首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The enzyme lyso-platelet-activating factor:acetyl-CoA acetyltransferase (EC 2.3.1.67) was assayed in microsomal fractions from rat spleens. The addition of micromolar Ca2+ rapidly enhanced acetyltransferase activity and this activation was reversed by the addition of EGTA in excess of Ca2+. The effect of Ca2+ was on the apparent Km of the enzyme for the substrate acetyl-CoA without showing any significant effect on the Vmax of the acetylation reaction. When microsomes were isolated in the presence of 5 mM EGTA, to remove endogenous calmodulin, the same enhancing effect of Ca2+ on the acetylation reaction was observed. The addition of exogenous calmodulin to this preparation had no effect on the enzyme activity. Preincubation of spleen microsomes with the calmodulin inhibitor trifluoperazine decreased acetyltransferase in both the presence and the absence of Ca2+, indicating an effect of this drug independently of calmodulin. The addition of Mg-ATP to the assay mixture also had no effect on the acetylation reaction. These data suggest that Ca2+ modulates acetyltransferase activity from rat spleen microsomes by a mechanism that seems to be independent of calmodulin or protein phosphorylation.  相似文献   

2.
Incubation of rat splenic microsomes with the catalytic subunit of cyclic AMP-dependent protein kinase in the presence of Mg-ATP stimulated 2-3-fold lyso-platelet-activating factor:acetyltransferase activity. This activation was due to an increase in the Vmax of the acetylation reaction, whereas the Km for acetyl-CoA was not affected. The ATP derivative, AMPPNP, could not replace ATP and preincubation of the microsomes with the heat-stable inhibitor of protein kinase prevented the activation by Mg-ATP obtained in the presence of the protein kinase. Activation of the acetylation reaction by the protein kinase was reversible. Evidence is provided that the reversal of activation is due to dephosphorylation of the enzyme. These data provide evidence that in vitro lyso-platelet-activating factor:acetyltransferase from splenic microsomes is regulated by phosphorylation.  相似文献   

3.
The substrate requirements and specificity of 1-alkyl-2-lyso-sn-glycero-3-phosphocholine (alkyllyso-GPC):acetyl-CoA acetyltransferase were investigated. The following findings were observed. 1) When the ether bond of alkyllyso-GPC is substituted with an ester linkage, the resulting compound, palmitoyllyso-GPC, can serve as a substrate, albeit at a reduced rate (50%). In addition, palmitoyllyso-GPC is a competitive inhibitor in the reaction with respect to concentration dependence of alkyllyso-GPC and a noncompetitive inhibitor when the concentrations of acetyl-CoA are varied. 2) Octadecyllyso-GPC is acetylated at a slightly higher rate than hexadecyllyso-GPC and unsaturated alkyllyso-GPC is a preferable substrate to its saturated counterpart. 3) The homologous series of short chain acyl-CoAs demonstrate an inverse relationship of chain length with the values of their apparent Km and Vmax, e.g. the longer the acyl-CoA chain, the smaller the values of Vmax and apparent Km. 4) The effect of polar head group modification of alkyllyso-GPC on the acetyltransferase activity is related to the degree of methylation of the amine group. The choline base analog gives the highest enzyme activity and the ethanolamine derivative is the least active, while N', N'-dimethylethanolamine and monomethylethanolamine analogs are the substrates with intermediate activities. These results on substrate selectivity of acetyltransferase correlate with the known structural requirements essential for the biological activities elicited by platelet activating factor and thus suggest that the acetyltransferase activating factor and thus suggest that the acetyltransferase may be important in governing the chemical structure of platelet activating factor synthesized in vivo.  相似文献   

4.
1-Alkyl-2-lyso-sn-glycero-3-phosphocholine:acetyl-CoA acetyltransferase plays an important regulatory role in the biosynthesis of platelet activating factor, a potent bioactive mediator. We tested the hypothesis that the activity of acetyltransferase may be modulated by enzymatic phosphorylation and dephosphorylation. The results showed that acetyltransferase activity in rat spleens was 2- to 3-fold higher in microsomes isolated in the presence of F-than in those isolated in the presence of Cl-. The microsomal acetyltransferase could be activated by preincubation of microsomes, isolated in the presence of Cl-, with ATP, Mg2+, and the soluble fraction from rat spleen. Addition of phosphatidylserine, diacylglycerols, plus Ca2+ further enhanced the activity. The increase in the activity of acetyltransferase was abolished by treatment of the activated microsomes with alkaline phosphatase. Conversely, the activity of acetyltransferase can be reactivated in the alkaline phosphatase-treated microsomes with incubation conditions that favor phosphorylation. Therefore, our findings suggest that acetyltransferase activity is regulated by reversible activation/inactivation through phosphorylation/dephosphorylation.  相似文献   

5.
Membranous vesicles (microsomes) were isolated from plasmodia of the acellular slime mold, Physarum polycephalum. The microsomes were about 0.2 about 0.2 micronM in diameter, and about 10 nm thick. The main protein component of the vesicles had a molecular weight of 100,000 daltons. Calcium ions were taken up by the microsomes only in the presence of Mg2+- ATP. The maximum amount of Ca2+ ions accumulated in the microsomes was 0.24 micronmole/mg protein. The Ca2+ uptake was not accelerated by oxalate. The ATPase [EC 3.6.1.3] activity required Ca2+ ions for full activation. The concentration of Ca2+ ions required for half-maximum activation was about 1 micronM. The Km and Vm values were 53 micronM and 1.6 micronmole/(mg-min), respectively. About 0.2 mole of Ca2+ ions was taken up by the microsomes, coupled with the hydrolysis of 1 mole of ATP. THE ATPase activity and Ca2+ uptake of the microsomes were not inhibited by sodium azide. Furthermore, electron microscopic examination showed that mitochondrial contamination was slight. These results suggest that a vesicular calcium transport system, analogous to the sacroplasmic reticulum in skeletal muscle, is involved in regulation of the Ca2+ concentration in plasmodia of Physarum.  相似文献   

6.
The role of Ca2+ in the activation of the enzyme lyso-(platelet-activating factor): acetyl-CoA acetyltransferase was studied in rat peritoneal macrophages in response to complement-coated zymosan particles and ionophore A23187. By using Ca2+-containing buffers, a threshold concentration of extracellular Ca2+ above 1 microM was found to be necessary to observe the activation of the enzyme in response to zymosan. By contrast, a significant role of intracellular Ca2+ in this process could be ruled out, since the putative intracellular calcium-transport antagonist TMB-8 [8-(NN-diethylamino)octyl-3,4,5-trimethoxybenzoate] did not inhibit the activation of the acetyltransferase induced by zymosan in the presence of extracellular Ca+. The link between acetyltransferase activation and extracellular Ca2+ transport was studied by measuring Ca2+ uptake in response to the stimuli. Zymosan particles induced a rapid increment in cell-associated Ca2+ which correlated well with the extent of acetyltransferase activation (r = 0.91) and with the release of platelet-activating factor (r = 0.95) in response to different doses of zymosan. Cellular Ca2+ efflux in response to zymosan particles was also measured and found to be increased, as compared with controls, when the activation of the acetyltransferase declined. In short, the data suggest that the entry of extracellular Ca2+ into the cell is a crucial event in the activation of acetyltransferase and, thereby, in the formation of platelet-activating factor in rat peritoneal macrophages.  相似文献   

7.
A new improved method for purification of the enzyme 1-O-alkyl-2-lyso-sn-glycero-3-phosphocholine: acetyl-CoA acetyltransferase (EC 2.3.1.67) from rat spleen is described. The catalytic subunit of cyclic AMP-dependent protein kinase in the presence of MgATP stimulated about 3-fold the activity of this partially purified enzyme activity. When [gamma-32P]ATP was included in the assay mixture, the analysis of phosphoprotein products by SDS/polyacrylamide-gel electrophoresis and autoradiography showed the incorporation of [32P]phosphate into a single protein band of about 30 kDa. Analysis of the phosphorylated amino acids indicated that the phosphate was incorporated into a serine residue. Activation of the acetylation reaction by the protein kinase was reversible. The reversal of the activation was coincident with the loss of the [32P]phosphate incorporated into the 30 kDa protein band, which suggests that the acetyltransferase is regulated by a phosphorylation-dephosphorylation mechanism dependent on cyclic AMP.  相似文献   

8.
The mitochondrial acetyl-CoA acetyltransferase (acetyl-CoA:acetyl-CoA C-acetyltransferase, EC 2.3.1.9), which is involved in the biosynthesis or degradation of ketone bodies, was directly demonstrated in organ extracts applying a two-step chromatography-immunoelectrophoresis method. In liver, the enzyme can be shown in at least three forms: in an unmodified state, designated as AAT, and in the CoASH-modified forms A1 and A2, in amounts of 51.5 +/- 5.0%, 39.4 +/- 4.8% and 9.1 +/- 2.7% (areas of immunoprecipitation), respectively. This pattern, which could not be altered by a treatment with glutathione, resembles that of mitochondrial acetyl-CoA acetyltransferase in extrahepatic tissues. However, the proportion of the unmodified enzyme (AAT) is lower as compared to those in other tissues such as brain (81.5 +/- 4.4%). CoASH-modification and transformation into modified forms, which equal naturally occurring forms, can be demonstrated in vitro with acetyl-CoA acetyltransferase from both liver and brain. Thus CoASH-modification of mitochondrial acetyl-CoA acetyltransferase seems to be a process of general importance.  相似文献   

9.
The enzyme 1-O-alkyl-2-lyso-sn-glycero-3-phosphocholine: acetyl-CoA acetyltransferase (EC 2.3.1.67) was purified from rat spleen approx. 1500-fold in 1.6% yield. The specific activity of the purified enzyme was 0.317 +/- 0.089 mumol/min per mg of protein (mean +/- S.D., n = 6). The Km for the substrate acetyl-CoA was 137 +/- 13 microM and the pH optimum was about 8. Incubation of the purified enzyme was 1-O-[3H]octadecyl-2-lyso-sn-glycero-3-phosphocholine followed by electrophoresis resulted in the incorporation of radioactivity into a protein of Mr 29,000. The enzyme was most active towards 1-O-alkyl-2-lyso-sn-glycero-3-phosphocholine as substrate, 1-palmitoyl-2-lyso-glycero-3-phosphocholine being a poor substrate. In addition, the enzyme preferred acetyl-CoA to palmitoyl-CoA or oleoyl-CoA as substrate.  相似文献   

10.
LPS has a priming effect on various stimuli. For instance, LPS priming enhances the production of platelet-activating factor (PAF), a proinflammatory lipid mediator that is induced by PAF itself. Among various enzymes responsible for PAF biosynthesis, acetyl-coenzyme A:1-O-alkyl-2-lyso-sn-glycero-3-phosphocholine acetyltransferase is one of the enzymes activated by PAF receptor stimulation. In this study we investigated the priming effect of LPS on the acetyltransferase activation by PAF in TLR4-knockout (KO) mice, MyD88-KO mice, and Toll/IL-1R domain-containing adaptor inducing IFN-beta (TRIF)-KO mice. This enzyme was biphasically activated by LPS. Although the first peak occurred within 30 min in wild-type (WT), but not TLR4-KO or MyD88-KO, macrophages, the second phase reached a maximum within hours in WT, MyD88-KO, and TRIF-KO, but not in TLR4-KO, macrophages. Only in the second phase was the increase in acetyltransferase activity upon PAF receptor activation remarkably enhanced in WT, MyD88-KO, and TRIF-KO cells, but not in TLR4-KO cells. These data demonstrated that LPS exerted a priming effect on PAF receptor-mediated acetyltransferase activation through the TLR4-dependent, but MyD88- and TRIF-independent, pathway.  相似文献   

11.
Despite considerable sequence similarities, blood coagulation serine proteases exhibit remarkable specificity with respect to which zymogen they activate. The basis for this specificity presumably involves recognition of a short sequence within the extended binding pocket of the enzyme, other interactions remote from the catalytic groove, and modulation by a definite protein cofactor. In addition, Ca2+ plays a major role in most activation processes, but, because both the enzyme and its substrate interact with Ca2+, whether Ca2+ influences the substrate, the enzyme, or both remains an open question. Thrombin is not a factor X-activating enzyme, but when Glu192, 3 residues remote from the active Ser195, is replaced with glutamine, the resultant serine protease (E192Q) becomes a bovine, but not human, factor X activator. Kinetic experiments with peptides corresponding to human and bovine factor X activating sites reveal that threonine at position P2 in human (versus a valine in bovine) accounts for the species specificity. Substitution of the threonine in P2 of the human sequence with valine allows E192Q to cleave the human peptide whereas substitution of the valine in P2 of the bovine sequence with threonine hinders E192Q catalysis. Thrombin has no high affinity Ca2+ binding sites, and E192Q proteolysis of these peptides is not altered by Ca2+. The influence of Ca2+ in E192Q-mediated factor X activation provides therefore new insights into the role of the different Ca2+ binding sites in factor X. With factor X as substrate, the addition of Ca2+ enhances Kcat 4-fold but increases Km 10-fold. When the vitamin K-dependent gamma-carboxyglutamic acid domain of factor X is removed, the Km remains high with or without Ca2+ whereas Kcat still increases upon addition of the metal ion. These results suggest that factor X undergoes two metal-dependent suggest that factor X undergoes two metal-dependent transitions that influence the presentation of the activation site to activators.  相似文献   

12.
Acetyl-CoA acetyltransferase (EC 2.3.1.9) from rat liver mitochondria, which catalyzes the first step in the biosynthesis of ketone bodies, exists in two forms, designated transferase A and transferase B. Both transferases showed immunochemical cross-reactivity, but are immunologically unrelated to cytosolic acetyl-CoA acetyltransferase activity and the mitochondrial acetyl-CoA acyltransferase from rat liver. The transferases A and B were estimated to have molecular weights of 151 000 in the absence and 40 000 in the presence of sodium dodecyl sulfate. They differ with respect to charge states and multiplicity of forms as indicated by isoelectric focusing. Transferase A appeared in two forms with isoelectric points of 8.4 and 9.1, whereas transferase B represents a stable protein state with an isoelectric point of 9.0. Kinetic analysis of the reactions leading to acetoacetyl-CoA synthesis revealed saturation curves with multiple intermediary plateaus, indicating a complex kinetic behaviour. The data presented are interpreted as representing a microheterogeneity of forms of the mitochondrial acetyl-CoA acetyltransferase. The kinetic properties exhibited suggest a role for this microheterogeneity in the regulation of ketogenesis.  相似文献   

13.
14.
Acyl-CoA:1-alkyl-sn-glycero-3-phosphocholine acyltransferase of human platelets is membrane-bound, has a pH optimum of 7.5, is insensitive to 1 mM-Mg2+, is inhibited by 1 mM-Ca2+, and is stimulated slightly by 1 mM-EDTA. Maximal formation of 1-alkyl-2-acyl-sn-glycero-3-phosphocholine is observed at 150 microM-1-alkyl-sn-glycero-3-phosphocholine and 20 microM unsaturated fatty acyl-CoA. The transfer of unsaturated fatty acyl groups to 1-alkyl-sn-glycero-3-phosphocholine is 3-14 times slower than to 1-acyl-sn-glycero-3-phosphocholine. The CoA esters of linoleate and arachidonate, two unsaturated fatty acyl groups commonly found in platelet phospholipids, are the preferred fatty acyl group donors.  相似文献   

15.
The Authors investigated the effects of Verapamil a calcium antagonist substance upon the pituitary response to several secretogogus agents in ten male healthy subjects in order to elucidate the calcium role in the regulation of the hypothalamic pituitary function. As a consequence of Verapamil administration (5 mg iv) a significant hyporesponsiveness of FSH and LH to GnRH (100 micrograms iv) of TSH to TRH (200 gamma iv) and of ACTH to insulin induced hypoglycemia was observed. Prolactin response to TRH (200 gamma iv) was not modified by Verapamil treatment. The Authors concluded emphasizing the importance of Ca++ in the modulation of diencephalic pituitary activity.  相似文献   

16.
The role of calcium ions during mitosis   总被引:25,自引:2,他引:23  
Calcium-containing solutions were microinjected into dividing PtK1 cells to assess the effect of calcium ion concentration on the morphology and physiology of the mitotic spindle. Solutions containing 50 microM or more CaCl2 are immediately and irreversibly toxic to PtK1 cells. Those containing 5-10 microM CaCl2 cause reversible reduction in spindle birefringence followed by normal anaphase and cytokinesis. Microinjection of 5 microM or less CaCl2 into anaphase PtK1 cells has no detectable effect on the rate or extent of chromosome movement. Metaphase cells tend to enter anaphase 4-5 min after injection with 1-10 microM CaCl2, compared with an average of 16 min after injection with calcium-free buffer. Reducing the intracellular calcium concentration by injection of EGTA-CaCl2 buffers increases the lag between injection and anaphase to 20 min or more. Microinjection of calcium solutions does not promote precocious chromatid separation in nocodazole-arrested metaphase cells, indicating that the increase in calcium concentration does not induce centromere separation directly. An increase in the concentration of free calcium ions during metaphase appears to stimulate the onset of anaphase. Such an increase, regulated by the cell itself, may contribute to the initiation of chromosome separation in mammalian cells.  相似文献   

17.
1. Calcium concentrations in the nanomolar range cause a specific stimulation of the oxidation of pyruvate by isolated mitochondria from rat thymus that is sufficient to account precisely for the stimulation of pyruvate oxidation observed when rat thymocytes are incubated with the mitogens concanavalin A or ionophore A23187. 2. Higher concentrations of Ca2+ (more than 50 nM) inhibit the oxidation of NAD+-linked substrates by rat thymus mitochondria without affecting the oxidation of succinate or ascorbate+ NNN'N'-tetramethyl-p-phenylendiamine. 3. The addition of Ni2+ or Co2+ (2mM) to rat thymocytes prevents the response to concanavalin A at the level of pyruvate oxidation without affecting the stimulation of glycolysis induced by this mitogen. In contrast, the complete metabolic response to the ionophore A23187 is abolished by these ions. Ni2+ and Co2+ interfere with the ability of the ionophore to transport Ca2+ across the plasma membrane. 4. Concanavalin A, but not ionophore A23187, increases the respiratory inhibition induced by Ni2+ and Co2+. 5. These results support the view that mitogens stimulate lymphocyte pyruvate oxidation through an increase in cellular Ca2+ uptake.  相似文献   

18.
V P Iamskova 《Biofizika》1978,23(3):428-431
Highly purified native preparation of adhesion factor (AF) from rat liver was shown to inactivate after dialysis against deionised water or after action of chelating agent (EGTA). Isoelectric point of inactivated AF was less than 2.0 Rf value in PAG in presence of SDS was significantly increased. The results obtained suggest that inactivation of AF during electrofucusing depends on ampholyne binding of Ca(II) which may be constituent in AF.  相似文献   

19.
The mitochondrial acetyl-CoA acetyltransferase (acetoacetyl-CoA thiolase, EC 2.3.1.9) is involved in ketone body biosynthesis. In its unmodified state, referred to as transferase B in former publications (Huth, W. (1981) Eur. J. Biochem. 120, 557-562), the enzyme is characterized by the highest specific activity of 21.65 mumol/min per mg protein (direction of acetoacetyl-CoA synthesis); several forms of the enzyme with lower specific activities result from chemical modification by an apparent covalent binding of CoASH. The chemical modification results in an inactivation of the enzyme: a 2 h incubation with 0.2 mM CoASH at pH 8.1 at 30 degrees C inactivates up to 95%. Both processes, the CoASH-binding and the resulting inactivation, can be simultaneously reversed by treatment with glutathione. The specificity of inactivation is limited to CoASH and the intact sulfhydryl group is a prerequisite for this process. The enzyme exhibits a limited number (n = 3.2) of high-affinity (Ka = 26.7 microM) specific binding sites for CoASH. The inactivation-reactivation cycle of acetyl-CoA acetyltransferase by CoASH and glutathione may involve a protein disulfide-thiol exchange and represents a mode of control in modulating the amount of active enzyme.  相似文献   

20.
The influence of clofibrate and di(2-ethylhexyl)phthalate on mitochondrial acetyl-CoA acetyltransferase (acetyl-CoA: acetyl-CoA C-acetyltransferase, EC 2.3.1.9), the rate-limiting ketogenic enzyme, which can be modified and inactivated by CoA, was investigated. In fed rats, both compounds induced a doubling of ketone bodies in the blood and, moreover, an increase by about 13% in the hepatic relative amount of the unmodified, i.e., the most active form of the enzyme (immunoreactive protein). This shift would account for an elevation of overall enzyme activity by about 5% only. Thus, the CoA modification of mitochondrial acetyl-CoA acetyltransferase did not explain the entire augmentation of ketone bodies. However, clofibrate and di(2-ethylhexyl)phthalate also increased the immunospecific protein and enzyme activity by approx. 2- and 3-fold, respectively. These effects were observed in liver, but not in several extrahepatic tissues.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号