首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Despite being a unique marker trait, white flower inheritance in Brassica juncea remains poorly understood at the gene level. In this study, we investigated a B. juncea landrace with white petal in China. The white petal phenotype possessed defective chromoplasts with less plastoglobuli than the yellow petal phenotype. Genetic analysis confirmed that two independent recessive genes (Bjpc1 and Bjpc2) controlled the white flower trait. We then mapped the BjPC1 gene in a BC4 population comprising 2295 individuals. We identified seven AFLP (amplified fragment length polymorphism) markers closely linked to the white flower gene. BLAST search revealed the sequence of AFLP fragments were highly homologous with the Scaffold000085 and Scaffold000031 sequences on the A02 chromosome in the Brassica rapa genome. Based on this sequence homology, we developed simple sequence repeat (SSR) primer pairs and identified 13 SSRs linked to the BjPC1 gene, including two that were co-segregated (SSR9 and SSR10). The two closest markers (SSR4 and SSR11) were respectively 0.9 and 0.4 cM on either side of BjPC1. BLAST analysis revealed that these marker sequences corresponded highly to A02 in B. juncea. They were mapped within a 33 kb genomic region on B. rapa A02 (corresponds to a 40 kb genomic region on B. juncea A02) that included three genes. Sequence BjuA008406, homologous to AtPES2 in Arabidopsis thaliana and Bra032956 in B. rapa, was the most likely candidate for BjPC1. These results should accelerate BjPC1 cloning and facilitate our understanding of the molecular mechanisms controlling B. juncea petal color.  相似文献   

2.
Natural root-knot nematode resistance genes are unique resources to control this major pest in pepper (Capsicum annuum). Although four genes (Me1, Me3, Me7 and N) conferring broad-spectrum resistance were mapped to a cluster in a 28-cm interval on chromosome P9, limited markers targeting this region were available. In the present study, the Me-gene cluster was structurally annotated for resistance genes to develop markers targeting the N gene. As a result, the Me-gene cluster (4.07 Mb in size) was found to contain three resistance gene hotspots. In addition, a SSR maker tightly linked to the N gene (0.8 cM away) was developed for marker-assisted selection in pepper.  相似文献   

3.

Key message

A total of 204,439 SSR markers were developed in diploid genomes, and 25 QTLs for shelling percentage were identified in a RIL population across 4 years including five consistent QTLs.

Abstract

Cultivated peanut (Arachis hypogaea L.) is an important grain legume providing edible oil and protein for human nutrition. Genome sequences of its diploid ancestors, Arachis duranensis and A. ipaensis, were reported, but their SSRs have not been well exploited and utilized hitherto. Shelling percentage is an important economic trait and its improvement has been one of the major objectives in peanut breeding programs. In this study, the genome sequences of A. duranensis and A. ipaensis were used to develop SSR markers, and a mapping population (Yuanza 9102 × Xuzhou 68-4) with 195 recombinant inbred lines was used to map QTLs controlling shelling percentage. The numbers of newly developed SSR markers were 84,383 and 120,056 in the A. duranensis and A. ipaensis genomes, respectively. Genotyping of the mapping population was conducted with both newly developed and previously reported markers. QTL analysis using the phenotyping data generated in Wuhan across four consecutive years and genotyping data of 830 mapped loci identified 25 QTLs with 4.46–17.01% of phenotypic variance explained in the four environments. Meta-analysis revealed five consistent QTLs that could be detected in at least two environments. Notably, the consistent QTL cqSPA09 was detected in all four environments and explained 10.47–17.01% of the phenotypic variance. The segregation in the progeny of a residual heterozygous line confirmed that the cpSPA09 locus had additive effect in increasing shelling percentage. These consistent and major QTL regions provide opportunity not only for further gene discovery, but also for the development of functional markers for breeding.
  相似文献   

4.
Capsicum annuum, the most widely cultivated species of pepper, is used worldwide for its important nutritional and medicinal values. The construction of an intraspecific high-density genetic linkage map would be of practical value for pepper breeding. However, the numbers of PCR-based simple sequence repeat (SSR) and insertion/deletion (InDel) markers that are available are limited, and there is a need to develop a saturated, intraspecific linkage map. The non-redundant Capsicum species’ expressed sequence tag (EST) database from the National Center for Biotechnology Information was used in this study to develop a total of 902 usable EST-SSR markers. Additionally, 177,587 SSR loci were identified based on the pepper genomic information, including 9182 SSR loci 500 bp both upstream and downstream of coding regions. Another 4497 stable and reliable InDel loci were also developed. From 9182 SSR and 4497 InDel loci, 3356 pairs of genomic SSR primers and 1400 pairs of InDel primers that were evenly distributed in 12 chromosomes were selected. A high-density intraspecific genetic map of C. annuum was constructed using the F10-generation recombinant inbred line of parents PM702 and FS871 as the mapping population, screening the selected 3356 pairs of genomic SSR primers and 1400 pairs of InDel primers and the 902 EST-SSR markers developed earlier, and 524 published SSR markers and 299 orthologous markers (including 263 COSII markers and 36 tomato-derived markers) used previously to develop an interspecific genetic map (C. annuum × C. frutescens). Eventually, a high-density complete genetic intraspecific linkage map of C. annuum containing 12 linkage groups and 708 molecular markers with a length of 1260.00 cM and an average map distance of 1.78 cM was produced. This intraspecific, high-density, complete genetic linkage map of C. annuum contains the largest number of SSR and InDel markers and the highest amount of saturation so far, and it will be of considerable significance for the breeding of improved cultivars of this important field crop in the future.  相似文献   

5.
Simple sequence repeat (SSR) markers are very useful for genetic applications in plants, but SSR resource for the important tree genus Casuarina L. ex Adans. is still limited. In this study, we report a novel set of 223 SSR markers in Casuarina developed from expressed sequence tag (EST) resource of GenBank. The 223 EST-SSR markers were polymorphic among 10 unrelated individuals of C. equisetifolia L. Johnson, with the number of alleles per locus (Na), observed heterozygosity (Ho), expected heterozygosity (He), and polymorphic information content (PIC) averaging at 5.5, 0.72, 0.86, and 0.63, respectively. The rates of cross-species transferability ranged from 96.9% (C. glauca Sieber ex Sprengel) through 97.8% (C. cunninghamiana Miquel) to 99.1% (C. junghuhniana Miquel). Fifty-five C. equisetifolia clones widely planted in China were successfully genotyped with a subset of 20 EST-SSRs. These newly developed markers will have a great potential for genetic and breeding applications in Casuarina species and related taxa.  相似文献   

6.
7.
Two major nuclear genes, Rf3 and Rf4, are known to be associated with fertility restoration of wild-abortive cytoplasmic male sterility (WA-CMS) in rice. In the present study, through a comparative sequence analysis of the reported putative candidate genes, viz. PPR9-782-(M,I) and PPR762 (for Rf4) and SF21 (for Rf3), among restorer and maintainer lines of rice, we identified significant polymorphism between the two lines and developed a set of PCR-based codominant markers, which could distinguish maintainers from restorers. Among the five markers developed targeting the polymorphisms in PPR9-782-(M,I), the marker RMS-PPR9-1 was observed to show clear polymorphism between the restorer (n = 120) and maintainer lines (n = 44) analyzed. Another codominant marker, named RMS-PPR762 targeting PPR762, displayed a lower efficiency in identification of restorers and maintainers, indicating that PPR9-782-(M,I) is indeed the candidate gene for Rf4. With respect to Rf3, a codominant marker, named RMS-SF21-5 developed targeting SF21, displayed significantly lower efficiency in identification of restorers and non-restorers as compared to the Rf4-specific markers. Validation of these markers in a F2 mapping population segregating for fertility restoration indicated that Rf4 has a major influence on fertility restoration and Rf3 is a minor gene. Further, the functional marker RMS-PPR9-1 was observed to be very useful in identification of impurities in a seed lot of the popular hybrid, DRRH3. Interestingly, when RMS-PPR9-1 and RMS-SF21-5 were considered in conjunction with analysis, near-complete, marker–trait co-segregation was observed, indicating that deployment of the candidate gene-specific markers both Rf4 and Rf3, together, can be helpful in accurate identification of fertility restorer lines and can facilitate targeted transfer of the two restorer genes into elite varieties through marker-assisted breeding.  相似文献   

8.
Simple sequence repeat (SSR) markers developed from Malus, as well as Prunus, Pyrus and Sorbus, and some other sequence-tagged site (STS) loci were analysed in an interspecific F1 apple progeny from the cross ‘Fiesta’ × ‘Totem’ that segregated for several agronomic characters. A linkage map was constructed using 259 STS loci (247 SSRs, four SCARs and eight known-function genes) and five genes for agronomic traits—scab resistance (Vf), mildew resistance (Pl-2), columnar growth habit (Co), red tissues (Rt) and green flesh background colour (Gfc). Ninety SSR loci and three genes (ETR1, Rt and Gfc) were mapped for the first time in apple. The transferability of markers from other Maloideae to Malus was found to be around 44%. The loci are spread across 17 linkage groups, corresponding to the basic chromosome number of Malus and cover 1,208 cM, approximately 85% of the estimated length of the apple genome. Interestingly, we have extended the top of LG15 with eight markers covering 25 cM. The average map density is 4.7 cM per marker; however, marker density varies greatly between linkage groups, from 2.5 in LG14 to 8.9 in LG7, with some areas of the genome still in need of further STS markers for saturation.  相似文献   

9.
Grain weight, one of the important factors to determine corn yield, is a typical quantitative inheritance trait. However, the molecular genetic basis of grain weight still remains limited. In our previous researches, a major QTL associated with grain weight, qGW1.05, has been identified between SSR markers umc1601 and umc1754 at bin locus 1.05–1.06 in maize. Here, its genetic and environmental stabiliteis were verified using a BC3F2 population to identify the effect of qGW1.05 on grain weight. Further, qGW1.05-NILs were obtained by MAS successfully. Via a large BC6F2 segregation population, together with polymorphic microsatellite markers developed between the parents to screen the genotype of the recombinant plants, qGW1.05 was positioned to a 1.11 Mb genome interval. Furthermore, the progenies of 15 recombinants were tested to confirm the effect of qGW1.05 on grain weight. Combining collinearity among cereal crops and genome annotation, the several candidate genes taking part in grain development were identified in the qGW1.05 region. In this study, qGW1.05 was limited to a 1.11 Mb region on chromosome 1, which established the foundation for understanding the molecular basis underlying kernel development and improving grain weight through MAS using the tightly flanking molecular markers in maize.  相似文献   

10.
Gibberellin-sensitive dwarfing gene Rht18 was mapped in two durum wheat recombinant inbred lines (RIL) populations developed from crosses, Bijaga Yellow/Icaro and HI 8498/Icaro. Rht18 was mapped within genetic interval of 1.8 cM on chromosome 6A. Simple sequence repeat (SSR) markers S470865SSR4, barc37 and TdGA2ox-A9 specific marker showed co-segregation with Rht18 in Bijaga Yellow/Icaro population consisting 256 RILs. Effect of Rht18 on plant height was validated in HI 8498/Icaro RIL population which segregated for Rht18 and Rht-B1b. Rht-B1b from HI 8498 showed pleiotropic effect on plant height and coleoptile length, on the other hand, Rht18 did not show effect on coleoptile length. The SSR and SNP markers linked to Rht18 were also validated by assessing their allelic frequency in 89 diverse durum and bread wheat accessions. It was observed that 204 bp allele of S470865SSR4 could differentiate Icaro from rest of the wheat accessions except HI 8498, suggesting its utility for selection of Rht18 in wheat improvement programs. Rht18 associated alleles of TdGA2ox-A9, IAW4371 and IAW7940 were absent in most of the tall Indian local durum wheat and bread wheat, hence could be used to transfer Rht18 to bread wheat and local durum wheat. SSR marker barc3 showed high recombination frequency with Rht18, though it showed allele unique to Icaro. Since semidwarf wheat with GA-sensitive dwarfing genes are useful in dry environments owing to their longer coleoptile, better emergence and seedling vigor, Rht18 may provide a useful alternative to widely used GA-insensitive dwarfing genes under dry environments.  相似文献   

11.
Sunflower, the fifth largest oilseed crop in the world, plays an important role in human diets. Recently, sunflower production in North America has suffered serious yield losses from newly evolved races of sunflower rust (Puccinia helianthi Schwein.). The rust resistance gene, designated R 14 , in a germplasm line PH 3 originated from a wild Helianthus annuus L. population resistant to 11 rust races. PH 3 has seedling with an extraordinary purple hypocotyl color. The objectives of this study were to map both the R 14 rust resistance gene and the purple hypocotyl gene-designated PHC in PH 3, and to identify molecular markers for marker-assisted breeding for sunflower rust resistance. A set of 517 mapped SSR/InDel and four SNP markers was used to detect polymorphisms between the parents. Fourteen markers covering a genetic distance of 17.0 cM on linkage group (LG) 11 were linked to R 14 . R 14 was mapped to the middle of the LG, with a dominant SNP marker NSA_000064 as the closest marker at a distance of 0.7 cM, and another codominant marker ORS542 linked at 3.5 cM proximally. One dominant marker ZVG53 was linked on the distal side at 6.9 cM. The PHC gene was also linked to R 14 with a distance of 6.2 cM. Chi-squared analysis of the segregation ratios of R 14 , PHC, and ten linked markers indicated a deviation from an expected 1:2:1 or 3:1 ratio. The closely linked molecular or morphological markers could facilitate sunflower rust-resistant breeding and accelerate the development of rust-resistant hybrids.  相似文献   

12.
13.
Breeding for resistance against the destructive fire blight disease of apples is the most sustainable strategy to control the menace of this disease, and has become increasingly important in European apple breeding programs. Since most cultivars are susceptible, wild accessions have been explored for resistance with quantitative trait loci detected in a few wild species. Fire blight resistance of Malus fusca was described following phenotypic evaluations with a C-type strain of Erwinia amylovora, Ea222_JKI, and the detection of a major QTL on chromosome 10 (Mfu10) of this crabapple. The stability of the resistance of M. fusca and Mfu10 has been evaluated using two other strains, the highly aggressive Canadian S-type strain—Ea3049, and the avrRpt2EA mutant—ZYRKD3-1, both of which overcome the resistance of Malus ×robusta 5, a wild species accession with an already described fire blight resistance gene. To pave the way for positional cloning of the underlying fire blight resistance gene of M. fusca, we have fine mapped the QTL region on linkage group 10 using 1888 individuals and 23 newly developed molecular markers, thus delimiting the interval of interest to 0.33 cM between markers FR39G5T7xT7y/FR24N24RP and FRMf7358424/FR46H22. Tightly linked SSR markers are suitable for marker-assisted selection in breeding programs. Furthermore, a bacterial artificial chromosome (BAC) clone spanning FB_Mfu10 region was isolated and sequenced. One putative fire blight resistance candidate gene of M. fusca was predicted on the sequence of BAC 46H22 within the resistance region that encodes B-lectin and serine/threonine kinase domains.  相似文献   

14.
Days to flowering (DTF) is an important trait impacting cultivar performance in oilseed rape (Brassica napus L.), but the interaction of all loci controlling this trait in spring-type oilseed rape is not fully understood. We identified quantitative trait loci (QTL) for variation in DTF in a doubled haploid (DH) population from the Qinghai–Tibet Plateau that includes 217 lines derived from a cross between spring-type oilseed rape (B. napus L.) line No. 5246 and line No. 4512, the latter of which is responsive to the effective accumulated temperature (EAT). A linkage map was constructed for the DH population, using 202 SSR and 293 AFLP markers. At least 22 DTF QTL were found in multiple environments. Four major QTL were located on linkage groups A7, C2, C8 and C8. Among these QTL, cqDTFA7a and cqDTFC2a were identified in five environments and individually explained 10.4 and 23.0 % of the trait variation, respectively. cqDTFC8, a major QTL observed in spring environments, and a unique winter environment QTL, qDTFC8-3, were identified; these QTL explained 10.0 and 46.5 % of the phenotypic variation, respectively. Minor QTL (for example, cqDTFC2c) and epistatic interactions seemed evident in this population. Two closely linked SSR markers for cqDTFA7a and cqDTFC8 were developed (G1803 and S034). BnAP1, a B. napus gene with homology to Arabidopsis thaliana that was identified as a cqDTFA7a candidate gene, played a major role in this study. The allelic effects of the major and minor QTL on DTF were further validated in the DH population and in 93 breeding genotypes.  相似文献   

15.
Gummy stem blight (GSB), a common disease of all major cucurbits, is caused by the fungus Didymella bryoniae. It results in serious losses in fruit production, which in cucumber can be up to 80% or more. Because the severity of the disease varies from season to season and also because of the harm to the environment caused by using pesticides to control the disease, the best method for overcoming GSB in cucumber is to develop more resistant cultivars by molecular breeding. There are no reports on molecular markers for use in breeding GSB resistance and no studies on chromosomal mapping of resistance. In this paper, a set of 160 F9 recombinant inbred lines (RILs) were derived from the cross between the wild-type GSB-resistant cucumber accession PI 183967 and the cultivated GSB-susceptible accession 931. A total of 2112 pairs of SSR primers were used to study the inheritance of GSB resistance and to detect quantitative trait loci (QTLs) conferring resistance in the cucumber stem. Genetic analysis indicated that resistance to GSB in PI 183967 was quantitative and mainly governed by three pairs of additive epistatic major genes. Five QTLs, gsb-s1.1, gsb-s2.1, gsb-s6.1, gsb-s6.2, and gsb-s6.3, for resistance to GSB in cucumber stems were detected. The loci gsb-s1.1 and gsb-s2.1 with phenotypic variations of 8.7 and 6.7% were mapped to chromosomes (Chr.) 1 and 2, respectively. The loci gsb-s6.1, gsb-s6.2, and gsb-s6.3 were linked on Chr.6. Locus gsb-s6.2 accounted for the highest phenotypic variation of 22.7% and was flanked by markers SSR04083 and SSR02940 with genetic distances of 5.0 and 1.8 cM, respectively. There were 117 candidate genes predicted between SSR04083 and SSR02940, of which 14 were related to disease resistance.  相似文献   

16.
Insertions/deletions (INDELs), a type of abundant length polymorphisms in the plant genomes, combine the characteristics of both simple sequence repeats (SSRs) and single-nucleotide polymorphisms (SNP), and thus can be developed as desired molecular markers for genetic studies and crop breeding. There has been no large-scale characterization of INDELs variations in Brassica napus yet. In this study, we identified a total of 538,691 INDELs in size range of 1–10 bp by aligning whole-genome re-sequencing data of 23 B. napus inbred lines (ILs) to the B. napus genome sequence of ‘Darmor-bzh.’ Of these, 104,190 INDELs were uniquely mapped on the pseudochromosomes of the reference genome. A set of 595 unique INDELs of 2–5 bp in length was selected for experimental validation in the 23 ILs. Of these INDELs, 530 (89.01 %) produced a single PCR product and were single locus. A total of 523 (87.9 %) INDELs were found polymorphic among the 23 ILs. A genetic linkage map containing 108 single-locus INDELs and 89 anchor SSR markers was constructed using 188 recombinant ILs. The majority of INDELs markers on the linkage map showed consistency with the pseudochromosomes of the B. napus cultivar ‘Darmor-bzh.’ The INDELs variations and markers reported here will be valuable resources in future for genetic studies and molecular breeding in oilseed rape.  相似文献   

17.
In order to assist breeding and gene pool conservation in tropical Acacias, we aimed to develop a set of multipurpose SSR markers for use in both Acacia mangium and A. auriculiformis. A total of 51 SSR markers (developed in A. mangium and natural A. mangium x A. auriculiformis hybrid) were tested. A final set of 16 well-performing SSR markers were identified, six of which were species diagnostic. The markers were optimized for assay in four multiplex mixes and used to genotype range-wide samples of A. mangium, A. auriculiformis, and putative F1 hybrids. Simulation analysis was used to investigate the power of the markers for identifying the pure species and their F1, F2, and backcross hybrids. The six species diagnostic markers were particularly powerful for detecting F1 hybrids from pure species but could also discriminate the pure species from F2 and backcross progenies in most cases (97 %). STRUCTURE analysis using all 16 markers was likewise able to distinguish these cross types and pure species sets. Both sets of markers had difficulties in distinguishing F2 and backcross progenies. However, identifying F1 from pure species is the current primary concern in countries where these species are planted. The SSR marker set also has direct application in DNA profiling (probability of identity?=?4.1?×?10?13), breeding system analysis, and population genetics.  相似文献   

18.

Key message

Genotypes with recombination events in the Triticum ventricosum introgression on chromosome 7D allowed to fine-map resistance gene Pch1, the main source of eyespot resistance in European winter wheat cultivars.

Abstract

Eyespot (also called Strawbreaker) is a common and serious fungal disease of winter wheat caused by the necrotrophic fungi Oculimacula yallundae and Oculimacula acuformis (former name Pseudocercosporella herpotrichoides). A genome-wide association study (GWAS) for eyespot was performed with 732 microsatellite markers (SSR) and 7761 mapped SNP markers derived from the 90 K iSELECT wheat array using a panel of 168 European winter wheat varieties as well as three spring wheat varieties and phenotypic evaluation of eyespot in field tests in three environments. Best linear unbiased estimations (BLUEs) were calculated across all trials and ranged from 1.20 (most resistant) to 5.73 (most susceptible) with an average value of 4.24 and a heritability of H 2 = 0.91. A total of 108 SSR and 235 SNP marker–trait associations (MTAs) were identified by considering associations with a ?log10 (P value) ≥3.0. Significant MTAs for eyespot-score BLUEs were found on chromosomes 1D, 2A, 2D, 3D, 5A, 5D, 6A, 7A and 7D for the SSR markers and chromosomes 1B, 2A, 2B, 2D, 3B and 7D for the SNP markers. For 18 varieties (10.5%), a highly resistant phenotype was detected that was linked to the presence of the resistance gene Pch1 on chromosome 7D. The identification of genotypes with recombination events in the introgressed genomic segment from Triticum ventricosum harboring the Pch1 resistance gene on chromosome 7DL allowed the fine-mapping of this gene using additional SNP markers and a potential candidate gene Traes_7DL_973A33763 coding for a CC-NBS-LRR class protein was identified.
  相似文献   

19.

Key message

Fine mapping of Yr47 and Lr52 in chromosome arm 5BS of wheat identified close linkage of the marker sun180 to both genes and its robustness for marker-assisted selection was demonstrated.

Abstract

The widely effective and genetically linked rust resistance genes Yr47 and Lr52 have previously been mapped in the short arm of chromosome 5B in two F3 populations (Aus28183/Aus27229 and Aus28187/Aus27229). The Aus28183/Aus27229 F3 population was advanced to generate an F6 recombinant inbred line (RIL) population to identify markers closely linked with Yr47 and Lr52. Diverse genomic resources including flow-sorted chromosome survey sequence contigs representing the orthologous region in Brachypodium distachyon, the physical map of chromosome arm 5BS, expressed sequence tags (ESTs) located in the 5BS6-0.81-1.00 deletion bin and resistance gene analog contigs of chromosome arm 5BS were used to develop markers to saturate the target region. Selective genotyping was also performed using the iSelect 90 K Infinium wheat SNP assay. A set of SSR, STS, gene-based and SNP markers were developed and genotyped on the Aus28183/Aus27229 RIL population. Yr47 and Lr52 are genetically distinct genes that mapped 0.4 cM apart in the RIL population. The SSR marker sun180 co-segregated with Lr52 and mapped 0.4 cM distal to Yr47. In a high resolution mapping population of 600 F2 genotypes Yr47 and Lr52 mapped 0.2 cM apart and marker sun180 was placed 0.4 cM distal to Lr52. The amplification of a different sun180 amplicon (195 bp) than that linked with Yr47 and Lr52 (200 bp) in 204 diverse wheat genotypes demonstrated its robustness for marker-assisted selection of these genes.
  相似文献   

20.
Genlisea aurea A.St.-Hil. is a carnivorous plant endemic species to Brazil in the Lentibulariaceae family. Very few studies have addressed the genetic structure and conservation status of G. aurea and the Lentibulariaceae. Microsatellites markers are advantageous tools that can be employed to predict the vulnerability of Lentibulariaceae species. Therefore, the development of molecular markers focusing the population analyses of Genlisea for future genetic studies and conservation actions are essential. Thus, we developed simple sequence repeats (SSRs) based on in silico analyses of G. aurea draft genome assembly. We characterized 40 individuals from several populations and identified 12 loci that were polymorphic, with heterozygosity between 0.123 and 0.650. We demonstrated that the G. aurea SSR markers work cross-species in Genlisea filiformis, G. repens, G. tuberosa and G. violacea. These markers will be important for future population, phylogeographic and conservation studies in G. aurea and other Genlisea species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号