorescence spectrophotometry. The use of ExtrIS during isolation of sample DNA significantly reduced variation among replicate samples. The PCR internal standard (PCR(IS)) originates from the Drosophila melanogaster genome and is a 140-basepair long PCR product, which is amplified by non-competitive primers in the same PCR reaction tubes as the target DNA and analysed together with the target PCR product on the same DGGE gel. The use of PCR(IS) during PCR significantly reduced variation among replicate samples both when assessing total PCR product and when comparing bands representing species on a DGGE gel. The entire ISMAD protocol was shown to accurately describe changes in relative abundance in an environmental sample using PCR-DGGE. It should, however, be mentioned that despite the use of ISMAD some inherent biases still exist in DNA extraction and PCR-DGGE and these should be taken into consideration when interpreting the diversity in a sample based on a DGGE gel.  相似文献   

5.
In this study, we explored methodological aspects of nucleic acid recovery from microbial communities involved in a gas biofilter filled with pine bark woodchips. DNA was recovered indirectly in two steps, comparing different methods: cell dispersion (crushing, shaking, and sonication) and DNA extraction (three commercial kits and a laboratory protocol). The objectives were (a) to optimize cell desorption from the packing material and (b) to compare the 12 combinations of desorption and extraction methods, according to three relevant criteria: DNA yield, DNA purity, and community structure representation by denaturing gradient gel electrophoresis (DGGE). Cell dispersion was not influenced by the operational parameters tested for shaking and blending, while it increased with time for sonication. DNA extraction by the laboratory protocol provided the highest DNA yields, whereas the best DNA purity was obtained by a commercial kit designed for DNA extraction from soil. After successful PCR amplification, the 12 methods did not generate the same bias in microbial community representation. Eight combinations led to high diversity estimation, independently of the experimental procedure. Among them, six provided highly similar DGGE profiles. Two protocols generated a significantly dissimilar community profile, with less diversity. This study highlighted the crucial importance of DNA recovery bias evaluation.  相似文献   

6.
Aims:  To develop total DNA extraction protocol from saline soil for further metagenomic applications.
Methods and Results:  The protocols combine the application of mechanical (Beads and Sonicator) and Soft Lysis (SDS and enzymes) method for the isolation of total DNA from saline soil of coastal Gujarat followed by its quantification and purity assessment. The quality and purity of metagenomic DNA was quite consistent and reliable, although it contained residual concentartions of humic acid. The extracted DNA was used to successfully amplify 16S rRNA region. The amplicons were suitable for further applications such as diversity-based analysis by denaturing gradient gel electrophoresis (DGGE).
Conclusions:  The methods appear to have wide applicability in investigating molecular diversity and exploring functional genes from the total DNA.
Significance and Impact of the Study:  The protocol is simple, short and facilitates rapid isolation of PCR amplifiable total genomic DNA from saline soil. The method yielded good quality of the DNA suitable for metagenomic studies. The results are also significant as only few extreme environments, particularly saline habitats, are explored for their metagenomic potential.  相似文献   

7.
Based on the comparative study of the DNA extracts from two soil samples obtained by three commercial DNA extraction kits, we evaluated the influence of the DNA quantity and purity indices (the absorbance ratios A260/280 and A260/230, as well as the absorbance value A320 indicating the amount of humic substances) on polymerase chain reaction (PCR)-based denaturing gradient gel electrophoresis (DGGE) and a functional gene microarray used in the study of microbial communities. Numbers and intensities of the DGGE bands are more affected by the A260/280 and A320 values than by the ratio A260/230 and conditionally affected by the DNA yield. Moreover, we demonstrated that the DGGE band pattern was also affected by the preferential extraction due to chemical agents applied in the extraction. Unlike DGGE, microarray is more affected by the A260/230 and A320 values. Until now, the successful PCR performance is the mostly used criterion for soil DNA purity. However, since PCR was more influenced by the A260/280 ratio than by A260/230, it is not accurate enough any more for microbial community assessed by non-PCR-based methods such as microarray. This study provides some useful hints on how to choose effective DNA extraction method for the subsequent assessment of microbial community.  相似文献   

8.
An unbiased DNA extraction protocol is necessary for analysis of genetic diversity, particularly, of genes in complex environmental samples by nucleic acid techniques. In the present study, three manual extraction methods and two commonly used commercial kits, which were accompanied by two DNA purification strategies, were compared based on cell lysis efficiency, DNA and humic acid yields, PCR amplification and denaturing gradient gel electrophoresis (DGGE) analysis. The results show that in spite of higher cell lysis efficiencies of the two commercial kits, the purified DNA yields were only one-third of that obtained by the two manual methods of FTSP (Freeze–thaw–SDS–Protein K) and FTSPP (Freeze–thaw–SDS–Protein K-Polyvinylpolypyrrolidone). The purified DNA from all five methods was pure enough for successful PCR and real-time PCR amplifications in the presence of 1 μg μL?1 BSA. However, the FTSPP extraction method with DNA purification by a Wizard® kit yielded the largest number of 16S rRNA gene copies and ribotypes or bands in DGGE profiles, which indicated a superiority over the other four methods. The development of this optimized DNA extraction and purification method may provide a valuable tool for further molecular analysis of compost.  相似文献   

9.
PCR inhibitor-free metagenomic DNA of high quality and high yield was extracted from highly polluted sediments using a simple remediation strategy of adsorption and ion-exchange chromatography. Extraction procedure was optimized with series of steps, which involved gentle mechanical lysis, treatment with powdered activated charcoal (PAC) and ion-exchange chromatography with amberlite resin. Quality of the extracted DNA for molecular diversity analysis was tested by amplifying bacterial 16S rDNA (16S rRNA gene) with eubacterial specific universal primers (8f and 1492r), cloning of the amplified 16S rDNA and ARDRA (amplified rDNA restriction analysis) of the 16S rDNA clones. The presence of discrete differences in ARDRA banding profiles provided evidence for expediency of the DNA extraction protocol in molecular diversity studies. A comparison of the optimized protocol with commercial Ultraclean Soil DNA isolation kit suggested that method described in this report would be more efficient in removing metallic and organic inhibitors, from polluted sediment samples.  相似文献   

10.
Large‐scale DNA molecular studies require reliable and efficient tools for DNA extractions. However, for some plant species and brown algae, isolation of high‐quality DNA is difficult. We developed a novel method for isolating high‐quality DNA from the polysaccharide‐rich and polyphenol‐rich brown algae based on a commercial kit and protocol (Qiagen) by optimizing the lysis step and including a chloroform/isoamyl alcohol supplementary purification step. DNAs from 24 brown algal species extracted using the original and the modified Qiagen protocol were compared for yield, quality, and effectiveness in PCR amplification. There was no significant difference in the yields between protocols. However, a statistically significant increase in DNA purity was obtained with the modified protocol, for which the A260/A280 and A260/A230 absorbance ratios averaged 1.66 ± 0.05 and 1.31 ± 0.01, respectively, compared to 1.37 ± 0.04 and 0.52 ± 0.04 with the original protocol. DNAs extracted by the modified procedure were more successfully amplified by PCR (nuclear, mitochondrial, and chloroplastic regions) than DNAs extracted using the original commercial kit and protocol. Importantly, the modified protocol can be applied in a high‐throughput (e.g., 96‐well plate) format, allowing a higher efficiency for downstream molecular analysis. In addition, improved DNA quality could increase its stability for long‐term storage.  相似文献   

11.
高温环境样品总DNA直接和间接提取方法的比较   总被引:6,自引:0,他引:6  
分别采用两种环境总DNA直接提取法和一种间接提取法从6种温泉菌席样品中提取总DNA,以DNA粗产物的纯度、能否用于后续PCR扩增及PCR-DGGE(变性梯度凝胶电泳)所反映的微生物多样性为评价指标对两类方法进行比较和评价。研究发现,虽然间接提取法效率低下,但对于高温极端环境中生物量较小的样品,间接法能得到有研究价值的、纯度较高的环境样品总DNA,而直接法得到的DNA量小且不适于PCR扩增操作。在使用这2类方法都能得到可用于研究操作的DNA的情况下,间接提取法能更好的体现环境样品中微生物的多样性。  相似文献   

12.
研究确定土壤微生物基因组DNA提取方法、PCR扩增条件、DGGE电泳条件,为进一步研究分析土壤中微生物结构变化规律提供理论依据。土壤微生物基因组DNA提取采用直接法和间接法进行比较; PCR扩增条件调整扩增体系、DGGE电泳条件调整变性剂范围,并对其结果进行比较分析。通过对DGGE电泳相关条件的研究,结果显示,土壤中粗基因组DNA采用直接法提取,然后进行纯化; PCR扩增体系中加入BSA,DGGE电泳系统组成中变性剂浓度范围为35%~55%。确定了土壤微生物基因组DNA提取方法、PCR扩增条件、DGGE电泳条件,为后续的相关研究提供理论依据。  相似文献   

13.
Current protocols to extract genomic DNA from microorganisms are still laborious, tedious and costly, especially for the species with thick cell walls. In order to improve the effectiveness of extracting DNA from microbial samples, a novel protocol, defined as two-step extraction method, along with an improved tissue-grinding device, was developed. The protocol included two steps, disruption of microbial cells or spores by grinding the sample together with silica sand in a new device and extraction of DNA with an effective buffer containing cell lysis chemicals. The device was prepared by using a commercial electric mini-grinder, adapted with a grinding stone, and a sample cup processed by lathing from a polytetrafluoroethylene rod. We tested the method with vegetative cells of four microbial species and two microbial spores that have thick cell walls and are therefore hard to process; these included Escherichia coli JM109, Bacillus subtilis WB600, Sacchromyces cerevisiae INVSc1, Trichoderma viride AS3.3711, and the spores of S. cerevisiae and T. viride, respectively, representing Gram-positive bacteria, Gram-negative bacteria, yeast, filamentous fungi. We found that this new method and device extracted usable quantities of genomic DNA from the samples. The DNA fragments that were extracted exceeded 23 kb. The target sequences up to about 5 kb were successfully and exclusively amplified by PCR using extracted DNA as the template. In addition, the DNA extraction was finalized within 1.5 h. Thus, we conclude that this two-step extraction method is an effective and improved protocol for extraction of genomic DNA from microbial samples.  相似文献   

14.
More than 700 bacterial species inhabit oral cavity of humans. Various oral diseases are related to changes in the structure of this complex community. Their pathogenesis can, thus, be better understood by study of oral microbial flora. As many bacteria are refractory to cultivation, molecular approaches based on PCR followed by downstream analysis are more suitable for community analysis than culture dependent methods. Effective DNA extraction from the sample matrix is a fundamental part of the pre-analytical phase but it can be influenced by processing of the starting material. The aim of this study was to analyze the effects of saliva processing on DNA extraction using several non-commercial isolation procedures. Bacterial chromosomal DNA was extracted from three different sample matrices: fresh saliva, diluted saliva and pelleted saliva using four different extraction methods: phenol chloroform protocol, benzyl-chloride protocol, extraction with Chelex-100 and extraction with Triton X. Extraction from different saliva samples and the use of different extraction methods significantly affected the effectiveness of DNA extraction. The most suitable material for bacterial DNA extraction for molecular analysis is a fresh saliva sample. The most effective methods for isolating salivary DNA are the benzyl-chloride protocol and Chelex-100 extraction. Our results have implications for studies concentrating on salivary microbiome and its role in the pathogenesis of oral diseases.  相似文献   

15.
The construction of a complex genomic library is one of the comprehensive ways to study a complex bacterial community and to access the variety of metabolic pathways present in the rich soil environment. In this report, we developed a new protocol whereby we are able to retrieve nearly complete microbe genomic fragments from soil samples, which are employed to generate a metagenomic library for visualizing the basic scaffolding of the soil microbial community. The use of direct cell lysis within soil-embedded agarose plugs, along with a double-size selection, enabled us to successfully isolate pure and high-molecular weight DNA (0.1-1 Mb) without the need for any further purification. A metagenomic library containing 1.2 Gbp of DNA in total was constructed. Furthermore, analysis of the microbial community structure using 16S rDNA partial sequences found the dominant phylotypes to consist of alpha-Proteobacteria and Actinobacteria, which are similar to those seen in forest and agricultural soils, and numerous uncultured microbes from a wide variety of bacterial taxa as well. In conclusion, this study presents a novel protocol for generating a metagenomic library that carries much larger and diverse DNA fragments from soil bacteria that will be applied for the reconstruction of soil microbial genomes and the discovery of novel habitat-specific pathways.  相似文献   

16.
变性梯度凝胶电泳(DGGE)在微生物生态学中的应用   总被引:47,自引:3,他引:44  
由于从环境样品中分离和培养细菌的困难,分子生物学方法已发展用来描述和鉴定微生物群落。近年来基于DNA方法的群落分析得到了迅速的发展,如PCR扩增技术,克隆文库法,荧光原位杂交法,限制性酶切片段长度多态性法,变性和温度梯度凝胶电泳法。DGGE已广泛用于分析自然环境中细菌、蓝细菌,古菌、微微型真核生物、真核生物和病毒群落的生物多样性。这一技术能够提供群落中优势种类信息和同时分析多个样品。具有可重复和容易操作等特点,适合于调查种群的时空变化,并且可通过对切下的带进行序列分析或与特异性探针杂交分析鉴定群落成员。DGGE分析微生物群落的一般步骤如下:一是核酸的提取,二是16S rRNA,18S rRNA或功能基因如可容性甲烷加单氧酶羟化酶基因(mmoX)和氨加单氧酶a一亚单位基因(amoA)片段的扩增,三是通过DGGE分析PCR产物。DGGE使用具有化学变性剂梯度的聚丙烯酰胺凝胶,该凝胶能够有区别的解链PCR扩增产物。由PCR产生的不同的DNA片段长度相同但核苷酸序列不同。因此不同的双链DNA片段由于沿着化学梯度的不同解链行为将在凝胶的不同位置上停止迁移。DNA解链行为的不同导致一个凝胶带图案,该图案是微生物群落中主要种类的一个轮廓。DGGE使用所有生物中保守的基因片段如细菌中的16S rRNA基因片段和真菌中的18S rRNA基因片段。然而同其他分子生物学方法一样,DGGE也有缺陷,其中之一是只能分离较小的片段,使用于系统发育分析比较和探针设计的序列信息量受到了限制。在某些情况下,由于所用基因的多拷贝导致一个种类多于一条带,因此不易鉴定群落结构到种的水平。此外,该技术具有内在的如单一细菌种类16S rDNA拷贝之间的异质性问题,可导致自然群落中微生物数量的过多估计。DGGE是分析微生物群落的一种有力的工具。不过为了减少DGGE和其它技术的缺陷,建议研究者结合DGGE和其它分子及微生物学方法以便更详细的观察微生物的群落结构和功能。  相似文献   

17.
A protocol for efficient extraction of fungal DNA from micromycetes colonising painted art objects was developed. Polymerase chain reaction (PCR) inhibitors were successfully removed by a combined application of a Chelex-100 adsorption resin and a Geneclean Kit for Ancient DNA. Universal fungal primers for PCR amplification of 28S rDNA (U1 and U2) were tested for their applicability in denaturing gradient gel electrophoresis (DGGE) analysis of fungal communities. Artificially produced mortar samples inoculated with fungal pure cultures isolated from mural paintings were used as model objects for DNA extractions and DGGE analysis. Good resolution in DGGE was achieved using 260-bp rDNA fragments amplified with U1/DGGE and U2 primers directly from model communities.  相似文献   

18.
The widespread use of molecular techniques in studying microbial communities has greatly enhanced our understanding of microbial diversity and function in the natural environment and contributed to an explosion of novel commercially viable enzymes. One of the most promising environments for detecting novel processes, enzymes, and microbial diversity is hot springs. We examined potential biases introduced by DNA preservation and extraction methods by comparing the quality, quantity, and diversity of environmental DNA samples preserved and extracted by commonly used methods. We included samples from sites representing the spectrum of environmental conditions that are found in Yellowstone National Park thermal features. Samples preserved in a non-toxic sucrose lysis buffer (SLB), along with a variation of a standard DNA extraction method using CTAB resulted in higher quality and quantity DNA than the other preservation and extraction methods tested here. Richness determined using DGGE revealed that there was some variation within replicates of a sample, but no statistical difference among the methods. However, the sucrose lysis buffer preserved samples extracted by the CTAB method were 15-43% more diverse than the other treatments.  相似文献   

19.

Background

Microbial life dominates the earth, but many species are difficult or even impossible to study under laboratory conditions. Sequencing DNA directly from the environment, a technique commonly referred to as metagenomics, is an important tool for cataloging microbial life. This culture-independent approach involves collecting samples that include microbes in them, extracting DNA from the samples, and sequencing the DNA. A sample may contain many different microorganisms, macroorganisms, and even free-floating environmental DNA. A fundamental challenge in metagenomics has been estimating the abundance of organisms in a sample based on the frequency with which the organism''s DNA was observed in reads generated via DNA sequencing.

Methodology/Principal Findings

We created mixtures of ten microbial species for which genome sequences are known. Each mixture contained an equal number of cells of each species. We then extracted DNA from the mixtures, sequenced the DNA, and measured the frequency with which genomic regions from each organism was observed in the sequenced DNA. We found that the observed frequency of reads mapping to each organism did not reflect the equal numbers of cells that were known to be included in each mixture. The relative organism abundances varied significantly depending on the DNA extraction and sequencing protocol utilized.

Conclusions/Significance

We describe a new data resource for measuring the accuracy of metagenomic binning methods, created by in vitro-simulation of a metagenomic community. Our in vitro simulation can be used to complement previous in silico benchmark studies. In constructing a synthetic community and sequencing its metagenome, we encountered several sources of observation bias that likely affect most metagenomic experiments to date and present challenges for comparative metagenomic studies. DNA preparation methods have a particularly profound effect in our study, implying that samples prepared with different protocols are not suitable for comparative metagenomics.  相似文献   

20.
Accessing the soil metagenome for studies of microbial diversity   总被引:1,自引:0,他引:1  
Soil microbial communities contain the highest level of prokaryotic diversity of any environment, and metagenomic approaches involving the extraction of DNA from soil can improve our access to these communities. Most analyses of soil biodiversity and function assume that the DNA extracted represents the microbial community in the soil, but subsequent interpretations are limited by the DNA recovered from the soil. Unfortunately, extraction methods do not provide a uniform and unbiased subsample of metagenomic DNA, and as a consequence, accurate species distributions cannot be determined. Moreover, any bias will propagate errors in estimations of overall microbial diversity and may exclude some microbial classes from study and exploitation. To improve metagenomic approaches, investigate DNA extraction biases, and provide tools for assessing the relative abundances of different groups, we explored the biodiversity of the accessible community DNA by fractioning the metagenomic DNA as a function of (i) vertical soil sampling, (ii) density gradients (cell separation), (iii) cell lysis stringency, and (iv) DNA fragment size distribution. Each fraction had a unique genetic diversity, with different predominant and rare species (based on ribosomal intergenic spacer analysis [RISA] fingerprinting and phylochips). All fractions contributed to the number of bacterial groups uncovered in the metagenome, thus increasing the DNA pool for further applications. Indeed, we were able to access a more genetically diverse proportion of the metagenome (a gain of more than 80% compared to the best single extraction method), limit the predominance of a few genomes, and increase the species richness per sequencing effort. This work stresses the difference between extracted DNA pools and the currently inaccessible complete soil metagenome.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号