首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
2.
GABA type A receptors (GABAAR), the brain''s major inhibitory neurotransmitter receptors, are the targets for many general anesthetics, including volatile anesthetics, etomidate, propofol, and barbiturates. How such structurally diverse agents can act similarly as positive allosteric modulators of GABAARs remains unclear. Previously, photoreactive etomidate analogs identified two equivalent anesthetic-binding sites in the transmembrane domain at the β+ subunit interfaces, which also contain the GABA-binding sites in the extracellular domain. Here, we used R-[3H]5-allyl-1-methyl-5-(m-trifluoromethyl-diazirynylphenyl) barbituric acid (R-mTFD-MPAB), a potent stereospecific barbiturate anesthetic, to photolabel expressed human α1β3γ2 GABAARs. Protein microsequencing revealed that R-[3H]mTFD-MPAB did not photolabel the etomidate sites at the β+ subunit interfaces. Instead, it photolabeled sites at the α+ and γ+ subunit interfaces in the transmembrane domain. On the (+)-side, α1M3 was labeled at Ala-291 and Tyr-294 and γ2M3 at Ser-301, and on the (−)-side, β3M1 was labeled at Met-227. These residues, like those in the etomidate site, are located at subunit interfaces near the synaptic side of the transmembrane domain. The selectivity of R-etomidate for the β+ interface relative to the α++ interfaces was >100-fold, whereas that of R-mTFD-MPAB for its sites was >50-fold. Each ligand could enhance photoincorporation of the other, demonstrating allosteric interactions between the sites. The structural heterogeneity of barbiturate, etomidate, and propofol derivatives is accommodated by varying selectivities for these two classes of sites. We hypothesize that binding at any of these homologous intersubunit sites is sufficient for anesthetic action and that this explains to some degree the puzzling structural heterogeneity of anesthetics.  相似文献   

3.
4.
The diversity of dinucleotide sequences at the 5′ ends of vaccinia virus mRNA's was determined by a two-dimensional electrophoresis procedure. RNA labeled with S-adenosyl[methyl-3H]methionine was synthesized in vitro by enzymes present in vaccinia virus cores. The RNA, ending in m7G(5′)pppNmpN−, was β-eliminated and treated with alkaline phosphatase. After digestion with RNases T2, T1, and A, all eight possible dinucleotides containing Gm and Am were identified. They are, in decreasing order of abundance: GmpUp (22%), AmpCp (18%), GmpAp (16%), GmpCp (15%), AmpAp (11%), AmpUp (10%), AmpGp (7%), and GmpGp (2%).  相似文献   

5.
Short-term ion uptake into roots of Limnobium stoloniferum was followed extracellularly with ion selective macroelectrodes. Cytosolic or vacuolar pH, together with the electrical membrane potential, was recorded with microelectrodes both located in the same young root hair. At the onset of chloride, phosphate, and nitrate uptake the membrane potential transiently decreased by 50 to 100 millivolts. During Cl and H2PO4 uptake cytosolic pH decreased by 0.2 to 0.3 pH units. Nitrate induced cytosolic alkalinization by 0.19 pH units, indicating rapid reduction. The extracellular medium alkalinized when anion uptake exceeded K+ uptake. During fusicoccin-dependent plasmalemma hyperpolarization, extracellular and cytosolic pH remained rather constant. Upon K+ absorption, FC intensified extracellular acidification and intracellular alkalinization (from 0.31 to 0.4 pH units). In the presence of Cl FC induced intracellular acidification. Since H+ fluxes per se do not change the pH, recorded pH changes only result from fluxes of the stronger ions. The extra- and intracellular pH changes, together with membrane depolarization, exclude mechanisms as K+/A symport or HCO3/A antiport for anion uptake. Though not suitable to reveal the actual H+/A stoichiometry, the results are consistent with an H+/A cotransport mechanism.  相似文献   

6.
Tay-Sachs disease is a severe lysosomal disorder caused by mutations in the HexA gene coding for the α-subunit of lysosomal β-hexosaminidase A, which converts GM2 to GM3 ganglioside. Hexa−/− mice, depleted of β-hexosaminidase A, remain asymptomatic to 1 year of age, because they catabolise GM2 ganglioside via a lysosomal sialidase into glycolipid GA2, which is further processed by β-hexosaminidase B to lactosyl-ceramide, thereby bypassing the β-hexosaminidase A defect. Since this bypass is not effective in humans, infantile Tay-Sachs disease is fatal in the first years of life. Previously, we identified a novel ganglioside metabolizing sialidase, Neu4, abundantly expressed in mouse brain neurons. Now we demonstrate that mice with targeted disruption of both Neu4 and Hexa genes (Neu4 −/−;Hexa −/−) show epileptic seizures with 40% penetrance correlating with polyspike discharges on the cortical electrodes of the electroencephalogram. Single knockout Hexa −/− or Neu4 −/− siblings do not show such symptoms. Further, double-knockout but not single-knockout mice have multiple degenerating neurons in the cortex and hippocampus and multiple layers of cortical neurons accumulating GM2 ganglioside. Together, our data suggest that the Neu4 block exacerbates the disease in Hexa−/− mice, indicating that Neu4 is a modifier gene in the mouse model of Tay-Sachs disease, reducing the disease severity through the metabolic bypass. However, while disease severity in the double mutant is increased, it is not profound suggesting that Neu4 is not the only sialidase contributing to the metabolic bypass in Hexa −/− mice.  相似文献   

7.
Soybeans (Glycine max L. Merr., cv Kingsoy) were grown on media containing NO3 or urea. The enrichments of shoots in K+, NO3, and total reduced N (Nr), relative to that in Ca2+, were compared to the ratios K+/Ca2+,NO3/Ca2+, and Nr/Ca2+ in the xylem saps, to estimate the cycling of K+, and Nr. The net production of carboxylates (R) was estimated from the difference between the sums of the main cations and inorganic anions. The estimate for shoots was compared to the theoretical production of R associated with NO3 assimilation in these organs, and the difference was attributed to export of R to roots. The net exchange rates of H+ and OH between the medium and roots were monitored. The shoots were the site of more than 90% of total NO3 reduction, and Nr was cycling through the plants at a high rate. Alkalinization of the medium by NO3-fed plants was interrupted by stem girdling, and not restored by glucose addition to the medium. It was concluded that the majority of the base excreted in NO3 medium originated from R produced in the shoots, and transported to the roots together with K+. As expected, cycling of K+ and reduced N was favoured by NO3 nutrition as compared to urea nutrition.  相似文献   

8.

Introduction

Allergic reaction to dust mites is a relatively common condition among children, triggering cutaneous and respiratory responses that have a great impact on the health of this population. Anaphylactic hypersensitivity is characterized by an exacerbated response involving the production of regulatory cytokines responsible for stimulating the production of IgE antibodies.

Objective

To investigate an association of variants in cytokine genes (IL1A −889, IL1B −511, +3962, IL1R 1970, IL1RA 11100, IL4RA +1902, IL12 −1188, IFNG +874, TGFB1 codon 10, codon 25, TNFA −308, −238, IL2 −330, +166, IL4 −1098, −590, −33, IL6 −174, nt565, and IL10 −1082, −819, −592) between patients sensitive to dust mites and a control group.

Methods

A total of 254 patients were grouped as atopic and non-atopic according to sensitivity as evaluated by the Prick Test and to cytokine genotyping by the polymerase chain reaction-sequence specific primers (PCR-SSP) method using the Cytokine Genotyping Kit.

Results

A comparison between individuals allergic to Dermatophagoides farinae, Dermatophagoides pteronyssinus, and Blomia tropicalis and a non-atopic control group showed significant differences between allele and genotype frequencies in the regulatory regions of cytokine genes, with important evidence for IL4 −590 in T/C (10.2% vs. 43.1%, odd ratio [OR] = 0.15, p = 5.2 10−8, pc = 0.0000011, and 95% confidence interval [95%CI] = 0.07–0.32) and T/T genotypes (42.9% vs. 13.8%, OR = 4.69, p = 2.5 10−6, pc = 0.000055, and 95%CI = 2.42–9.09). Other associations were observed in the pro-inflammatory cytokines IL1A −889 (T/T, C, and T) and IL2 −330 (G/T and T/T) and the anti-inflammatory cytokines IL4RA +1902 (A and G), IL4 −590 (T/C, T/T, C, and T), and IL10 −592 (A/A, C/A, A, and C).

Conclusion

Our results suggest a possible association between single nucleotide polymorphisms (SNPs) in cytokine genes and hypersensitivity to dust mites.  相似文献   

9.
Transcellular Cl movement across acinar cells is the rate-limiting step for salivary gland fluid secretion. Basolateral Nkcc1 Na+-K+-2Cl cotransporters play a critical role in fluid secretion by promoting the intracellular accumulation of Cl above its equilibrium potential. However, salivation is only partially abolished in the absence of Nkcc1 cotransporter activity, suggesting that another Cl uptake pathway concentrates Cl ions in acinar cells. To identify alternative molecular mechanisms, we studied mice lacking Ae2 and Ae4 Cl/HCO3 exchangers. We found that salivation stimulated by muscarinic and β-adrenergic receptor agonists was normal in the submandibular glands of Ae2−/− mice. In contrast, saliva secretion was reduced by 35% in Ae4−/− mice. The decrease in salivation was not related to loss of Na+-K+-2Cl cotransporter or Na+/H+ exchanger activity in Ae4−/− mice but correlated with reduced Cl uptake during β-adrenergic receptor activation of cAMP signaling. Direct measurements of Cl/HCO3 exchanger activity revealed that HCO3-dependent Cl uptake was reduced in the acinar cells of Ae2−/− and Ae4−/− mice. Moreover, Cl/HCO3 exchanger activity was nearly abolished in double Ae4/Ae2 knock-out mice, suggesting that most of the Cl/HCO3 exchanger activity in submandibular acinar cells depends on Ae2 and Ae4 expression. In conclusion, both Ae2 and Ae4 anion exchangers are functionally expressed in submandibular acinar cells; however, only Ae4 expression appears to be important for cAMP-dependent regulation of fluid secretion.  相似文献   

10.
Members of the INK4 protein family specifically inhibit cyclin-dependent kinase 4 (cdk4) and cdk6-mediated phosphorylation of the retinoblastoma susceptibility gene product (Rb). p16INK4A, a prototypic INK4 protein, has been identified as a tumor suppressor in many human cancers. Inactivation of p16INK4A in tumors expressing wild-type Rb is thought to be required in order for many malignant cell types to enter S phase efficiently or to escape senescence. Here, we demonstrate another mechanism of tumor suppression by implicating p16INK4A in a G1 arrest checkpoint in response to DNA damage. Calu-1 non-small cell lung cancer cells, which retain Rb and lack p53, do not arrest in G1 following DNA damage. However, engineered expression of p16INK4A at levels compatible with cell proliferation restores a G1 arrest checkpoint in response to treatment with γ-irradiation, topoisomerase I and II inhibitors, and cisplatin. A similar checkpoint can be demonstrated in p53−/− fibroblasts that express p16INK4A. DNA damage-induced G1 arrest, which requires the expression of pocket proteins such as Rb, can be abrogated by overexpression of cdk4, kinase-inactive cdk4 variants capable of sequestering p16INK4A, or a cdk4 variant incapable of binding p16INK4A. After exposure to DNA-damaging agents, there was no change either in overall levels of p16INK4A or in amounts of p16INK4A found in complex with cdks 4 and 6. Nonetheless, p16INK4A expression is required for the reduction in cdk4- and cdk6-mediated Rb kinase activity observed in response to DNA damage. During tumor progression, loss of p16INK4A expression may be necessary for cells with wild-type Rb to bypass this G1 arrest checkpoint and attain a fully transformed phenotype.  相似文献   

11.
We compared growth kinetics of Prorocentrum donghaiense cultures on different nitrogen (N) compounds including nitrate (NO3 ), ammonium (NH4 +), urea, glutamic acid (glu), dialanine (diala) and cyanate. P. donghaiense exhibited standard Monod-type growth kinetics over a range of N concentraions (0.5–500 μmol N L−1 for NO3 and NH4 +, 0.5–50 μmol N L−1 for urea, 0.5–100 μmol N L−1 for glu and cyanate, and 0.5–200 μmol N L−1 for diala) for all of the N compounds tested. Cultures grown on glu and urea had the highest maximum growth rates (μm, 1.51±0.06 d−1 and 1.50±0.05 d−1, respectively). However, cultures grown on cyanate, NO3 , and NH4 + had lower half saturation constants (Kμ, 0.28–0.51 μmol N L−1). N uptake kinetics were measured in NO3 -deplete and -replete batch cultures of P. donghaiense. In NO3 -deplete batch cultures, P. donghaiense exhibited Michaelis-Menten type uptake kinetics for NO3 , NH4 +, urea and algal amino acids; uptake was saturated at or below 50 μmol N L−1. In NO3 -replete batch cultures, NH4 +, urea, and algal amino acid uptake kinetics were similar to those measured in NO3 -deplete batch cultures. Together, our results demonstrate that P. donghaiense can grow well on a variety of N sources, and exhibits similar uptake kinetics under both nutrient replete and deplete conditions. This may be an important factor facilitating their growth during bloom initiation and development in N-enriched estuaries where many algae compete for bioavailable N and the nutrient environment changes as a result of algal growth.  相似文献   

12.
Glass microelectrodes filled with 3 molar KCl are widely used to measure intracellular potentials and it is usual to try to minimize their electrolyte loss. In these experiments we have used the ionic leak of our microelectrodes, filled with various salt solutions, to introduce a given ion into the red beet vacuole. This allowed us to show that NO3 ions reduce the magnitude of the current spectral density while they do not change the resistance of the tonoplast. This is true when NO3 is either added to the external medium or used as the microelectrode filling solution. This can be interpreted by a NO3 effect on the vacuolar side of the tonoplast, resulting in an inhibition of the ion transporting ATPase. Replacing K+ by Na+ ions in the medium has no effect on tonoplast resistance (Rs). On the contrary, when ions leaking from the microelectrode are H+, Li+ or K+, Rs is close to 4 kilohm square centimeter, whereas Rs is of the order of 30KΩ square centimeter when Na+ are the leaking ions. We also found a possible correlation between the presence of a Lorentzian in the current spectral density (cut-off frequency = 2 hertz) and a Cl efflux from the vacuole. This could be explained by the existence of Cl channels on the tonoplast.  相似文献   

13.
In the process of developing safer general anesthetics, isomers of anesthetic ethers and barbiturates have been discovered that act as convulsants and inhibitors of γ-aminobutyric acid type A receptors (GABAARs) rather than potentiators. It is unknown whether these convulsants act as negative allosteric modulators by binding to the intersubunit anesthetic-binding sites in the GABAAR transmembrane domain (Chiara, D. C., Jayakar, S. S., Zhou, X., Zhang, X., Savechenkov, P. Y., Bruzik, K. S., Miller, K. W., and Cohen, J. B. (2013) J. Biol. Chem. 288, 19343–19357) or to known convulsant sites in the ion channel or extracellular domains. Here, we show that S-1-methyl-5-propyl-5-(m-trifluoromethyl-diazirynylphenyl) barbituric acid (S-mTFD-MPPB), a photoreactive analog of the convulsant barbiturate S-MPPB, inhibits α1β3γ2 but potentiates α1β3 GABAAR responses. In the α1β3γ2 GABAAR, S-mTFD-MPPB binds in the transmembrane domain with high affinity to the γ+ subunit interface site with negative energetic coupling to GABA binding in the extracellular domain at the β+ subunit interfaces. GABA inhibits S-[3H]mTFD-MPPB photolabeling of γ2Ser-280 (γM2–15′) in this site. In contrast, within the same site GABA enhances photolabeling of β3Met-227 in βM1 by an anesthetic barbiturate, R-[3H]methyl-5-allyl-5-(m-trifluoromethyl-diazirynylphenyl)barbituric acid (mTFD-MPAB), which differs from S-mTFD-MPPB in structure only by chirality and two hydrogens (propyl versus allyl). S-mTFD-MPPB and R-mTFD-MPAB are predicted to bind in different orientations at the γ+ site, based upon the distance in GABAAR homology models between γ2Ser-280 and β3Met-227. These results provide an explanation for S-mTFD-MPPB inhibition of α1β3γ2 GABAAR function and provide a first demonstration that an intersubunit-binding site in the GABAAR transmembrane domain binds negative and positive allosteric modulators.  相似文献   

14.
Ozone is an air pollutant that causes pulmonary symptoms. In mice, ozone exposure causes pulmonary injury and increases bronchoalveolar lavage macrophages and neutrophils. We have shown that IL-17A is important in the recruitment of neutrophils after subacute ozone exposure (0.3 ppm for 24–72 h). We hypothesized that γδ T cells are the main producers of IL-17A after subacute ozone. To explore this hypothesis we exposed wildtype mice and mice deficient in γδ T cells (TCRδ−/−) to ozone or room air. Ozone-induced increases in BAL macrophages and neutrophils were attenuated in TCRδ−/− mice. Ozone increased the number of γδ T cells in the lungs and increased pulmonary Il17a mRNA expression and the number of IL-17A+ CD45+ cells in the lungs and these effects were abolished in TCRδ−/− mice. Ozone-induced increases in factors downstream of IL-17A signaling, including G-CSF, IL-6, IP-10 and KC were also decreased in TCRδ−/− versus wildtype mice. Neutralization of IL-17A during ozone exposure in wildtype mice mimicked the effects of γδ T cell deficiency. TNFR2 deficiency and etanercept, a TNFα antagonist, also reduced ozone-induced increases in Il17a mRNA, IL-17A+ CD45+ cells and BAL G-CSF as well as BAL neutrophils. TNFR2 deficient mice also had decreased ozone-induced increases in Ccl20, a chemoattractant for IL-17A+ γδ T cells. Il17a mRNA and IL-17A+ γδ T cells were also lower in obese Cpefat versus lean WT mice exposed to subacute ozone, consistent with the reduced neutrophil recruitment observed in the obese mice. Taken together, our data indicate that pulmonary inflammation induced by subacute ozone requires γδ T cells and TNFα-dependent recruitment of IL-17A+ γδ T cells to the lung.  相似文献   

15.

Introduction

We investigated the changing trend of various toxigenic Clostridium difficile isolates at a 3 500-bed hospital in Taiwan. Genetic relatedness and antimicrobial susceptibility of toxigenic C. difficile isolates were also examined.

Methods

A total of 110 non-repeat toxigenic C. difficile isolates from different patients were collected between 2002 and 2007. Characterization of the 110 toxigenic isolates was performed using agar dilution method, multilocus variable-number tandem-repeat analysis (MLVA) genotyping, tcdC genotyping, and toxinotyping.

Results

Among the 110 toxigenic isolates studied, 70 isolates harbored tcdA and tcdB (A+B+) and 40 isolates harbored tcdB only (AB+). The annual number of A+B+ isolates considerably increased over the 6-year study (P = 0.055). A total of 109 different MLVA genotypes were identified, in which A+B+ isolates and AB+ isolates were differentiated into two genetic clusters with similarity of 17.6%. Twenty-four (60%) of the 40 AB+ isolates formed a major cluster, MLVA-group 1, with a similarity of 85%. Seven (6.4%) resistant isolates were identified, including two metronidazole-resistant and five vancomycin-resistant isolates.

Conclusions

This study indicated a persistence of a MLVA group 1 AB+ isolates and an increase of A+B+ isolates with diverse MLVA types. Moreover, C. difficile isolates with antimicrobial resistance to metronidazole or vancomycin were found to have emerged. Continuous surveillance is warranted to understand the recent situation and control the further spread of the toxigenic C. difficile isolates, especially among hospitalized patients.  相似文献   

16.
17.
Neutral carrier-based liquid membrane ion-selective microelectrodes for NH4+ and NO3 were developed and used to investigate inorganic nitrogen acquisition in two varieties of barley, Hordeum vulgare L. cv Olli and H. vulgare L. cv Prato, originating in cold and warm climates, respectively. In the present paper, the methods used in the fabrication of ammonium- and nitrate-selective microelectrodes are described, and their application in the study of inorganic nitrogen uptake is demonstrated. Net ionic fluxes of NH4+ and NO3 were measured in the unstirred layer of solution immediately external to the root surface. The preference for the uptake of a particular ionic form was examined by measuring the net flux of the predominant form of inorganic nitrogen, with and without the alternative ion in solution. Net flux of NH4+ into the cold-adapted variety remained unchanged when equimolar concentrations (200 micromolar) of NH4+ and NO3 were present. Similarly, net flux of NO3 into the warm-adapted variety was not affected when NH4+ was also present in solution. The high temporal and spatial resolution afforded by ammonium- and nitrate-selective microelectrodes permits a detailed examination of inorganic nitrogen acquisition and its component ionic interactions.  相似文献   

18.
Susceptible corn roots exposed to the host-selective toxin of Helminthosporium carbonum took up and retained more NO3, Na+, Cl, 3-o-methylglucose, and leucine than did control roots. Stimulatory effects on uptake were more pronounced with freshly cut roots than with roots that were washed and aged. Solutes were accumulated against a concentration gradient, and toxin-treated tissues developed a steeper gradient than did control tissues. Toxin affected both the low and high affinity uptake systems for Na+ and Cl. Toxin did not affect uptake of Na2, K+, Ca2+, phosphate ion (H2PO4 and HPO4), SO4, and glutamic acid. No toxin-induced leakage of any solute tested was detected within 5 to 6 hr after initial exposure to toxin. The data suggest that toxin from H. carbonum does not cause the general plasma membrane derangement caused by other host-selective toxins. Instead, H. carbonum toxin may cause specific changes in characteristics of the plasmalemma, which result in increased uptake of certain solutes.  相似文献   

19.
eIF5 is the GTPase activating protein (GAP) for the eIF2·GTP·Met-tRNAiMet ternary complex with a critical role in initiation codon selection. Previous work suggested that the eIF5 mutation G31R/SUI5 elevates initiation at UUG codons by increasing GAP function. Subsequent work implicated eIF5 in rearrangement of the preinitiation complex (PIC) from an open, scanning conformation to a closed state at AUG codons, from which Pi is released from eIF2·GDP·Pi. To identify eIF5 functions crucial for accurate initiation, we investigated the consequences of G31R on GTP hydrolysis and Pi release, and the effects of intragenic G31R suppressors on these reactions, and on the partitioning of PICs between open and closed states. eIF5-G31R altered regulation of Pi release, accelerating it at UUG while decreasing it at AUG codons, consistent with its ability to stabilize the closed complex at UUG. Suppressor G62S mitigates both defects of G31R, accounting for its efficient suppression of UUG initiation in G31R,G62S cells; however suppressor M18V impairs GTP hydrolysis with little effect on PIC conformation. The strong defect in GTP hydrolysis conferred by M18V likely explains its broad suppression of Sui mutations in numerous factors. We conclude that both of eIF5''s functions, regulating Pi release and stabilizing the closed PIC conformation, contribute to stringent AUG selection in vivo.  相似文献   

20.

Background and Aims

Although ammonium (NH4+) is the preferred form of nitrogen over nitrate (NO3) for rice (Oryza sativa), lateral root (LR) growth in roots is enhanced by partial NO3 nutrition (PNN). The roles of auxin distribution and polar transport in LR formation in response to localized NO3 availability are not known.

Methods

Time-course studies in a split-root experimental system were used to investigate LR development patterns, auxin distribution, polar auxin transport and expression of auxin transporter genes in LR zones in response to localized PNN in ‘Nanguang’ and ‘Elio’ rice cultivars, which show high and low responsiveness to NO3, respectively. Patterns of auxin distribution and the effects of polar auxin transport inhibitors were also examined in DR5::GUS transgenic plants.

Key Results

Initiation of LRs was enhanced by PNN after 7 d cultivation in ‘Nanguang’ but not in ‘Elio’. Auxin concentration in the roots of ‘Nanguang’ increased by approx. 24 % after 5 d cultivation with PNN compared with NH4+ as the sole nitrogen source, but no difference was observed in ‘Elio’. More auxin flux into the LR zone in ‘Nanguang’ roots was observed in response to NO3 compared with NH4+ treatment. A greater number of auxin influx and efflux transporter genes showed increased expression in the LR zone in response to PNN in ‘Nanguang’ than in ‘Elio’.

Conclusions

The results indicate that higher NO3 responsiveness is associated with greater auxin accumulation in the LR zone and is strongly related to a higher rate of LR initiation in the cultivar ‘Nanguang’.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号