首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The elite Indian rice hybrid, DRRH3 is highly susceptible to two major diseases, bacterial blight (BB) and blast, which limit its productivity significantly. In the present study, we have introgressed two major genes, viz., Xa21 and Pi54 conferring resistance against BB and blast, respectively into RPHR-1005, the male parent of DRRH3 through marker-assisted backcross breeding (MABB) and analyzed the backcross derived plants for their resistance against BB and blast. RPBio Patho-2 was used as a donor for both the resistance genes. Gene-specific markers were used for the foreground selection of Xa21 and Pi54 at each stage of backcrossing and markers specific for the major fertility restorer genes, Rf3 and Rf4 were used only at BC1F1 generation for foreground selection. Background selection was done using 62 polymorphic SSR markers and marker-assisted backcrossing was continued till BC3 generation. At BC3F4, through intensive phenotype-based selections 15 promising lines (ABLs) possessing high level of resistance against BB and blast, high yield, fine-grain type, complete fertility restoration along with better panicle exsertion and taller plant type as compared to RPHR-1005 were identified and test crossed with APMS 6 A, the female parent of DRRH3. The newly derived hybrids (i.e. improved versions of DRRH3) were observed to possess high level of resistance against BB and blast along with medium-slender grain type and yield level better than or equivalent to that of DRRH3. Our study exemplifies the utility of MABB for targeted improvement of multiple traits in hybrid rice.  相似文献   

2.
Using gliadins as genetic markers, Triticum spelta L. var. caeruleum accessions were analyzed to identify genetic control of the dark color of glumes. The research material was F2 and BC1 plants from crosses between spelt accessions and white-glumed common wheat varieties. The segregation for glume color fitted the monogenic control of the trait. The electrophoretic analysis of gliadins in grains from the hybrid plants has shown that the Gli-Alj* allele in the T. spelta var. caeruleum accessions is linked to the allele for the dark (black) color of glumes at the Rg-A1 locus.  相似文献   

3.

Key message

Allocation of the chromosome 2D of Ae. tauschii in triticale background resulted in changes of its organization, what is related to varied expression of genes determining agronomically important traits.

Abstract

Monosomic alien addition lines (MAALs) are crucial for transfer of genes from wild relatives into cultivated varieties. This kind of genetic stocks is used for physical mapping of specific chromosomes and analyzing alien genes expression. The main aim of our study is to improve hexaploid triticale by transferring D-genome chromatin from Aegilops tauschii × Secale cereale (2n = 4x = 28, DDRR). In this paper, we demonstrate the molecular cytogenetics analysis and SSR markers screening combined with phenotype analysis and evaluation of powdery mildew infection of triticale monosomic addition lines carrying chromosome 2D of Ae. tauschii. We confirmed the inheritance of chromosome 2D from the BC2F4 to the BC2F6 generation of triticale hybrids. Moreover, we unveiled a high variable region on the short arm of chromosome 2D, where chromosome rearrangements were mapped. These events had direct influence on plant height of hybrids what might be connected with changes at Rht8 loci. We obtained 20 semi-dwarf plants of BC2F6 generation carrying 2D chromosome with the powdery mildew resistance, without changes in spike morphology, which can be used in the triticale breeding programs.
  相似文献   

4.
MTU 1010 is a high-yielding mega-variety of rice grown extensively in India. However, it does not perform well in soils with low phosphorus (P) levels. With an objective to improve MTU 1010 for tolerance to low soil P, we have transferred Pup1, a major quantitative trait locus (QTL) associated with tolerance from another mega-variety, Swarna, through marker-assisted backcross breeding (MABB). Foreground selection of the F1 and backcross plants was performed with the co-dominant, closely linked CAPS marker, K20-2, while two flanking markers RM28011 and RM28157 were utilized for recombinant selection. At each backcross generation, positive plants were also analyzed with a set of 85 parental polymorphic SSR markers to identify the QTL-positive plants possessing maximum introgression of MTU 1010 genome. At BC2F1, the best backcross plant was selfed to generate BC2F2s. Among them, the plants homozygous for Pup1 (n?=?22) were reconfirmed using the functional marker for Pup1, viz., K46-1, and they were advanced through pedigree method of selection until BC2F6 generation. A total of five elite BC2F6 lines, possessing Pup1 and phenotypically similar to MTU 1010, were screened in the low soil P plot and normal plot (with optimum soil P levels) during wet season, 2016. All the selected lines showed better performance under low P soil with more number of productive tillers, better root system architecture, and significantly higher yield (>?390%) as compared to MTU 1010. Further, under normal soil, the lines were observed to be similar to or better than MTU 1010 for most of the agro-morphological traits and yield. This study represents the successful application of marker-assisted selection for improvement of tolerance to low soil P in a high-yielding Indian rice variety.  相似文献   

5.
Species in the fungal family Botryosphaeriaceae are significant pathogens of peach. The climatic conditions in the Southeastern USA are conducive to the development of peach fungal gummosis (PFG) with an estimated yield reduction of up to 40% in severe cases. Genotypes with resistance to this PFG were identified in interspecific crosses and segregating backcross populations generated using Kansu peach (Prunus kansuensis Rehder), almond [Prunus dulcis (Mill.) D.A. Webb], and peach [Prunus persica (L.) Batsch]. Hybrids were evaluated for four consecutive years in field conditions. Data generated was validated in different environments using clonal replicates of the hybrids. The F1 and BC1F1 segregation population data suggest a dominant allele for PFG resistance originating from almond. Segregation and mapping analysis located the PFG resistance locus on a chimeric linkage groups 6–8 near the leaf color locus. The molecular markers identified will facilitate marker-assisted selection (MAS) and introgression of this resistance trait into commercial peach germplasm.  相似文献   

6.

Key message

A new downy mildew resistance gene, Pl 19 , was identified from wild Helianthus annuus accession PI 435414, introduced to confection sunflower, and genetically mapped to linkage group 4 of the sunflower genome.

Abstract

Wild Helianthus annuus accession PI 435414 exhibited resistance to downy mildew, which is one of the most destructive diseases to sunflower production globally. Evaluation of the 140 BC1F2:3 families derived from the cross of CMS CONFSCLB1 and PI 435414 against Plasmopara halstedii race 734 revealed that a single dominant gene controls downy mildew resistance in the population. Bulked segregant analysis conducted in the BC1F2 population with 860 simple sequence repeat (SSR) markers indicated that the resistance derived from wild H. annuus was associated with SSR markers located on linkage group (LG) 4 of the sunflower genome. To map and tag this resistance locus, designated Pl 19 , 140 BC1F2 individuals were used to construct a linkage map of the gene region. Two SSR markers, ORS963 and HT298, were linked to Pl 19 within a distance of 4.7 cM. After screening 27 additional single nucleotide polymorphism (SNP) markers previously mapped to this region, two flanking SNP markers, NSA_003564 and NSA_006089, were identified as surrounding the Pl 19 gene at a distance of 0.6 cM from each side. Genetic analysis indicated that Pl 19 is different from Pl 17 , which had previously been mapped to LG4, but is closely linked to Pl 17 . This new gene is highly effective against the most predominant and virulent races of P. halstedii currently identified in North America and is the first downy mildew resistance gene that has been transferred to confection sunflower. The selected resistant germplasm derived from homozygous BC2F3 progeny provides a novel gene for use in confection sunflower breeding programs.
  相似文献   

7.

Key message

A novel powdery mildew-resistance gene, designated Pm58, was introgressed directly from Aegilops tauschii to hexaploid wheat, mapped to chromosome 2DS, and confirmed to be effective under field conditions. Selectable KASP? markers were developed for MAS.

Abstract

Powdery mildew caused by Blumeria graminis (DC.) f. sp. tritici (Bgt) remains a significant threat to wheat (Triticum aestivum L.) production. The rapid breakdown of race-specific resistance to Bgt reinforces the need to identify novel sources of resistance. The d-genome species, Aegilops tauschii, is an excellent source of disease resistance that is transferrable to T. aestivum. The powdery mildew-resistant Ae. tauschii accession TA1662 (2n?=?2x?=?DD) was crossed directly with the susceptible hard white wheat line KS05HW14 (2n?=?6x?=?AABBDD) followed by backcrossing to develop a population of 96 BC2F4 introgression lines (ILs). Genotyping-by-sequencing was used to develop a genome-wide genetic map that was anchored to the Ae. tauschii reference genome. A detached-leaf Bgt assay was used to screen BC2F4:6 ILs, and resistance was found to segregate as a single locus (χ?=?2.0, P value?=?0.157). The resistance gene, referred to as Pm58, mapped to chromosome 2DS. Pm58 was evaluated under field conditions in replicated trials in 2015 and 2016. In both years, a single QTL spanning the Pm58 locus was identified that reduced powdery mildew severity and explained 21% of field variation (P value?<?0.01). KASP? assays were developed from closely linked GBS-SNP markers, a refined genetic map was developed, and four markers that cosegregate with Pm58 were identified. This novel source of powdery mildew-resistance and closely linked genetic markers will support efforts to develop wheat varieties with powdery mildew resistance.
  相似文献   

8.
9.
Cabbage (Brassica oleracea var. capitata L.) is one of the most popular cultivated vegetables worldwide. Cabbage has rich phenotypic diversity, including plant height, head shape, head color, leaf shape and leaf color. Leaf color plays an important role in cabbage growth and development. At present, there are few reports on fine mapping of leaf color mutants in B. oleracea. In this study, a naturally occurring yellow-green leaf cabbage mutant (YL-1), derived from the self-pollinated progenies of the hybrid ‘Hosom’, was used for inheritance analysis and gene mapping. Segregation populations including F2 and BC1 were generated from the cross of two inbred lines, YL-1 and 01–20. Genetic analysis with the F2 and BC1 populations demonstrated that the yellow-green leaf color was controlled by a single recessive nuclear gene, ygl-1. Insertion–deletion (InDel) markers, designed based on the parental re-sequencing data, were used for the preliminary mapping with BSA (bulked segregant analysis) method. A genetic map constructed with 15 InDels indicated that ygl-1 was located on chromosome C01. The ygl-1 gene is flanked by InDel markers ID2 and M8, with genetic distances of 0.4 cM and 0.35 cM, respectively. The interval distance between two markers is 167 kb. Thus, it enables us to locate the ygl-1 gene for the first time in B. oleracea. This study lays the foundation for candidate gene prediction and ygl-1gene cloning.  相似文献   

10.

Key message

The QTL qCTB10 - 2 controlling cold tolerance at the booting stage in rice was delimited to a 132.5 kb region containing 17 candidate genes and 4 genes were cold-inducible.

Abstract

Low temperature at the booting stage is a major abiotic stress-limiting rice production. Although some QTL for cold tolerance in rice have been reported, fine mapping of those QTL effective at the booting stage is few. Here, the near-isogenic line ZL31-2, selected from a BC7F2 population derived from a cross between cold-tolerant variety Kunmingxiaobaigu (KMXBG) and the cold-sensitive variety Towada, was used to map a QTL on chromosome 10 for cold tolerance at the booting stage. Using BC7F3 and BC7F4 populations, we firstly confirmed qCTB10-2 and gained confidence that it could be fine mapped. QTL qCTB10-2 explained 13.9 and 15.9% of the phenotypic variances in those two generations, respectively. Using homozygous recombinants screened from larger BC7F4 and BC7F5 populations, qCTB10-2 was delimited to a 132.5 kb region between markers RM25121 and MM0568. 17 putative predicted genes were located in the region and only 5 were predicted to encode expressed proteins. Expression patterns of these five genes demonstrated that, except for constant expression of LOC_Os10g11820, LOC_Os10g11730, LOC_Os10g11770, and LOC_Os10g11810 were highly induced by cold stress in ZL31-2 compared to Towada, while LOC_Os10g11750 showed little difference. Our results provide a basis for identifying the genes underlying qCTB10-2 and indicate that markers linked to the qCTB10-2 locus can be used to improve the cold tolerance of rice at the booting stage by marker-assisted selection.
  相似文献   

11.
The tuberous stem of kohlrabi is an important quantitative trait, which affects its yield and quality. Genetic control of this trait has not yet been unveiled. To identify the QTLs controlling stem swelling of kohlrabi, a BC1 population of 92 plants was developed from a cross of broccoli DH line GCP04 and kohlrabi var. Seine. A wide range of variation in tuberous stem diameter was observed among the mapping populations. We constructed a genetic map of nine linkage groups (LGs) with different types of markers, spanning a total length of 913.5 cM with an average marker distance of 7.55 cM. Four significant QTLs for radial enlargement of kohlrabi stem, namely, REnBo1, REnBo2, REnBo3, and REnBo4 were detected on C02, C03, C05, and C09, respectively, and accounted for the phenotypic variation of 59% for the stem diameter and 55% for the qualitative grading of tuberous stem in classes. Then, we confirmed the stability of identified QTLs using BC1S1 populations derived from the BC1 plants having heterozygous alleles at the target QTL and homozygous kohlrabi alleles at the remaining QTLs. REnBo1and REnBo2 using 128 plants of BC168S1 and 94 plants of BC143S1, respectively, and REnBo3 and REnBo4 using 152 plants of BC157S1 were detected at the same positions as the respective QTLs of the BC1 population. Confirmation of QTLs in two successive generations indicates that the QTLs are persistent. The QTLs obtained in this study could be useful in marker-assisted selection of kohlrabi breeding, and to understand the genetic mechanisms of stem swelling and storage organ development in kohlrabi and other Brassica species.  相似文献   

12.
Grain weight, one of the important factors to determine corn yield, is a typical quantitative inheritance trait. However, the molecular genetic basis of grain weight still remains limited. In our previous researches, a major QTL associated with grain weight, qGW1.05, has been identified between SSR markers umc1601 and umc1754 at bin locus 1.05–1.06 in maize. Here, its genetic and environmental stabiliteis were verified using a BC3F2 population to identify the effect of qGW1.05 on grain weight. Further, qGW1.05-NILs were obtained by MAS successfully. Via a large BC6F2 segregation population, together with polymorphic microsatellite markers developed between the parents to screen the genotype of the recombinant plants, qGW1.05 was positioned to a 1.11 Mb genome interval. Furthermore, the progenies of 15 recombinants were tested to confirm the effect of qGW1.05 on grain weight. Combining collinearity among cereal crops and genome annotation, the several candidate genes taking part in grain development were identified in the qGW1.05 region. In this study, qGW1.05 was limited to a 1.11 Mb region on chromosome 1, which established the foundation for understanding the molecular basis underlying kernel development and improving grain weight through MAS using the tightly flanking molecular markers in maize.  相似文献   

13.

Key message

We report the development and characterization of Brassica oleracea - nigra monosomic alien addition lines (MAALs) to dissect the Brassica B genome.

Abstract

Brassica nigra (2n = 16, BB) represents the diploid Brassica B genome which carries many useful genes and traits for breeding but received limited studies. To dissect the B genome from B. nigra, the triploid F1 hybrid (2n = 26, CCB) obtained previously from the cross B. oleracea var. alboglabra (2n = 18, CC) × B. nigra was used as the maternal parent and backcrossed successively to parental B. oleracea. The progenies in BC1 to BC3 generations were analyzed by the methods of FISH and SSR markers to screen the monosomic alien addition lines (MAALs) with each of eight different B-genome chromosomes added to C genome (2n = 19, CC + 1B1?8), and seven different MAALs were established, except for the one with chromosome B2 which existed in one triple addition. Most of these MAALs were distinguishable morphologically from each other, as they expressed the characters from B. nigra differently and at variable extents. The alien chromosome remained unpaired as a univalent in 86.24% pollen mother cells at diakinesis or metaphase I, and formed a trivalent with two C-genome chromosomes in 13.76% cells. Transmission frequency of all the added chromosomes was far higher through the ovules (averagely 14.40%) than the pollen (2.64%). The B1, B4 and B5 chromosomes were transmitted by female at much higher rates (22.38–30.00%) than the other four (B3, B6, B7, B8) (5.04–8.42%). The MAALs should be valuable for exploiting the genome structure and evolution of B. nigra.
  相似文献   

14.

Key message

Markers linked to stem rust resistance gene Sr47 were physically mapped in three small Aegilops speltoides chromosomal bins. Five markers, including two PCR-based SNP markers, were validated for marker-assisted selection.

Abstract

In durum wheat (Triticum turgidum subsp. durum), the gene Sr47 derived from Aegilops speltoides conditions resistance to race TTKSK (Ug99) of the stem rust pathogen (Puccinia graminis f. sp. tritici). Sr47 is carried on small interstitial translocation chromosomes (Ti2BL-2SL-2BL·2BS) in which the Ae. speltoides chromosome 2S segments are divided into four bins in genetic stocks RWG35, RWG36, and RWG37. Our objective was to physically map molecular markers to bins and to determine if any of the molecular markers would be useful in marker-assisted selection (MAS). Durum cultivar Joppa was used as the recurrent parent to produce three BC2F2 populations. Each BC2F2 plant was genotyped with markers to detect the segment carrying Sr47, and stem rust testing of BC2F3 progeny with race TTKSK confirmed the genotyping. Forty-nine markers from published sources, four new SSR markers, and five new STARP (semi-thermal asymmetric reverse PCR) markers, were evaluated in BC2F2 populations for assignment of markers to bins. Sr47 was mapped to bin 3 along with 13 markers. No markers were assigned to bin 1; however, 7 and 13 markers were assigned to bins 2 and 4, respectively. Markers Xrwgs38a, Xmag1729, Xwmc41, Xtnac3119, Xrwgsnp1, and Xrwgsnp4 were found to be useful for MAS of Sr47. However, STARP markers Xrwgsnp1 and Xrwgsnp4 can be used in gel-free systems, and are the preferred markers for high-throughput MAS. The physical mapping data from this study will also be useful for pyramiding Sr47 with other Sr genes on chromosome 2B.
  相似文献   

15.

Key message

Pm62, a novel adult-plant resistance (APR) gene against powdery mildew, was transferred from D. villosum into common wheat in the form of Robertsonian translocation T2BS.2VL#5.

Abstract

Powdery mildew, which is caused by the fungus Blumeria graminis f. sp. tritici, is a major disease of wheat resulting in substantial yield and quality losses in many wheat production regions of the world. Introgression of resistance from wild species into common wheat has application for controlling this disease. A Triticum durum-Dasypyrum villosum chromosome 2V#5 disomic addition line, N59B-1 (2n?=?30), improved resistance to powdery mildew at the adult-plant stage, which was attributable to chromosome 2V#5. To transfer this resistance into bread wheat, a total of 298 BC1F1 plants derived from the crossing between N59B-1 and Chinese Spring were screened by combined genomic in situ hybridization and fluorescent in situ hybridization, 2V-specific marker analysis, and reaction to powdery mildew to confirm that a dominant adult-plant resistance gene, designated as Pm62, was located on chromosome 2VL#5. Subsequently, the 2VL#5 (2D) disomic substitution line (NAU1825) and the homozygous T2BS.2VL#5 Robertsonian translocation line (NAU1823), with normal plant vigor and full fertility, were identified by molecular and cytogenetic analyses of the BC1F2 generation. The effects of the T2BS.2VL#5 recombinant chromosome on agronomic traits were also evaluated in the F2 segregation population. The results suggest that the translocated chromosome may have no distinct effect on plant height, 1000-kernel weight or flowering period, but a slight effect on spike length and seeds per spike. The translocation line NAU1823 has being utilized as a novel germplasm in breeding for powdery mildew resistance, and the effects of the T2BS.2VL#5 recombinant chromosome on yield-related and flour quality characters will be further assessed.
  相似文献   

16.
The brown planthopper (Nilaparvata lugens Stål; BPH) has become a severe constraint on rice production. Identification and pyramiding BPH-resistance genes is an economical and effective solution to increase the resistance level of rice varieties. All the BPH-resistance genes identified to date have been from indica rice or wild species. The BPH12 gene in the indica rice accession B14 is derived from the wild species Oryza latifolia. Using an F2 population from a cross between the indica cultivar 93-11 and B14, we mapped the BPH12 gene to a 1.9-cM region on chromosome 4, flanked by the markers RM16459 and RM1305. In this population, BPH12 appeared to be partially dominant and explained 73.8% of the phenotypic variance in BPH resistance. A near-isogenic line (NIL) containing the BPH12 locus in the background of the susceptible japonica variety Nipponbare was developed and crossed with a NIL carrying BPH6 to generate a pyramid line (PYL) with both genes. BPH insects showed significant differences in non-preference in comparisons between the lines harboring resistance genes (NILs and PYL) and Nipponbare. BPH growth and development were inhibited and survival rates were lower on the NIL-BPH12 and NIL-BPH6 plants compared to the recurrent parent Nipponbare. PYL-BPH6 + BPH12 exhibited 46.4, 26.8 and 72.1% reductions in population growth rates (PGR) compared to NIL-BPH12, NIL-BPH6 and Nipponbare, respectively. Furthermore, insect survival rates were the lowest on the PYL-BPH6 + BPH12 plants. These results demonstrated that pyramiding different BPH-resistance genes resulted in stronger antixenotic and antibiotic effects on the BPH insects. This gene pyramiding strategy should be of great benefit for the breeding of BPH-resistant japonica rice varieties.  相似文献   

17.

Key message

QTLs for fiber length mapped in three generations of advanced backcross populations derived from crossing Gossypium hirsutum and Gossypium mustelinum showed opportunities to improve elite cottons by introgression from wild relatives.

Abstract

The molecular basis of cotton fiber length in crosses between Gossypium hirsutum and Gossypium mustelinum was dissected using 21 BC3F2 and 12 corresponding BC3F2:3 and BC3F2:4 families. Sixty-five quantitative trait loci (QTLs) were detected by one-way analysis of variance. The QTL numbers detected for upper-half mean length (UHM), fiber uniformity index (UI), and short fiber content (SFC) were 19, 20, and 26 respectively. Twenty-three of the 65 QTLs could be detected at least twice near adjacent markers in the same family or near the same markers across different families/generations, and 32 QTLs were detected in both one-way variance analyses and mixed model-based composite interval mapping. G. mustelinum alleles increased UHM and UI and decreased SFC for five, one, and one QTLs, respectively. In addition to the main-effect QTLs, 17 epistatic QTLs were detected which helped to elucidate the genetic basis of cotton fiber length. Significant among-family genotypic effects were detected at 18, 16, and 16 loci for UHM, UI, and SFC, respectively. Six, two, and two loci showed genotype?×?family interaction for UHM, UI and SFC, respectively, illustrating complexities that might be faced in introgression of exotic germplasm into cultivated cotton. Co-location of many QTLs for UHM, UI, and SFC accounted for correlations among these traits, and selection of these QTLs may improve the three traits simultaneously. The simple sequence repeat (SSR) markers associated with G. mustelinum QTLs will assist breeders in transferring and maintaining valuable traits from this exotic source during cultivar development.
  相似文献   

18.

Key message

We identified, fine mapped, and physically anchored a dominant spot blotch susceptibility gene Scs6 to a 125 kb genomic region containing the Mla locus on barley chromosome 1H.

Abstract

Spot blotch caused by Cochliobolus sativus is an important disease of barley, but the molecular mechanisms underlying resistance and susceptibility to the disease are not well understood. In this study, we identified and mapped a gene conferring susceptibility to spot blotch caused by the pathotype 2 isolate (ND90Pr) of C. sativus in barley cultivar Bowman. Genetic analysis of F1 and F2 progeny as well as F3 families from a cross between Bowman and ND 5883 indicated that a single dominant gene (designated as Scs6) conferred spot blotch susceptibility in Bowman. Using a doubled haploid (DH) population derived from a cross between Calicuchima-sib (resistant) and Bowman-BC (susceptible), we confirmed that Scs6, contributed by Bowman-BC, was localized at the same locus as the previously identified spot blotch resistance allele Rcs6, which was contributed by Calicuchima-sib and mapped on the short arm of chromosome 1H. Using a genome-wide putative linear gene index of barley (Genome Zipper), 13 cleaved amplified polymorphism markers were developed from 11 flcDNA and two EST sequences and mapped to the Scs6/Rcs6 region on a linkage map constructed with the DH population. Further fine mapping with markers developed from barley genome sequences and F2 recombinants derived from Bowman?×?ND 5883 and Bowman?×?ND B112 crosses delimited Scs6 in a 125 kb genomic interval harboring the Mla locus on the reference genome of barley cv. Morex. This study provides a foundational step for further cloning of Scs6 using a map-based approach.
  相似文献   

19.

Key message

Map-based cloning identified a candidate gene for resistance to the anthracnose fungal pathogen Colletotrichum orbiculare in cucumber, which reveals a novel function for the highly conserved STAYGREEN family genes for host disease resistance in plants.

Abstract

Colletotrichum orbiculare is a hemibiotrophic fungal pathogen that causes anthracnose disease in cucumber and other cucurbit crops. No host resistance genes against the anthracnose pathogens have been cloned in crop plants. Here, we reported fine mapping and cloning of a resistance gene to the race 1 anthracnose pathogen in cucumber inbred lines Gy14 and WI 2757. Phenotypic and QTL analysis in multiple populations revealed that a single recessive gene, cla, was underlying anthracnose resistance in both lines, but WI2757 carried an additional minor-effect QTL. Fine mapping using 150 Gy14?×?9930 recombinant inbred lines and 1043 F2 individuals delimited the cla locus into a 32 kb region in cucumber Chromosome 5 with three predicted genes. Multiple lines of evidence suggested that the cucumber STAYGREEN (CsSGR) gene is a candidate for the anthracnose resistance locus. A single nucleotide mutation in the third exon of CsSGR resulted in the substitution of Glutamine in 9930 to Arginine in Gy14 in CsSGR protein which seems responsible for the differential anthracnose inoculation responses between Gy14 and 9930. Quantitative real-time PCR analysis indicated that CsSGR was significantly upregulated upon anthracnose pathogen inoculation in the susceptible 9930, while its expression was much lower in the resistant Gy14. Investigation of allelic diversities in natural cucumber populations revealed that the resistance allele in almost all improved cultivars or breeding lines of the U.S. origin was derived from PI 197087. This work reveals an unknown function for the highly conserved STAYGREEN (SGR) family genes for host disease resistance in plants.
  相似文献   

20.
The major quantitative trait locus qBR9.1 confers broad-spectrum resistance to rice blast, and was mapped to a ~69.1 kb region on chromosome 9 that was inherited from resistant variety Sanhuangzhan No 2 (SHZ-2). Within this region, only one predicted disease resistance gene with nucleotide binding site and leucine-rich repeat (NBS-LRR) domains was found. Specific markers corresponding to this gene cosegregated with blast resistance in F2 and F3 populations derived from crosses of susceptible variety Texianzhan 13 (TXZ-13) to SHZ-2 and the resistant backcross line BC-10. We tentatively designate the gene as Pi56(t). Sequence analysis revealed that Pi56(t) encodes an NBS-LRR protein composed of 743 amino acids. Pi56(t) was highly induced by blast infection in resistant lines SHZ-2 and BC-10. The corresponding allele of Pi56(t) in the susceptible line TXZ-13 encodes a protein with an NBS domain but without LRR domain, and it was not induced by Magnaporthe oryzae infection. Three new cosegregating gene-specific markers, CRG4-1, CRG4-2 and CRG4-3, were developed. In addition, we evaluated polymorphism of the gene-based markers among popular varieties from national breeding programs in Asia and Africa. The presence of the CRG4-2 SHZ-2 allele cosegregated with a blast-resistant phenotype in two BC2F1 families of SHZ-2 crossed to recurrent parents IR64-Sub1 and Swarna-Sub1. CRG4-1 and CRG4-3 showed clear polymorphism among 19 varieties, suggesting that they can be used in marker-assisted breeding to combine Pi56(t) with other target genes in breeding lines.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号