首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Eutrophication has become increasingly serious and noxious algal blooms have been of more frequent occurrence in the Yangtze River Estuary and in the adjacent East China Sea. In 2003 and 2004, four cruises were undertaken in three zones in the estuary and in the adjacent sea to investigate nitrate (NO3–N), ammonium (NH4–N), nitrite (NO2–N), soluble reactive phosphorus (SRP), dissolved reactive silica (DRSi), dissolved oxygen (DO), phytoplankton chlorophyll a (Chl a) and suspended particulate matter (SPM). The highest concentrations of DIN (NO3–N+NH4–N+NO2–N), SRP and DRSi were 131.6, 1.2 and 155.6 μM, respectively. The maximum Chl a concentration was 19.5 mg m−3 in spring. An analysis of historical and recent data revealed that in the last 40 years, nitrate and SRP concentrations increased from 11 to 97 μM and from 0.4 to 0.95 μM, respectively. From 1963 to 2004, N:P ratios also increased from 30–40 up to 150. In parallel with the N and P enrichment, a significant increase of Chl a was detected, Chl a maximum being 20 mg m−3, nearly four times higher than in the 1980s. In 2004, the mean DO concentration in bottom waters was 4.35 mg l−1, much lower than in the 1980s. In comparison with other estuaries, the Yangtze River Estuary was characterized by high DIN and DRSi concentrations, with low SRP concentrations. Despite the higher nutrient concentrations, Chl a concentrations were lower in the inner estuary (Zones 1 and 2) than in the adjacent sea (Zone 3). Based on nutrient availability, SPM and hydrodynamics, we assumed that in Zones 1 and 2 phytoplankton growth was suppressed by high turbidity, large tidal amplitude and short residence time. Furthermore, in Zone 3 water stratification was also an important factor that resulted in a greater phytoplankton biomass and lower DO concentrations. Due to hydrodynamics and turbidity, the open sea was unexpectedly more sensitive to nutrient enrichment and related eutrophication processes.  相似文献   

2.
Nutrient concentrations, chlorophyll-a, bacterial biomass and relative activity of denitrifying organisms were investigated from ice-core, brine and underlying water samples in February 1998 in the Gulf of Bothnia, Baltic Sea. Examined sea ice was typical for the Baltic Sea; ice bulk salinity varied from 0.1 to 1.6 psu, and in underlying water salinity was from 4.2 to 4.7 psu. In 2- to 3-months-old sea ice (thickness 0.4–0.6 m), sea-ice communities were at the winter stage; chl-a concentrations were generally below 1 mg m−3 and heterotrophic organisms composed 7–20% of organism assemblage. In 1-month-old ice (thickness 0.2–0.25 m), an ice spring bloom was already developing and chl-a concentrations were up to 5.6 mg m−3. In relation to low salinity, high concentrations of NH+ 4, NO 2, PO3+ 4 and SiOH4 were found in the ice column. The results suggest that the upper part of ice accumulates atmospheric nutrient load during the ice season, and nutrients in the upper 10–20 cm of ice are mainly of atmospheric origin. The most important biological processes controlling the sea-ice nutrient status are nutrient regeneration, nutrient uptake and nitrogen transformations. Nutrient regeneration is specially active in the middle parts of the 50- to 60-cm-thick ice and subsequent accumulation of nutrients probably enhances the ice spring bloom. Nitrite accumulation and denitrifying activity were located in the same ice layers with nutrient regeneration, which together with the observed significant correlation between the concentrations of nitrogenous nutrients points to active nitrogen transformations occurring in the interior layers of sea ice in the Baltic Sea. Accepted: 12 June 2000  相似文献   

3.
Tetraspores of Sarcothalia crispata from San Juan Bay, Strait of Magellan, Chile, were cultivated under different combinations of photon flux densities and agricultural fertilizers in the laboratory. In the experiment, the S. crispata specimens were cultured in combinations of different photon flux densities (50, 100, 150 μmol photons m-2 s-1) and enriched seawater solutions (sodium nitrate + monocalcium phosphate, urea + monocalcium phosphate, ammonium nitrate + monocalcium phosphate), always adjusting the N and P concentrations to 10 and 3 mg L-1, and in sea water as control. After 45 days, the tetrasporeling plants were found to be larger at photon flux densities of 50 and 100 μmol photons m-2 s-1 in the nutrient enrichment experiments; growth was greatest in the sea water enriched with ammonium nitrate and urea. An analysis of the combined effect of the photon flux density and nutrients revealed that the best combination for sporeling growth was the ammonium nitrate and urea solution at 50–100 μmol photons m-2 s-1.  相似文献   

4.
Chlorophyll a and nutrient concentrations along with temperature and salinity values were measured at 22 CTD stations along a 735-km transect running to the northwest of the island of South Georgia, Southern Ocean. Measurements were repeated during five summer surveys (January and February 1994, January 1996, December 1996, January 1998) and one spring survey (October 1997). The transect sampled Sub-Antarctic Zone water in the north, Polar Frontal Zone water and Antarctic Zone water in the south. Chlorophyll a concentrations were lowest to the north of the transect and frequently high (up to 17 mg m−3) in the deep open ocean of the Antarctic Zone. Sub-surface peaks were measured in all zones and chlorophyll a was detectable to a depth of 150 m. There was a clear latitudinal temperature gradient in the near-surface waters (0–50 m), the warmest water occurring in the north (∼12 °C), and the coolest in the Antarctic Zone (∼2 °C). There was also a well-defined latitudinal gradient in summer near-surface silicate concentrations (∼2, 4, and 10 mmol m−3 in the Sub-Antarctic Zone, the Polar Frontal Zone and the Antarctic Zone, respectively), increasing to >20 mmol m−3 near South Georgia. Distinct differences in silicate concentrations were also evident in all three zones to a depth of 500 m. Near-surface nitrate and phosphate concentrations were relatively low to the north of the transect (∼14 and 1 mmol m−3, respectively) and higher in the Polar Frontal Zone and Antarctic Zone (∼18 and 1.4 mmol m−3, respectively). Ammonium and nitrite were restricted to the upper 200 m of the water column, and exhibited sub-surface concentration peaks, the lowest being in the Sub-Antarctic Zone (0.68 and 0.25 mmol m−3, respectively) and the highest in the Antarctic Zone (1.72 and 0.29 mmol m−3, respectively). Surface (∼6 m) spring nutrient measurements provided an indication of pre-bloom conditions; ammonium and nitrite concentrations were low (∼0.27 and 0.28 mmol m−3, respectively), while silicate, nitrate and phosphate concentrations were high and similar to previously measured winter values (e.g. ∼26, 23, 2 mmol m−3, respectively in the Antarctic Zone). Although the values measured were very variable, and there was some evidence of a seasonal growth progression, the chlorophyll a and nutrient distribution patterns were dominated by intercruise (interannual) factors. Approximate nutrient depletions (spring minus summer) appeared similar in the Polar Frontal Zone and Antarctic Zone for nitrate and phosphate, while silicate showed a marked latitudinal increase from north to south throughout the transect. Highest chlorophyll a concentrations coincided with the highest apparent silicate depletions over the deep ocean of the Antarctic Zone. In this area, relatively warm, easterly flowing Antarctic Circumpolar Current water meets cooler, westerly flowing water that is influenced by the Weddell-Scotia Confluence and is rich in nutrients, especially silicate. Accepted: 27 November 1999  相似文献   

5.
A detailed survey was undertaken of the microbial communities of 16 saline lakes in the Vestfold Hills (Princess Elizabeth Land, eastern Antarctica), which ranged in salinity from slightly brackish (4–5‰) to hypersaline (maximum: 174‰). Temperatures at comparable sampling depths in the lakes ranged from −12.2°C to +10.5°C. Ranges in the abundances of bacteria, heterotrophic nanoflagellates (HNAN) and phototrophic nanoflagellates (PNAN) were 1.40 × 107 l−1–1.58 × 1010 l−1, 4.83 × 104 l−1–1.70 × 107 l−1 and 0–1.02 × 107 l−1, respectively. There was considerable variation across the salinity spectrum, though in the case of bacteria and PNAN significantly higher concentrations of cells were seen in two of the most saline lakes. The autotrophic ciliate Mesodinium rubrum occurred in all but five of the lakes and was found at salinity levels up to 108‰. Heterotrophic ciliates were generally scarce. Dinoflagellates, particularly Gonyaulax c.f. tamarensis, Gyrodinium lachryma and Gymnodinium sp., occurred in the majority of the lakes. On the basis of chlorophyll a concentrations, nutrient levels and microplankton concentrations the lakes spanned the spectrum from ultra-oligotrophic to oligo/mesotrophic. The most saline lakes had much reduced species diversity compared with the less saline environments. Isolation from the marine environment has led to nutrient depletion, simplification and a truncated trophic structure. Received: 19 September 1996 / Accepted: 13 January 1997  相似文献   

6.
Question: How does groundwater input affect plant distribution in Alnus glutinosa (black alder) carrs? Location: Alder carrs along the river Meuse, SE Netherlands. Methods: Three types of site, characterized by groundwater flow, were sampled in 17 A. glutinosa carrs. Vegetation and abiotic data (soil and water chemistry) were collected and analysed using a Canonical Correspondence Analysis. Based on the results, a laboratory experiment tested the effect of groundwater input (Ca2+) on pore water chemistry (NH4+ availability). Results: Environmental factors indicating groundwater input (Ca2+ and Fe2+), correlating with the NH+4 concentration in the pore water, best explained the variation in plant distribution. NH4+ availability was determined by Ca2+ input via the groundwater and subsequent competition for exchange sites in the sediment. As a result, nutrient‐poor seepage locations fully fed by groundwater were dominated by small iron resistant plants such as Caltha palustris and Equisetum fluviatile. More nutrient‐rich locations, fed by a combination of groundwater and surface water, allowed the growth of taller iron resistant plant species such as Carex paniculata. Nutrient‐rich locations with stagnating surface water were hardly fed by groundwater, allowing the occurrence of fast growing and less iron tolerant wetland grasses such as Glyceria fluitans and G. maxima. Conclusion: Groundwater input affects plant composition in A. glutinosa carrs along the river Meuse by determining nutrient availability (ammonium) and concentrations of toxic iron.  相似文献   

7.
The influence of inhibitor of water channels, HgCl2, on water diffusion in maize (Zea mays L.) seedling roots was investigated with the pulsed nuclear magnetic resonance (NMR) method. Blocking of water channels decreased the water permeability of cell membranes by 1.5 – 2 times. This effect of HgCl2 was exhibited only in the roots of seedlings grown in a nutrient solution containing Ca2+ and was reversed with Hg-scavenging agent β-mercaptoethanol. Subsequent incubation of Ca2+-deficient roots in the nutrient solution with Ca2+ recovered the sensitivity to HgCl2. The water stress decreased water diffusion rates similarly to HgCl2 and the effects of water stress and HgCl2 were not additive. The obtained data demonstrate the possibilities of the pulsed NMR method for study of the transmembrane water exchange in vivo in connection with water channel functioning.  相似文献   

8.
We studied the trophic development of the past 30–100 years in eight moderately deep Dutch lakes based on their sedimentary fossil diatom assemblages. The dominant diatoms indicating meso- to eutrophic conditions were Aulacoseira subarctica, Cyclotella ocellata, C. cyclopuncta, C. meneghiniana, Puncticulata bodanica, Aulacoseira granulata, Cyclostephanos dubius, C. invisitatus, Stephanodiscus hantzschii, S. medius, and S. parvus. Ordination of diatom data separated the lakes into four groups according to their total phosphorus concentrations (TP), water supply, water management, and origin. The first group consists of dike-breach lakes, which were in stable eutrophic to hypertrophic conditions throughout the past century with diatom-inferred TP (DI-TP) concentrations of between 70 and 300 μg l−1. The main factors influencing these dike-breach lakes are river management, ground water supply of riverine origin, and local land use. The second group are artificial lakes of fluctuating oligo- to mesotrophic conditions and DI-TP concentrations of 10–30 μg l−1. Only one of the artificial lakes showed a DI-TP increase due to changes in catchment agricultural practice. A third group includes an artificial moat and an inland dike-breach lake with DI-TP concentrations of 50–100 μg l−1. The fourth group contains an individual dike-breach lake with stable mesotrophic conditions of 50 μg l−1 throughout the past century. Rather than showing a regional pattern, the studied lakes behave very individualistically with regard to their trophic history, reflecting changes in the local hydrology and in their nutrient sources.  相似文献   

9.
It has long been assumed that the peat underlying tropical peat swamp forests accumulates because the extreme conditions (water logged, nutrient poor, anaerobic and acidic—pH 2.9–3.5) impede microbial activity. Litterbag studies in a tropical Malaysian peat swamp (North Selangor peat swamp forest) showed that although the sclerophyllous, toxic leaves of endemic peat forest plants (Macaranga pruinosa, Campnosperma coriaceum, Pandanus atrocarpus, Stenochlaena palustris) were barely decomposed by bacteria and fungi (decay rates of only 0.0006–0.0016 k day−1), leaves of M. tanarius, a secondary forest species were almost completely decomposed (decay rates of 0.0047–0.005 k day−1) after 1 year. Thus it is intrinsic properties of the leaves (that are adaptations to deter herbivory in the nutrient poor environment) that impede microbial breakdown. The water of the peat swamp was very high in dissolved organic carbon (70–84 mg l−1 DOC). Laboratory studies revealed initial rapid leaching of DOC from leaves (up to 1,720 mg l−1 from 4 g of leaves in 7 days), but the DOC levels then fell rapidly. The leaching of DOC resulted in weight loss but the physical structure of the leaves remained intact. It is suggested that the DOC is used as a substrate for microbial growth hence lowering the concentration of DOC in the water and transferring energy from the leaves to other trophic levels. This would explain how nutrient poor tropical peatswamps support diverse, abundant flora and fauna despite low nutrient levels and lack of rapid litter cycling such as occurs in other types of tropical rainforests.  相似文献   

10.
11.
During an annual cycle, overlying water and sediment cores were collected simultaneously at three sites (Tavira, Culatra and Ramalhete) of Ria Formosa’s intertidal muddy and subtidal sandy sediments to determine ammonium, nitrates plus nitrites and phosphate. Organic carbon, nitrogen and phosphorus were also determined in superficial sediments. Ammonium and phosphate dissolved in porewater were positively correlated with temperature (P < 0.01) in muddy and sandy sediments, while the nitrogen-oxidized forms had a negative correlation (P < 0.02) in muddy sediments probably because mineralization and nitrification/denitrification processes vary seasonally. Porewater ammonium profiles evidenced a peak in the top-most muddy sediment (380 μM) suggesting higher mineralization rate when oxygen is more available, while maximum phosphate concentration (113 μM) occurred in the sub-oxic layer probably due to phosphorus desorption under reduced conditions. In organically poor subtidal sandy sediments, nutrient porewater concentrations were always lower than in intertidal muddy sediments, ranging annually from 20 μM to 100 μM for ammonium and from 0.05 μM to 16 μM for phosphate. Nutrient diffusive fluxes predicted by a mathematical model were higher during summer, in both muddy (104 nmol cm−2 d−1––NH4+; 8 nmol cm−2 d−1––HPO4−2) and sandy sediments (26 nmol cm−2 d−1––NH4+; 1 nmol cm−2 d−1––HPO4−2), while during lower temperature periods these fluxes were 3–4 times lower. Based on simulated nutrient effluxes, the estimated annual amount of ammonium and phosphate exported from intertidal areas was three times higher than that released from subtidal areas (22 ton year−1––NH4+; 2 ton year−1––HPO4−2), emphasizing the importance of tidal flats to maintain the high productivity of the lagoon. Global warming scenarios simulated with the model, revealed that an increase in lagoon water temperature only produces significant variations (P < 0.05) for NH4+ in porewater and consequent diffusive fluxes, what will probably affect the system productivity due to a N/P ratio unbalance.  相似文献   

12.
Long-term management plans for restoration of natural flow conditions through the Everglades increase the importance of understanding potential nutrient impacts of increased freshwater delivery on Florida Bay biogeochemistry. Planktonic communities respond quickly to changes in water quality, thus spatial variability in community composition and relationships to nutrient parameters must be understood in order to evaluate future downstream impacts of modifications to Everglades hydrology. Here we present initial results combining flow cytometry analyses of phytoplankton and bacterial populations (0.1–50 μm size fraction) with measurements of δ13C and δ15N composition and dissolved inorganic nutrient concentrations to explore proxies for planktonic species assemblage compositions and nutrient cycling. Particulate organic material in the 0.1–50 μm size fraction was collected from five stations in Northeastern and Western Florida Bay to characterize spatial variability in species assemblage and stable isotopic composition. A dense bloom of the picocyanobacterium, Synechococcus elongatus, was observed at Western Florida Bay sites. Smaller Synechococcus sp. were present at Northeast sites in much lower abundance. Bacteria and detrital particles were also more abundant at Western Florida Bay stations than in the northeast region. The highest abundance of detritus occurred at Trout Creek, which receives freshwater discharge from the Everglades through Taylor Slough. In terms of nutrient availability and stable isotopic values, the S. elongatus population in the Western bay corresponded to low DIN (0.5 μM NH 4 + ; 0.2 μM NO 3 ) concentrations and depleted δ15N signatures ranging from +0.3 to +0.8‰, suggesting that the bloom supported high productivity levels through N2-fixation. δ15N values from the Northeast bay were more enriched (+2.0 to +3.0‰), characteristic of N-recycling. δ13C values were similar for all marine Florida Bay stations, ranging from −17.6 to −14.4‰, however were more depleted at the mangrove ecotone station (−25.5 to −22.3‰). The difference in the isotopic values reflects differences in carbon sources. These findings imply that variations in resource availability and nutrient sources exert significant control over planktonic community composition, which is reflected by stable isotopic signatures.  相似文献   

13.
Some aquatic systems have disproportionately high nutrient processing rates, and may be important to nutrient retention within river networks. However, the contribution of such biogeochemical hot spots also depends on water residence time and hydrologic connections within the system. We examined the balance of these factors in a comparative study of nitrate (NO3 ) uptake across stream and flow-through wetland reaches of northern Wisconsin, USA. The experimental design compared NO3 uptake at different levels: the ecosystem level, for reaches (n = 9) consisting of morphologically contrasting subreaches (SLOW, low mean water velocity; REF, reference, or higher mean water velocity); the sub-ecosystem level, for subreaches consisting of morphologically contrasting zones (TS, transient storage zone; MC, main channel zone). SLOW subreaches had 45% lower ecosystem-level uptake rate (K, t−1) on average, indicating reduced uptake efficiency in flow-through wetlands relative to streams. The four largest K values (total n = 24) also occurred in REF subreaches. TS:MC uptake rate varied (range 0.1–6.0), but MC zones consistently accounted for most NO3 uptake by the ecosystem. In turn, TS influence was limited by a tradeoff between TS zone uptake rate and the strength of TSMC hydrologic connection (α or F med). Additional modeling of published hydrologic parameter sets showed that strong MC dominance of uptake (>75% of total uptake), at the scale of solute release methods (meters to kilometers, hours to days), is common among streams and rivers. Our results emphasize that aquatic nutrient retention is the outcome of a balance involving nutrient uptake efficiency, water residence time, and the strength of hydrologic connections between nutrient sources and sinks. This balance restricts the influence of hydrologically disconnected biota on nutrient transport, and could apply to diverse ecosystem types and sizes.  相似文献   

14.
There are very few time series documenting clear trends of change in the biomass of total phytoplankton or single taxa that coincide with trends of increasing nutrient concentrations. Weekly or biweekly monitoring since 1997 on a cross section of the central Gulf of Finland (NE Baltic Sea) with similar climatic and hydrographic conditions, but different nutrient levels, provided a uniform dataset. In order to evaluate seasonal (June–September) patterns of phytoplankton succession, more than 1,200 samples were statistically analyzed by selecting 12 dominant taxa using wet weight biomass values. In addition, the continuously measured hydrographic parameters on board the ships of opportunity, and simultaneous nutrient analyses gave high frequency information on the water masses. The objective of this study was to identify the taxa that may prove indicative in the assessment of eutrophication in the appropriate monitoring time periods. None of the most common bloom-forming species (Aphanizomenon sp., Nodularia spumigena, and Heterocapsa triquetra) showed reliable correlations with enhanced nutrient concentrations. The species we suggest as reliable eutrophication indicators—oscillatorialean cyanobacteria and the diatoms Cyclotella choctawhatcheeana and Cylindrotheca closterium—showed the best relationships with total phosphorus concentrations. Their maxima appear toward the end of July or in August–September when phytoplankton community structure is more stable, and less frequent observations may give adequate results. Another diatom, Skeletonema costatum, exhibited stronger correlations with dissolved inorganic and total nitrogen in June, during the period of the summer phytoplankton minimum. Guest editors: J. H. Andersen & D. J. Conley Eutrophication in Coastal Ecosystems: Selected papers from the Second International Symposium on Research and Management of Eutrophication in Coastal Ecosystems, 20–23 June 2006, Nyborg, Denmark  相似文献   

15.
We studied the adaptive variations of the hemolymph concentrations in relation to water depth and pressure using deep-dwelling amphipods from Lake Baikal. Hemolymph osmolality was determined in six bathyal and abyssal species immediately after capture when values come closest to the habitat concentrations. In three species, hemolymph osmolalities correlated positively with depth of capture. Prevalent ions in the hemolymph are sodium and chloride. Lactate, our indicator for capture stress, was highest after trawling (2–6 mM) and lowest after retrieval from cages (0–0.6 mM). Acclimation to different pressure was studied by exposing the specimens to different water depths over several days. Hemolymph concentrations did not change after acclimation to surface pressure in the sublittoral Acanthogammarus albus, a native also to shallow water, but decreased by 30–80 mosmol/kg H2O in the bathyal and abyssal species Acanthogammarus grewingki, Acanthogammarus reicherti, and Parapallasea lagowskii. Similarly, hemolymph osmolality decreased in A. reicherti and P. lagowskii originating from deep water, when acclimated to reduced water depth, and, in A. reicherti hemolymph osmolality reached its original high value when returned to the depth of capture. Higher hemolymph osmolalities and NaCl concentrations, demonstrated here for the first time, may provide selective advantages to abyssal species. Accepted: 24 August 2000  相似文献   

16.
Fallows improve soil fertility and allow sustainable agriculture. Soil fertility was assessed under different types of fallow through pH, nutrient concentrations and particulate organic matter (POM) quantity and quality. The two year-fallows were under Chromolaena odorata, Calliandra calothyrsus and Pueraria phaseoloides on a Typic Kandiudult. Soils were sampled from 0–10 cm and 10–20 cm depth. The weight of POM was 2 mg g−1 of soil under Calliandra, 3.9 mg g−1 under Chromolaena and 3.7 mg g−1 under Pueraria in the 0–10 cm layer. The tPOM-C (proportion of C in the total POM) and tPOM-N (proportion of N in total POM) were 26.1% and 14.5% under Calliandra, 39.6% and 18.8% under Chromolaena and 37.0% and 16.7% under Pueraria. However, despite the improvement of soil fertility under Pueraria as compared to planted Calliandra, the effect of Pueraria on nutrient concentration and POM status remained similar to that of Chromolaena. Calliandra increased soil acidity and allowed a deterioration of nutrient concentration (Ca, K), ECEC and an impoverishment of POM status.  相似文献   

17.
In brackish lagoons, Daphnia is replaced by calanoid copepods (Eurytemora affinis, Acartia spp.) and rotifers when a certain threshold (depending on, for instance, fish density) is reached. We hypothesize that loss of Daphnia induces a regime shift from clear to turbid at high nutrient concentrations. We conducted a factorial designed enclosure experiment with contrasting salinities (0–16‰), low fish predation (one three-spined stickleback, Gasterosteus aculeatus, m−2) and three levels of nutrient loading in a shallow brackish lagoon. A change point analysis suggests a strong regime shift from a clear to a turbid state at 6–8‰ salinity at low and high loading, but not for the control. From the low to the high salt regime, chlorophyll a (Chla), Chla:total phosphorus (TP) and Chla:total nitrogen (TN) ratios shifted highly significantly for all nutrient treatments, and the bacterioplankton production followed the changes in Chla. These changes occurred parallel with a shift from cladoceran and cyclopoid copepod to rotifer dominance. Monitoring data from 60 Danish brackish lagoons show increasing Chla with increasing TP and TN as well as interactive effects of TN and salinity, peaking at intermediate salinity. A relatively weak effect of salinity at low nutrient concentrations and the stronger effect at intermediate high salinity are in accordance with the experimental results. However, these data suggest a lower salinity threshold than in the experiment, which may be explained by a higher fish density. Our results have implications for the management of coastal lagoons both at present and in a future (predicted) warmer climate: (1) improved water quality can be obtained by reducing the nutrient loading or enhancing the freshwater input to a level triggering a shift to Daphnia dominance (typically <2‰), (2) fish manipulation is probably not a useful tool for brackish lagoons, unless the salinity is below the threshold for a potential shift to a clear Daphnia dominated state, and (3) more abrupt changes will expectedly occur in low-saline coastal lagoons at increasing salinity during summer in a future warmer climate.  相似文献   

18.
Microscale photographs were taken of the ice bottom to examine linkages of algal chlorophyll a (chl a) biomass distribution with bottom ice features in thick Arctic first-year sea ice during a spring field program which took place from May 5 to 21, 2003. The photographic technique developed in this paper has resulted in the first in situ observations of microscale variability in bottom ice algae distribution in Arctic first-year sea ice in relation to ice morphology. Observations of brine channel diameter (1.65–2.68 mm) and number density (5.33–10.35 per 100 cm2) showed that the number of these channels at the bottom of thick first-year sea ice may be greater than previously measured on extracted ice samples. A variogram analysis showed that over areas of low chl a biomass (≤20.7 mg chl a m−2), patchiness in bottom ice chl a biomass was at the scale of brine layer spacing and small brine channels (∼1–3 mm). Over areas of high chl a biomass (≥34.6 mg chl a m−2), patchiness in biomass was related to the spacing of larger brine channels on the ice bottom (∼10–26 mm). Brine layers and channels are thought to provide microscale maxima of light, nutrient replenishment and space availability which would explain the small scale patchiness over areas of low algal biomass. However, ice melt and erosion near brine channels may play a more important role in areas with high algal biomass and low snow cover.  相似文献   

19.
The potential use of epilithic diatoms as indicators of organic pollution was evaluated in Gravataí River, RS, (latitude 29°45′–30°12′ S; longitude 50°27′–51°12′ W). The river suffers agricultural impacts in its upper course and urban and industrial organic pollution in its lower course. Epilithic diatoms were sampled eight times from September 2000 to August 2002, at six sites. Species were identified and densities and relative abundances of populations were determined. Simultaneously, physical, chemical and microbiological variables were measured (water temperature, conductivity, turbidity, pH, dissolved oxygen, biochemical oxygen demand (BOD5), chemical oxygen demand, ammonium, organic nitrogen, total nitrogen, ortho-phosphate, total phosphate, chloride and faecal coliforms). In order to interpret the environmental and biological variables, discriminant analysis and the TWINSPAN methods (Two-Way Indicator Species Analysis) were applied. The results indicated that the concentrations of ortho-phosphate, ammonium, total organic nitrogen, BOD5 and faecal coliforms characterized a pollution gradient along the river, where changes in the abundance or species composition were observed. Species were classified into three groups: Group A, including species more tolerant to heavy organic pollution and eutrophication, represented by Luticola goeppertiana, L. mutica, Eolimna subminuscula, Nitzschia palea and Sellaphora pupula; Group B, comprised of tolerant and widely distributed species such as Eunotia bilunaris, Frustulia crassinervia, F. saxonica, Navicula cryptocephala, N. cryptotenella, Nitzschia palea var. tenuirostris, Surirella angusta, Pinnularia microstauron and Ulnaria ulna and Group C, with less pollution tolerant species represented by Eunotia sp. and Gomphonema parvulum.  相似文献   

20.
Nitrification was measured within a sand and gravel aquifer on Cape Cod, MA, using a series of single-well injection tests. The aquifer contained a wastewater-derived contaminant plume, the core of which was anoxic and contained ammonium. The study was conducted near the downgradient end of the ammonium zone, which was characterized by inversely trending vertical gradients of oxygen (270 to 0 μM) and ammonium (19 to 625 μM) and appeared to be a potentially active zone for nitrification. The tests were conducted by injecting a tracer solution (ambient ground water + added constituents) into selected locations within the gradients using multilevel samplers. After injection, the tracers moved by natural ground water flow and were sampled with time from the injection port. Rates of nitrification were determined from changes in nitrate and nitrite concentration relative to bromide. Initial tests were conducted with 15N-enriched ammonium; subsequent tests examined the effect of adding ammonium, nitrite, or oxygen above background concentrations and of adding difluoromethane, a nitrification inhibitor. In situ net nitrate production exceeded net nitrite production by 3- to 6- fold and production rates of both decreased in the presence of difluoromethane. Nitrification rates were 0.02–0.28 μmol (L aquifer)−1 h−1 with in situ oxygen concentrations and up to 0.81 μmol (L aquifer)−1 h−1 with non-limiting substrate concentrations. Geochemical considerations indicate that the rates derived from single-well injection tests yielded overestimates of in situ rates, possibly because the injections promoted small-scale mixing within a transport-limited reaction zone. Nonetheless, these tests were useful for characterizing ground water nitrification in situ and for comparing potential rates of activity when the tracer cloud included non-limiting ammonium and oxygen concentrations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号