首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
黑麦碱基因(Sec–1)表达缺失的1RS/1BL易位系的鉴定   总被引:5,自引:0,他引:5  
晏本菊  张怀琼  任正隆 《遗传》2005,27(4):513-517
用改良的Giemsa C-带技术、DNA原位杂交和酸性聚丙烯酰胺凝胶电泳(A-PAGE)对来源于小麦品种绵阳11与不同黑麦自交系远缘杂交获得的高代株系(BC1F7)的染色体结构和醇溶蛋白进行了研究。结果发现,在鉴定的200个株系中,有45个株系经C-带和A-PAGE检测均一致地发现它们含有一对1RS /1BL易位染色体,而一个株系843-1-1,C-带鉴定、原位杂交结果均证明它含有一对1RS/1BL易位染色体,但A-PAGE醇溶蛋白图谱却不具有黑麦1RS染色体臂的黑麦碱特征带,而表达出既不同于黑麦碱又不同于亲本绵阳11的醇溶蛋白带型。这一结果表明,利用不同的黑麦亲本资源,可以获得黑麦碱基因Sec-1表达缺失的新的1RS/1BL易位系。这种新的1RS/1BL易位系缺失了影响小麦品质的黑麦碱蛋白,因此是进一步研究1RS/1BL 易位对小麦品质影响的珍贵材料。研究指出,在利用外源基因的植物育种中,外源种供体材料的遗传多样性是值得重视的基因资源。  相似文献   

2.
Summary Chromosome pairing between rye chromosome arm 1RS, present in two wheat-rye translocation stocks, and its wheat homoeologues was induced by introducing the translocations into either a ph1bph1b or a nullisomic 5B background. This rye arm carries a gene conferring resistance to wheat stem rust, but lines carrying the translocation produce a poor quality dough unsuitable for breadmaking. Storage protein markers were utilised along with stem rust reaction to screen for allosyndetic recombinants. From a 1DL-1RS translocation, three lines involving wheat-rye recombination were recovered, along with thirteen lines derived from wheat-wheat homoeologous recombination. From a 1BL-1RS translocation, an additional three allosyndetic recombinants were recovered. Nullisomy for chromosome 5B was as efficacious as the ph1b mutant for induction of allosyndesis, and the former stock is easier to manipulate due to the presence of a 5BL-encoded endosperm protein. The novel wheat-rye chromosomes present in the recombinant lines may enable the rye disease resistance to be exploited without the associated dough quality defect.  相似文献   

3.
The 1BL.1RS translocations between wheat (Triticum aestivum L.) and rye (Secale cereale L.) are widely used in bread wheat breeding programs, but all modern wheat cultivars with the 1BL.1RS have shown genetic vulnerability due to one rye source – a German cultivar, Petkus. We have developed, a new 1BL.1RS wheat-rye translocation line from the backcross of the F1 hybrid of wheat cv. Olmil and rye cv. Paldanghomil, both cultivars from Korea. The GISH technique was applied to identify the presence of rye chromatin in 467 BC1F6 lines selected from 77 BC1F5 lines. Only one line, Yw62–11, showed wheat-rye translocated chromosomes, with a somatic chromosome number of 2n=42. C-banding patterns revealed that the translocated chromosome was 1BL.1RS, showing prominent bands in the terminal and sub-terminal regions of the short arm as well as in the centromeric region and terminal region of the long arm. This new 1BL.1RS translocation line formed 21 bivalents like common wheat at meiotic metaphase I, thereby showing complete homology. Received: 28 February 2001 / Accepted: 17 April 2001  相似文献   

4.
1RS.1BL translocations are centric translocations formed by misdivision and have been used extensively in wheat breeding. However, the role that the centromere plays in the formation of 1RS.1BL translocations is still unclear. Fluorescence in situ hybridization (FISH) was applied to detect the fine structures of the centromeres in 130 1RS.1BL translocation cultivars. Immuno‐FISH, chromatin immunoprecipitation (ChIP)‐qPCR and RT‐PCR were used to investigate the functions of the hybrid centromeres in 1RS.1BL translocations. New 1R translocations with different centromere structures were created by misdivision and pollen irradiation to elucidate the role that the centromere plays in the formation of 1RS.1BL translocations. We found that all of the 1RS.1BL translocations detected contained hybrid centromeres and that wheat‐derived CENH3 bound to both the wheat and rye centromeres in the 1RS.1BL translocation chromosomes. Moreover, a rye centromere‐specific retrotransposon was actively transcribed in 1RS.1BL translocations. The frequencies of new 1RS hybrid centromere translocations and group‐1 chromosome translocations were higher during 1R misdivision. Our study demonstrates the hybrid nature of the centromere in 1RS.1BL translocations. New 1R translocations with different centromere structures were created to help understand the fusion centromere used for wheat breeding and for use as breeding material for the improvement of wheat.  相似文献   

5.
Univalent chromosomes at meiotic metaphase I have a tendency to misdivide at the centromeres. Fusion of the misdivision products may produce Robertsonian translocations. The fine structure of the centromeres in Robertsonian wheat-rye translocation chromosomes was analyzed by fluorescence in situ hybridization (FISH) using two centromere-specific DNA clones: pRCS1, derived from rice, and pAWRC1, derived from rye. Clone pRCS1 hybridizes to the centromeres of all grasses including wheat and rye, whereas clone pAWRC1 is rye specific and hybridizes only to the centromeres of rye. Four of the six wheat-rye translocations derived from a single centric misdivision event (1st generation translocations) had hybrid centromeres, with approximately half of the centromere derived from rye and half from wheat. In the two other 1st generation translocations, the entire centromere was derived from rye. Among eight reconstructed wheat and rye chromosomes that originated from two consecutive centric misdivision-fusion events (2nd generation translocations), T1BS.1BL (derived from T1BS.1RL and T1RS.1BL) and one of three T2BS.2BL (derived from T2RS.2BL and T2BS.2RL) had hybrid centromeres. T1RS.1RL (derived from T1BS.1RL and T1RS.1BL), two of three T2BS.2BL, and all three T2RS.2RL (derived from T2RS.2BL and T2BS.2RL) had rye centromeres. All three 3rd generation translocations had hybrid centromeres with approximately half of the centromere derived from rye. There were no indications that the composite structure of the centromere in these chromosomes affected their behavior in mitosis or meiosis. These observations support the notion of a compound structure of the centromere in higher organisms, and indicate that during the centric breakage-fusion event, centromere breakage may occur in different positions along the segment of the chromosome that interacts with the spindle fibers. Normal behavior of the 1st, 2nd, and 3rd generation centric translocations in mitosis and meiosis indicates that, at least in wheat and rye, centromeres are not chromosome specific.  相似文献   

6.
Homozygous wheat/rye (1BL/1RS or 1AS/ 1RL) translocation lines have significantly contributed to wheat production, and several other wheat/rye translocation lines show a potential promise against biotic and abiotic stresses. Detecting the presence of rye at the chromosome level is feasible by C-banding and isozyme protocols, but the diagnostic strength of genomic in situ hybridization for eventually analyzing smaller DNA introgressions has greater significance. As a first step we have applied the genomic in situ hybridization technique to detect rye chromosomes in a wheat background using germ plasm of agricultural significance. By this method rye contributions to the translocations 1BL/1RS, 1AL/1RS, 5AS/5RL and 6BS/6RL could be identified. Differential labelling has further enabled the detection of rye and Thinopyrum bessarabicum chromosomes in a trigeneric hybrid of Triticum aestivum/Th. bessarabicum//Secale cereale.  相似文献   

7.
Identification of the chromosomal composition of common wheat lines with rye chromosomes was carried out using genomic in situ hybridization and 1RS- and 5P-specific PCR markers. It was demonstrated that wheat chromosomes 5A or 5D were substituted by rye chromosome 5R in the wheat-rye lines. It was established that one of the lines with complex disease resistance contained rye chromosome 5R and T1RS.1BL, while another line was found to contain, in addition to T1RS.1BL, a new Robertsonian translocation, T5AS.5RL. Substitution of the wheat chromosome 5A with the dominant Vrn-A1 gene for the Onokhoiskaya rye chromosome 5R led to lengthening of the germination-heading period or to a change in the type of development. A negative influence of T1RS.1BL on SDS sedimentation volume and grain hardness was demonstrated, along with a positive effect of the combination of T1RS.1BL and 5R(5D) substitution on grain protein content. Quantitative traits of the 5R(5A) and 5R(5D) substitution lines were at the level of recipient cultivars. A line with two translocations, T1RS.1BL + T5AS.5Rl, appeared to be more productive as compared to the line carrying T1RS.1BL in combination with the 5R(5D) substitution.  相似文献   

8.
Homoeology of rye chromosome arms to wheat   总被引:5,自引:0,他引:5  
Summary Cytological markers such as diagnostic C-bands, telocentrics, and translocations were used to identify the arms of rye chromosomes associated with wheat chromosomes at metaphase I in ph1b mutant wheat × rye hybrids. Arm homoeologies of rye chromosomes to wheat were established from the results of metaphase I pairing combined with available data on the chromosomal location of homoeoloci series in wheat and rye. Only arms 1RS, 1RL, 2RL, 3RS, and 5RS showed normal homoeologous relationships to wheat. The remaining arms of rye appeared to be involved in chromosome rearrangements that occurred during the evolution of the genus Secale. We conclude that a pericentric inversion in chromosome 4R, a reciprocal translocation between 3RL and 6RL, and a multiple translocation involving 4RL, 5RL, 6RS, and 7RS are present in rye relative to wheat.  相似文献   

9.
The chromosome arm 1RS of rye (Secale cereal L.) has been used worldwide as a source of genes for agronomic and resistant improvement. However, the 1RS arm in wheat has end-use quality defects that are partially attributable to the presence of ω-secalins, which are encoded by genes at the Sec-1 locus. Various attempts in removing the Sec-1 genes from the 1RS.1BL translocation chromosome have been made. In the present study, two new primary 1RS.1BL translocation lines, T917-26 and T917-15, were developed from a cross between wheat variety “A42912” and Chinese local rye “Weining.” The lines T917-15 and T917-26 carried a pair of intact and homogeneous 1RS.1BL chromosomes. The line T917-26 also harbored an expression deletion of some genes at the Sec-1 locus, which originated from a mutation that occurred simultaneously with wheat-rye chromosome translocations. These results suggest that the accompanying mutations of the evolutionarily significant translocations are remarkable resources for plant improvement. Comparison of translocation lines with its wheat parent showed improvements in the end-use quality parameters, which included protein content (PC), water absorption (WA), sodium dodecyl sulfate sedimentation (SDSS), wet gluten (WG), dry gluten (DG) and dough stickiness (DS), whereas significant reduction in gluten index (GI) and stability time (ST) were observed. These findings indicate that 1RS in wheat has produced a higher amount of protein, although these comprised worse compositions. However, in the T917-26 line that harbored an expression deletion mutation in the Sec-1 genes, the quality parameters were markedly improved relative to its sister line, T917-15, especially for GI and DS (P < 0.05). These results indicated that expression deletion of Sec-1 genes significantly improves the end-use quality of wheat cultivars harboring the 1RS.1BL translocation. Strategies to remove the Sec-1 genes from the 1RS.1BL translocation in wheat improvement are discussed.  相似文献   

10.
One hundred wheat lines, derived from monosomic additions of chromosome 1R of rye inbred line R12 (Chinese rye), were detected by PCR amplification using rye-specific primer pairs. Only 5 wheat lines, 1R296, 1R330, 1R314, 1R725, and 1R734, were determined to contain rye chromatin. While 1R296 and 1R330 were highly susceptible to stripe rust and powdery mildew, 1R314, 1R725 and 1R734 were highly resistant to both diseases. Acid-polyacrylamide gel electrophoresis showed that the ω-secalin bands were absent in 1R314, but present in the other 4 wheat lines. Genomicin situ hybridization indicated that 1R296, 1R330, and 1R725 contained translocations involving the whole short arm of chromosome 1R. However, 1R314 and 1R734 contained a pair of wheat chromosomes with small, terminal, rye-derived chromosome segments. The results suggest that the translocation breakpoint of 1RS in 1R314 was located between theSec-1 locus and the disease-resistance loci, while in line 1R734, the breakpoint was located between theSec-1 locus and the centromere. Taking account of the improved disease resistance of 1R725, 1R314 and 1R734, the chromosome arm 1RS of R12 may represent new and valuable disease resistance resources for wheat improvement.  相似文献   

11.
小麦主栽品种中的1RS分布和兰考90(6)系列白粉病新抗源   总被引:5,自引:0,他引:5  
利用黑麦染色体臂1RS的特异性PCR标记,对黄淮麦区138个小麦主栽品种、系进行了PCR扩增,结果表明:有42.0%的小麦品种、系携带1RS染色体臂。以六倍体小黑麦Mzalenod Beer为黑麦染色体供体,培育的兰考90(6)系列小麦品系是新的小麦-黑麦1BL/1RS易位系。这些品系对小麦白粉病具有很高的抗性,是小麦抗白粉病育种的新抗源。对兰考90(6)系列品系白粉病抗性进行了研究,结果表明,兰考90(6)系列品系的抗谱与许多已经知道的小麦抗白粉病基因的抗谱不同,并具有数量抗性特点。  相似文献   

12.
Summary The introgression of genetic material from alien species is assuming increased importance in wheat breeding programs. One example is the translocation of the short arm of rye chromosome 1 (1RS) onto homoeologous wheat chromosomes, which confers disease resistance and increased yield on wheat. However, this translocation is also associated with dough quality defects. To break the linkage between the desirable agronomic traits and poor dough quality, recombination has been induced between 1RS and the homoeologous wheat arm IDS. Seven new recombinants were isolated, with five being similar to those reported earlier and two havina new type of structure. All available recombinantsw ere characterized with DNA probes for the loci Nor-R1, 5SDna-R1, and Tel-R1. Also, the amount of rye chromatin present was quantified with a dispersed rye-specific repetitive DNA sequence in quantitative dot blots. Furthermore, the wheat-rye recombinants were used as a mapping tool to assign two RFLP markers to specific regions on chromosome arms 1DS and 1RS of wheat and rye, respectively.  相似文献   

13.
利用C分带、基因组原位杂交并结合分子生物学手段,对12份巨穗小麦种质材料中的外源遗传物质进行了检测.结果表明,12份材料染色体数均为42,其中5份材料均具有一对小麦-黑麦(Triticum aestivum-Secalecereal)1BL/1RS易位染色体和一对中间偃麦草(Agropyron intermedium Garten)染色体、3份材料只具有一对中间偃麦草染色体、3份材料只具一对1BL/1RS染色体、1份材料无1BL/1RS和中间偃麦草染色体.进一步细胞学分析表明,此中间偃麦草染色体代换了普通小麦(Triticum aestivum L.)中的2D染色体,因其良好的同源补偿性,表示为2Ai.同时对2Ai在巨穗小麦种质中存在的遗传学意义及小麦遗传改良中的应用进行了讨论.  相似文献   

14.
利用C分带、基因组原位杂交并结合分子生物学手段,对12份巨穗小麦种质材料中的外源遗传物质进行了检测。结果表明,12份材料染色体数均为42,其中5份材料均具有一对小麦-黑麦(Triticum aestivum-Secale cereal)1BL/1RS易位染色体和一对中间偃麦草(Agropyron intermedium Garten)染色体、3份材料只具有一对中间偃麦草染色体、3份材料只具一对1BL/1RS染色体、1份材料无1BL/1RS和中间偃麦草染色体。进一步细胞学分析表明,此中间偃麦草染色体代换了普通小麦(Triticum aestivum L.)中的2D染色体,因其良好的同源补偿性,表示为2Ai。同时对2Ai在巨穗小麦种质中存在的遗传学意义及小麦遗传改良中的应用进行了讨论。  相似文献   

15.
黑麦(Secale cereale L., RR)是改良普通小麦(Triticum aestivum L., AABBDD)的重要基因资源,将黑麦优异基因转移到普通小麦中,是小麦品种改良的有效途经之一。文章将四川地方品种蓬安白麦子(T. aestivum L., AABBDD) 与秦岭黑麦(S. cereale cv. Qinling, RR)杂交,染色体自动加倍获得八倍体小黑麦CD-13(AABBDDRR);通过顺序FISH和GISH分析,发现该八倍体小黑麦1RS端部与7DS的端部发生相互易位,是一个携带1RS-7DS.7DL小麦-黑麦小片段易位染色体的八倍体小黑麦。利用八倍体小黑麦CD-13与四川推广小麦品种川麦42杂交、连续自交,获得包含60个株系的F5群体;对F5群体的58个株系进行GISH和FISH分析发现,其中13个株系含有1RS-7DS.7DL小片段易位染色体。在这13个株系中,株系811染色体数目为2n=6x=42,是稳定的1RS-7DS.7DL小片段易位系;并且1RS特异分子标记和醇溶蛋白分析表明,1RS-7DS.7DL易位染色体1RS小片段的断裂点位于分子标记IB267-IAG95之间,不包含编码黑麦碱蛋白的Sec-1位点;同时1RS-7DS.7DL小片段易位系的千粒重与川麦42相当,远远高于八倍体小黑麦CD-13,对千粒重无负作用。因此,1RS-7DS.7DL小麦-黑麦小片段易位系可作为进一步深入研究1RS小片段上的优异基因及其遗传效应的重要材料。  相似文献   

16.
Chromosome arm 1RS of rye (Secale cereale) is a valuable resource for wheat (Triticum aestivum) improvement. 1AL.1RS and 1BL.1RS translocations play an important role in wheat breeding, since wheat carrying these chromosomal translocations has higher tolerance to biotic and abiotic stress. In this study, the presence of 1RS and the distribution of 1AL.1RS and 1BL.1RS wheat-rye translocations were examined in 66 Iranian cultivars and 70 regional foreign accessions of bread wheat, using three rye-specific primers (“RYER3/F3”, “O-SEC5′-A/O-SEC3′-R”, “PAWS5/S6”). Based on “RyeR3/F3”, the presence of 1RS was verified in 15 (23%) Iranian cultivars and in two (3%) foreign accessions. Further, “O-SEC5′-A/O-SEC3′-R” and “PAWS5/S6” were used to distinguish 1AL.1RS and 1BL.1RS translocations. According to results from these primers, 1BL.1RS was identified in 14 (21%) Iranian cultivars and two (3%) foreign accessions. The results confirm that “Sholeh” is the only cultivar (1.5%), among all cultivars and accessions, that carries 1AL.1RS. This study provides a useful tool in marker-assisted selection of materials containing 1RS, and in the creation of new Iranian common wheat cultivars with a larger genetic diversity in wheat breeding programs.  相似文献   

17.
威岭栽培黑麦抗白粉病特性导入小麦的研究   总被引:6,自引:0,他引:6  
威岭黑麦(Weiling rye)是一个高抗白粉病(Erysiphe gramininis f.sp.tritici)的中国矮杆栽培黑麦。以Weiling rye作为白粉病抗源,高感白粉病小麦栽培品种My8443为母本,从Weiling rye与小麦My8443远缘杂交的BC_2F_6后代中鉴定出一个新的小麦-黑麦易位系No.147,以实现威岭黑麦白粉病抗性向普通栽培小麦的转移。No.147及其亲本的抗白粉病特性通过苗期和成株期优势生理小种混合接种和室内单生理小种接种鉴定,改良的染色体C-分带和基因组原位杂交技术(GISH。Ge- nomic in situ hybridization)被用于鉴定小麦和黑麦的染色质,酸性聚丙烯酰胺凝胶电泳(APAGE)被用于鉴定黑麦醇溶蛋白1RS特异条带,11个黑麦种属特异性标记SCM(Secale cereale marker)引物被用于扩增分析黑麦特异性简单重复序列(SSR)。研究结果证实No.147是一个新的高抗白粉病的1BL/1RS小麦-黑麦染色体易位系,并对其产生的细胞学机制进行了分析。论文对中国栽培黑麦抗性基因资源的利用和该易位系在小麦遗传育种改良中的利用价值进行了讨论。  相似文献   

18.
A rye–wheat centric chromosome translocation 1RS.1BL has been widely used in wheat breeding programs around the world. Increased yield of translocation lines was probably a consequence of increased root biomass. In an effort to map loci-controlling root characteristics, homoeologous recombinants of 1RS with 1BS were used to generate a consensus genetic map comprised of 20 phenotypic and molecular markers, with an average spacing of 2.5 cM. Physically, all recombination events were located in the distal 40% of the arms. A total of 68 recombinants was used and recombination breakpoints were aligned and ordered over map intervals with all the markers, integrated together in a genetic map. This approach enabled dissection of genetic components of quantitative traits, such as root traits, present on 1S. To validate our hypothesis, phenotyping of 45-day-old wheat roots was performed in five lines including three recombinants representative of the entire short arm along with bread wheat parents ‘Pavon 76’ and Pavon 1RS.1BL. Individual root characteristics were ranked and the genotypic rank sums were subjected to Quade analysis to compare the overall rooting ability of the genotypes. It appears that the terminal 15% of the rye 1RS arm carries gene(s) for greater rooting ability in wheat.  相似文献   

19.
Gobaa S  Bancel E  Kleijer G  Stamp P  Branlard G 《Proteomics》2007,7(23):4349-4357
The introduction of the 1RS chromosome of rye into wheat made wheat more resistant to several pathogens. Today, this resistance has been overcome but the 1BL.1RS translocation remains interesting because of the improved yield and despite the lower rheological properties it produces. Nothing has been reported yet on the impact of rye chromatin introgression on the grain proteome of wheat. The comparison of the 2-DE profiles of 16 doubled haploid lines, with or without the 1BL.1RS translocation, revealed quantitative and qualitative proteic variations in prolamins and other endosperm proteins. Eight spots were found specifically in lines having the 1BL.1RS translocation; 16 other spots disappeared from the same lines. Twelve spots, present in both genotypes, met the criteria for up- or down-regulated spots. In translocated genotypes, a highly overexpressed spot, identified as a gamma-gliadin with nine cysteine residues, suggests that the lack of LMW-GS induced by 1BL.1RS is counterbalanced by an overexpression of a relatively similar prolamin. Moreover, a spot that was absent from 1BL.1RS genotypes was identified as a dimeric alpha-amylase inhibitor. It was considered to be a valuable candidate to explain the sticky dough associated with translocated cultivars.  相似文献   

20.
小麦遗传背景对黑麦抗叶锈基因Lr26的抗性表达的影响   总被引:9,自引:2,他引:7  
任正隆 《遗传学报》1993,20(4):313-316
利用1套从小麦纯系和黑麦自交系培育出的1R附加系、代换系和易位系,研究了1RS上的抗叶锈基因Lr26在小麦中的表达。结果发现,1R二体附加系和纯合1RS/1BL易位系高抗小麦叶锈病;而其小麦亲本、1R(1B)代换系和1BS/1RL易位系重感叶锈病。这一结果指出了黑麦染色体臂1RS上的抗小麦叶锈病基因Lr26在小麦中的表达受小麦染色体臂1BL上的基因的强烈影响,指出了外源基因在小麦中的表达可受染色体臂或基因水平上的相互作用的制约。文中讨论了外源基因与小麦遗传背景相互作用在小麦育种中的意义。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号