首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Radiocarbon dating of seven drill cores from both the windward Lizard Island fringing reef and the windward and leeward margins of MacGillivray platform reef, Northern Great Barrier Reef Province, reveal the Holocene evolution of these two mid shelf coral reefs. The windward margin at Lizard Island started growing approximately 6,700 calendar years before present (cal yr BP) directly on an assumed granite basement and approached present day sea level approximately 4,000 cal yr BP. Growth of the windward margin at MacGillivray Reef was initiated by 7,600 cal yr BP and approached present day sea level by approximately 5,600 cal yr BP. The leeward margin at MacGillivray was initiated by 8,200 cal yr BP also directly on an assumed granite basement, but only approached sea level relatively recently, between 260 and 80 cal yr BP. None of the cores penetrated the Holocene-Pleistocene unconformity. The absence of Pleistocene reefal deposits, at 15 m depth in the cores from MacGillivray Reef, raises the possibility that the shelf in this region has subsided relative to modern day sea level by at least 15 m since the last interglacial [125,000 years ago (ka)].  相似文献   

2.
The analysis of 8 selected cores through fringing reefs in New Caledonia reveals that accretion in the Holocene has been less than 6 m. The cores exhibit three main facies: branching coral (Acropora, dominantly), massive coral heads (Porites, mainly) and coral sand/ rubble, principally made up of acroporid fragments. Subordinate facies are composed of coralline algae and alcyonarian spiculite. The initiation of growth varies according to location. The southern reefs (i.e. early settled reefs) generally began to grow first, prior to 5000 y BP. The northern structures (i.e. more recently settled reefs) are younger, occurring after 4200 y BP. This retardation could be ascribed to differences in local physical conditions (nature of substrate, wave energy). Vertical accretion rates were generally higher in areas of lower energy (3.25–6.4 mm·y-1) versus those exposed to higher energy conditions (1.4–3.1 mm·y-1). Vertical development through time was accompanied by changes in composition of biological assemblages which reflect changes in hydrodynamics. The basal Acropora-dominated facies was replaced upwards by a Porites-dominated framework. The New Caledonian fringing reefs reached the sea surface generally between 5000 and 2500 y BP after the stabilization of sea level. Hence all of these reefs can be classified as catch-up reefs.  相似文献   

3.
 The sedimentological and chronological study of Holocene reef sequences recovered in drill cores through modern reefs of Mauritius, Réunion Island and Mayotte allows the reconstruction of sea level changes and reef growth patterns during the Holocene. The branching-coral facies systematically predominates over coral head facies throughout the Holocene reef sequences, and Acropora is the main frame builder among the branching forms. The reconstructed sea level curves, based both on identification of coral assemblages and on radiometric U/Th ages, are characterized by a rapid rise between 10 and 7.5 ky BP, followed by a clear inflection between 7.5 and 7 ky BP. The stabilization of sea level at its present level occurred between 2000 and 3000 years ago, probably without a higher sea level stand. Rates of vertical reef accretion range between 0.9 and 7 mm. y-1. In Mauritius, and also probably in Réunion Island, the reef first tracked, then caught-up to sea level to reach an equilibrium position (“catch-up” growth), while the barrier reef margin off Mayotte has been able to keep pace with rising sea level (“keep-up” growth). Accepted: 1 March 1997  相似文献   

4.
Rock and sediment cores reveal that a well-developed fringing reef in Golfo Dulce, Pacific Costa Rica, up to 9 m thick was established on Cretaceous basalt about 5500 y BP. It is presently being smothered with fine sediments and is almost completely dead. This reef is made up of three main facies that are represented by comparable extant reef zones: reef-flat branching coral, fore-reef slope massive coral, and fore-reef talus sediment facies. Reef growth began with the establishment of small patch reefs dominantly formed by the branching coral Pocillopora damicornis. P. damicornis spread across the basalt bench and massive colonies of Porites lobata grew on the outer slopes, eventually blocking the seaward transport of Pocillopora fragments to the fore-reef talus sediments. The reef flourished until 500 years ago. Lower accumulation rates during the past 500 years may be due to deteriorating environmental conditions rather than slower growth after the reef reached sea level. Present-day reef communities are severely degraded with less than 2% living coral cover. The increased turbidity associated with the final stage of degradation of this reef is probably related to human activity on the adjacent shores, including deforestation, mining, and road construction.  相似文献   

5.
The elevation of reefs and coastal deposits during the last Interglaciation (MIS-5e) indicates that sea level reached a highstand of as much as 6 m above the present, but it is uncertain how rapidly this level was attained and how it impacted reef development. To investigate this problem, I made a detailed sedimentological analysis of a well-dated reef from the northeast coast of the stable Yucatan Peninsula. Two linear reef tracts were delineated which are offset and at different elevations. The lower reef tract crops out along northern shore for 575 m and extends from below present mean sea level to +3 m. The reef crest facies consists of large Acropora palmata colonies dispersed within a coral boulder-gravel and is flanked by an A. cervicornis-dominated reef-front and a large area of lagoonal framework formed by coalesced patches of A. cervicornis and Montastraea spp. Constituents in the upper centimetre of the lower tract are heavily encrusted by a cap of crustose corallines and, in places, are levelled by a discontinuous marine-erosion surface. The upper reef tract crops out ~150 m inland up to an elevation of +5.8 m and parallels the southern section of shore for ~400 m. It also consist of an A. palmata-dominated crest facies flanked by reef-front, back-reef and lagoonal frameworks. In this case, however, lagoonal frameworks are dominated by a sediment-tolerant assemblage of branching coralline algae. Also different is the lack of encrustation by corallines, and the infiltration of upper tract facies by beach-derived shell-gravels from regressive shoreface deposits above. These results indicate that the lower reef tract and lagoonal patch-reefs formed at a sea level of +3 m. Final capping by crustose corallines and discontinuous marine erosion indicates that the lower tract was terminated by the complete demise of corals on the crest but only patchy demise in the lagoon. Areas of continuous framework accretion between the lagoonal patch reefs and the upper reef-tract, however, require that the demise of this reef was ecologically synchronous with initiation of the upper reef-tract, which had back-stepped 100 m into the lagoon. In this new position, the upper tract developed a reef crest that corresponded to a final sea-level position of +6 m. Reef flat development at +5 m and large in-place colonies of A. palmata at the base of the crest unit indicate, however, that sea level must have risen rapidly from +3 to more than +5 m to accommodate back-stepping. This sea-level jump created a higher energy wave field that mobilized back-reef and lagoonal sediments, and the resulting high sediment flux eroded lagoonal framework and prevented the recovery of the submerged lower reef crest. So this single jump in sea level was responsible not only for reef demise and back-stepping but also for marine erosion and suppression of subsequent reef development—features that elsewhere have been used to support multiple sea-level excursions during the last interglacial.  相似文献   

6.
The submarine reef terraces (L1–L12) of the Maui Nui Complex (MNC—the islands of Lanai, Molokai, Maui and Kahoolawe) in Hawaii provide a unique opportunity to investigate the impact of climate and sea level change on coral reef growth by examining changes in reef development through the Mid-Pleistocene Transition (900–800 ka). We present an analysis of the biological and sedimentary composition of the reefs that builds directly on recently published chronological and morphological data. We define nine distinct limestone facies and place them in a spatial and stratigraphic context within 12 reef terraces using ROV and submersible observations. These include oolitic, two coral reef, two coralline algal nodule, algal crust, hemi-pelagic mud, bioclastic and peloidal mud facies. These facies characterise environments from high energy shallow water coral reef crests to low energy non-reefal deep-water settings. Combining the bottom observations and sedimentary facies data, we report a shift in the observed sedimentary facies across the submerged reefs of the MNC from dominant shallow coral reef facies on the deep reefs to coralline algae dominated exposed outcrop morphology on the shallower reefs. We argue that this shift is a reflection of the change in period and amplitude of glacioeustatic sea level cycles (41 kyr and 60–70 m to 100 kyr and 120 m) during the Mid-Pleistocene Transition (MPT, ~ 800 ka), coupled with a slowing in the subsidence rate of the complex. The growth of stratigraphically thick coral reef units on the deep Pre-MPT reefs was due to the rapid subsidence of the substrate and the shorter, smaller amplitude sea level cycles allowing re-occupation and coral growth on successive cycle low-stands. Longer, larger amplitude sea level cycles after the MPT combined with greater vertical stability at this time produced conditions conducive to deep-water coralline algae growth which veneered the shallower terraces. Additionally, we compare reef development both within the MNC, and between the MNC and Hawaii. Finally we suggest that climatic forcings such as sea-surface temperature and oceanographic currents may also have influenced the distribution of coral species within the sample suite, e.g., the disappearance of the Acropora genus from the Maui Nui Complex in the Middle Pleistocene.  相似文献   

7.
Coral reef geomorphology and community composition were investigated in the tropical northeastern Pacific during April 1994. Three areas were surveyed in the Revillagigedo Islands (Mexico), and an intensive study was conducted on Clipperton Atoll (1,300 km SW of Acapulco), including macro-scale surface circulation, sea surface temperature (SST) climatology, geomorphology, coral community structure, zonation, and biogeography. Satellite-tracked drifter buoys from 1979–1993 demonstrated complex patterns of surface circulation with dominantly easterly flow (North Equatorial Counter Current, NECC), but also westerly currents (South Equatorial Current, SEC) that could transport propagules to Clipperton from both central and eastern Pacific regions. The northernmost latitude reached by the NECC is not influenced by El Niño-Southern Oscillation (ENSO) events, but easterly flow velocity evidently is accelerated at such times. Maximum NECC flow rates indicate that the eastern Pacific barrier can be bridged in 60 to 120 days. SST anomalies at Clipperton occur during ENSO events and were greater at Clipperton in 1987 than during 1982–1983. Shallow (15–18 m)and deep (50–58 m) terraces are present around most of Clipperton, probably representing Modern and late Pleistocene sea level stands. Although Clipperton is a well developed atoll with high coral cover, the reef-building fauna is depauperate, consisting of only 7 species of scleractinian corals belonging to the generaPocillopora, Porites, Pavona andLeptoseris, and 1 species of hydrocoral in the genusMillepora. The identities of the one Pocilpopora species and one of the twoPorites species are still unknown. Two of the remaining scleractinians (Pavona minuta, Leptoseris scabra) and the hydrocoral (Millepora exaesa), all formerly known from central and western Pacific localities, represent new eastern Pacific records. Scleractinian corals predominate (10–100% cover) over insular shelf depths of 8 to 60m, and crustose coralline algae are dominant (5–40% cover) from 0.5 to 7m. Spur and groove features, constructed of alternating frameworks ofPocillopora andPorites, and veneered with crustose coralline algae, are generally well developed around most atoll exposures. Although crustose coralline algae predominate in the breaker zone (with up to 100% cover), a prominent algal ridge is absent with only a slight buildup (ca. 10 cm) to seaward. Frequent grazing by the pufferfishArothron meleagris results in the removal of large amounts of live tissue and skeleton fromPorites lobata. Acanthaster planci is present, but rare. The grazing of large diadematid sea urchins, (2 species each ofDiadema andEchinothrix) on dead corals cause extensive erosion in some areas. Large numbers of corals on the 15–18 m terrace had recently suffered partial (P. lobata, 60–70% maximum of all colonies sampled) or total (Pocillopora sp., 80% maximum) mortality. The lengths of regenerating knobs and the rates of linear skeletal growth inP. lobata, determined by sclerochronologic analysis, indicated a period of stress during 1987. Massive skeletal growth is significantly higher at intermediate (16–17 m) than shallow (6–8 m) depths with mean extension rates of 1.5 mm yr–1 inP. lobata and 1.4 mm yr–1 inP. minuta at intermediate depths. Skeletal growth inP. lobata was depressed during the 1987 El Nifio event at Clipperton. The branching coralPocillopora sp. demonstrated high and similar skeletal growth rates at both shallow (25.4 mm yr–1) and intermediate (26.5 mm yr–1) depths. The presence of widely distributed Indo-Pacific zooxanthellate corals at Clipperton and the Revillagigedo Islands indicates that these NE Pacific Islands probably serve as a stepping stone for dispersal into the far eastern Pacific region.  相似文献   

8.
The rhodolithic slope deposits of a Burdigalian carbonate platform in Sardinia near Sedini were analyzed to reconstruct facies and palaeobathymetry. There is a distinct red-algal growth zonation along the platform slope. The clinoform rollover area consists of coralline-algal bindstones, which downslope change into a zone where rhodoliths are locally fused by progressive encrustation. Mid-slope rhodoliths are moderately branched, and downslope rhodoliths have fruticose protuberances, resulting in branching rhodolith growth patterns. There is a sharp change from the rhodolitic rudstones to the basinal, bivalve-dominated rudstones at the clinoform bottomsets. Red-algal genera identified include Sporolithon, Lithophyllum, Spongites, Hydrolithon, Mesophyllum, Lithoporella, Neogoniolithon, and other mastophoroids and melobesioids. Genera and subfamilies show a zonation along the clinoforms, allowing palaeobathymetric estimates. The clinoform rollovers formed at a water depth of around 40 m and the bottomsets around 60 m. Results from geometrical reconstruction show that coral reefs in the inner platform formed at water depths of around 20 m. Therefore, the Sedini carbonate platform is an example of a reef-bearing platform in which the edge or the platform-interior reefs do not build up to sea level.  相似文献   

9.
Hurricanes occur in belts 7° to 25° north and south of the equator. Reefs growing in these belts suffer periodic damage from hurricane-generated waves and storm surge. Corals down to 20m depth may be broken and removed, branching colonies being much more susceptible to breakage than upright massive forms. Sand cays may be washed away and former storm ridges may migrate to leeward across reef flats to link with islands. Reef crest and reef front coral debris accumulate as talus at the foot of the fore-reef slope, on submarine terraces and grooves, on the intertidal reef flat as storm ridges of shingle or boulders and isolated blocks of reef framework, as accreting beach ridges of leeward migrating shingle, as lobes and wedges of debris in back-reef lagoons, as drapes of carbonate sand and mud in deep off-reef locations in the fore-reef and lagoonal areas. In addition to the coarse debris deposited, other features may aid the recognition of former hurricane events, including the assemblage of reef biota, its species composition and the structure of the skeletons; graded internal sediments in framework cavities; characteristic sequences of encrusting organisms; characteristic shapes of reef flat microatoll corals; and submarine cement crusts over truncated reef surfaces. The abundance of reef flat storm deposits whose ages cluster around 3000–4000 y BP in certain parts of the world most likely relate to a slight fall in relative sea level rather than an increase in storminess during that period. A higher frequency of storms need not result in more reef flat storm deposits. The violence of the storm relative to normal fair-weather conditions influences the extent of damage; the length of time since the previous major storm influences the amount of coral debris created; the length of time after the hurricane, and before a subsequent storm influences the degree of stabilization of reef-top storm deposits and hence their chances of preservation.  相似文献   

10.
Coral reef fish assemblages are widely recognized for the coexistence of numerous species, which are likely governed by both coral diversity and substratum complexity. However, since coral reefs provide diverse habitats due to their physical structure and different spatial arrangements of coral, findings obtained from an isolated habitat cannot necessarily be applied to fish assemblages in other habitats (e.g. continuous habitats). The aim of this study, therefore, was to determine by a field experiment whether habitat connectivity (spatial arrangement of coral colonies) affects abundance and species richness of fishes in an Okinawan coral reef. The experiment consisted of transplanted branching coral colonies at a 4m×8m quadrat at both a rocky reef flat and sandy sea bottom. Generally, the abundance of fishes was greater at the sandy sea bottom, especially for three species of pomacentrids, one species of labrids, one species of chaetodontids and two species of apogonids. Species–area curves showed that the species richness of fishes was significantly greater in the quadrat at the sandy sea bottom at 3, 6 and 9 months after the start of the experiment. The rate of increase in abundance of fishes per area was significantly greater in the quadrat at the sandy sea bottom over the study period. The results of rarefaction analyses showed that the rate of increase in species richness per abundance was significantly higher in the quadrat at the sandy sea bottom in the juvenile settlement period, indicating that the magnitude of dominance by particular species was greater at the sandy sea bottom habitat. Our findings suggest that habitat connectivity affects the abundance and species richness of coral reef fishes, i.e. the isolated habitat was significantly more attractive for fishes than was the continuous habitat. Our findings also suggest that the main ecological factors responsible for organization of fish assemblage at a continuous habitat and at an isolated habitat are different.  相似文献   

11.
Bioerosion experiments at Lizard Island,Great Barrier Reef   总被引:5,自引:0,他引:5  
The rates at which dead coral substrates are modified by bioerosional processes were determined by exposing recently killed corals for up to four years in a variety of reef environments at Lizard Island (northern Great Barrier Reef). Grazers were the major croding agents of these coral substrates and exhibited differences between sites that varied between sampling periods. Subtidal reef slopes and lagoon environments of water depths < 20 m were subjected to higher average rates of grazing erosion (0.30–1.96 kg/m2/y) than shallow depths less than 1 m (0.07–0.26 kg/m2/y). A deep site at 20 m experienced low average rates of grazing (0.08–0.29 kg/m2/y). Boring rates by worms (polychaetes and sipunculans), sponges and molluscs were relatively low and varied between sites, but increased with length of sampling period as larger borers succeeded the initial colonizing small polychaete worms. We hypothesize from these experiments that the extent of boring in reef substrates will be influenced by the interaction between the succession of the boring community and the rate at which the substrate is destroyed by grazing. We suggest that the level of grazing modifies the successional pattern of borers by removing the surface substrate and continually exposing bare substrate that can be colonized by early boring colonists. Thus, constant high levels of grazing may maintain the boring community at an early successional stage and prevent the development of a mature boring community. In order to establish large borer populations, reef substrates must be protected from extensive grazing bioerosion. This interaction of grazing and boring has important implications for the way dead coral is preserved in different reef environments.  相似文献   

12.
There is evidence of Holocene emergence on several of the Cook Islands. On Suwarrow Atoll there are extensive outcrops of emergent, but truncated, reef on the northern atoll rim, radiocarbon-dated 4680–4310 years B. P., overlain by younger cemented boulder conglomerates. On the northeast of the atoll there are fossil algal ridges indicating up to 1 m of emergence; the landwardmost has been dated 4220 years B. P., the intermediate one 3420 years B. P. and the present one 1250 years B. P. On Mitiaro, a makatea island in the Southern Cooks, there are emergent reefal deposits in the centre of the reef flat dated 5140–3620 years B. P. Similar thought poorly preserved deposits occur on Mauke, and an erosional bench and notch occurs on Atiu. Emergence on all islands appears synchronous with that reported on Mangaia, where a relative fall of sea level of at least 1.7 m in the last 3400 years has been reported. The evidence for emergence is broadly similar to that described from French Polynesia, though timing of emergence appears to differ.  相似文献   

13.
The growth dynamics of green sea turtles resident in four separate foraging grounds of the southern Great Barrier Reef genetic stock were assessed using a nonparametric regression modeling approach. Juveniles recruit to these grounds at the same size, but grow at foraging-ground-dependent rates that result in significant differences in expected size- or age-at-maturity. Mean age-at-maturity was estimated to vary from 25–50 years depending on the ground. This stock comprises mainly the same mtDNA haplotype, so geographic variability might be due to local environmental conditions rather than genetic factors, although the variability was not a function of latitudinal variation in environmental conditions or whether the food stock was seagrass or algae. Temporal variability in growth rates was evident in response to local environmental stochasticity, so geographic variability might be due to local food stock dynamics. Despite such variability, the expected size-specific growth rate function at all grounds displayed a similar nonmonotonic growth pattern with a juvenile growth spurt at 60–70 cm curved carapace length, (CCL) or 15–20 years of age. Sex-specific growth differences were also evident with females tending to grow faster than similar-sized males after the juvenile growth spurt. It is clear that slow sex-specific growth displaying both spatial and temporal variability and a juvenile growth spurt are distinct growth behaviors of green turtles from this stock.Communicated by Ecological Editor P.F. Sale  相似文献   

14.
Extensive coral bleaching occurred during sea-water warming (as a result of the 1982/3 El Niño Southern Oscillation event) in 1983 on the shallow reefs in the Java Sea. Mean seawater temperatures rose by 2–3° C over a six month period with values greater than 33° C being recorded between 1200–1500 h. As many as 80–90% of corals died on the reef flats at the study sites, with the major casualties being branching species in the genera Acropora and Pocillopora. Five years after the event the community structure of the study sites has recovered significantly, though coral cover is still 50% of its former level. Contrasting patterns of recovery at two selected sites, in close proximity to each other, are discussed.  相似文献   

15.
Concentrations of phytoplankton (coccoid cychobacteria and total chlorophyll) and planktonic microrial communities (heterotropic bacteria, nanoflagellates and ciliates) were lower over leeward reef flats than over open water or reef faces, around Davies Reef and Myrmidon Reef in the central Great Barrier Reef, Australia. Concentrations of cyanobacteria, which accounted for approximately 15–50% of the carbon biomass of phytoplankton in open water, decreased from the reef face towards the leeward reef flat. Concentrations of ciliates were consistently lower at the leeward reef flat than at the reef face. For Davies Reef, the retention rates of phytoplankton and planktonic microbial communities were estimated to reach 253 gC d-1 per 1 m strip of the reef or about 0.09 gC m-2 d-1. This value is virtually equal to estimates of net community production (0.1 gC m-2 d-1). This allocthonous organic subsidy may help maintain spositive carbon balance on both Davies and Myrmidon Reefs on the Great Barrier Reef.  相似文献   

16.
The Phoenix Islands (Republic of Kiribati, 172–170°W and 2.5–5°S) experience intra- and inter-annual sea surface temperature variability of ≈2°C and have few local anthropogenic impacts. From July 2002, a thermal stress event occurred, which peaked at 21 Degree Heating Weeks (DHW) in January 2003 and persisted for 4 years. Such thermal stress was greater than any thermal event reported in the coral reef literature. Reef surveys were conducted in July 2000, June 2002, and May 2005, for six of the eight islands. Sampling was stratified by exposure (windward, leeward, and lagoon) and depth (5, 10, 15, and 25 m). The thermal stress event caused mass coral mortality, and coral cover declined by approximately 60% between 2002 and 2005. However, mortality varied among sites (12–100%) and among islands (42–79%) and varied in accordance with the presence of a lagoon, island size, and windward vs. leeward exposure. Leeward reefs experienced the highest and most consistent decline in coral cover. Island size and the presence of a lagoon showed positive correlations with coral mortality, most likely because of the longer water residence time enhancing heating. Windward reefs showed cooler conditions than leeward reefs. Recently dead corals were observed at depths >35 m on windward and >45 m on leeward reefs. Between-island variation in temperature had no effect on between-island variation in coral mortality. Mortality levels reported here were comparable to those reported for the most extreme thermal stress events of 9–10 DHW in other regions. These results highlight the high degree of acclimation and/or adaptation of the corals in the Phoenix Islands to their local temperature regime, and their consequent vulnerability to anomalous events. Moreover, the results suggest the need to adjust thermal stress calculations to reflect local temperature variation.  相似文献   

17.
A new group of anaerobic thermophilic bacteria was isolated from enrichment cultures obtained from deep sea sediments of Peru Margin collected during Leg 201 of the Ocean Drilling Program. A total of ten isolates were obtained from cores of 1–2 m below seafloor (mbsf) incubated at 60°C: three isolates came from the sediment 426 m below sea level with a surface temperature of 9°C (Site 1227), one from 252 m below sea level with a temperature of 12°C (Site 1228), and six isolates under sulfate-reducing condition from the lower slope of the Peru Trench (Site 1230). Strain JW/IW-1228P from the Site 1228 and strain JW/YJL-1230-7/2 from the Site 1230 were chosen as representatives of the two identified clades. Based on the 16S rDNA sequence analysis, these isolates represent a novel group with Thermovenabulum and Caldanaerobacter as their closest relatives. The temperature range for growth was 52–76°C with an optimum at around 68°C for JW/IW-1228P and 43–76°C with an optimum at around 64°C for JW/YJL-1230-7/2. The pH25C range for growth was from 6.3 to 9.3 with an optimum at 7.5 for JW/IW-1228P and from 5 to 9.5 with an optimum at 7.9–8.4 for JW/YJL-1230-7/2. The salinity range for growth was from 0% to 6% (w/v) for JW/IW-1228P and from 0% to 4.5% (w/v) for JW/YJL-1230-7/2. The G+C content of the DNA was 50 mol% for both JW/IW-1228P and JW/YJL-1230-7/2. DNA–DNA hybridization yielded 52% similarity between the two strains. According to 16S rRNA gene sequence analysis, the isolates are located within the family, Thermoanaerobacteriaceae. Based on their morphological and physiological properties and phylogenetic analysis, it is proposed that strain JW/IW-1228PT is placed into a novel taxa, Thermosediminibacter oceani, gen. nov., sp. nov. (DSM 16646T=ATCC BAA-1034T), and JW/YJL-1230-7/2T into Thermosediminibacter litoriperuensis sp. nov. (DSM 16647T =ATCC BAA-1035T).An erratum to this article can be found at  相似文献   

18.
This study was designed to investigate the effect of exercise at 350 m below sea level altitude (–350 m) on the serum levels of lactate dehydrogenase (LDH), insulin, and lactate. The study was carried out on ten trained adult males with mean age of 23.3 ± 3.4 years following a 21-km noncompetitive run. Venous blood was withdrawn from the subjects before exercise and 5 min post exercise. For comparison purposes, a similar study was performed with the same subjects but at 620 m above sea level (+620 m). The results show a significant increase in LDH and lactate levels after exercise only at low altitude (–350 m). Serum insulin levels decreased significantly after exercise at both altitudes. These changes in serum levels of LDH, insulin, and lactate at different altitudes suggest that a type of metabolic adjustment is present that meets energy requirements during exercise.  相似文献   

19.
Seven coral reef communities were defined on Shiraho fringing reef, Ishigaki Island, Japan. Net photosynthesis and calcification rates were measured by in situ incubations at 10 sites that included six of the defined communities, and which occupied most of the area on the reef flat and slope. Net photosynthesis on the reef flat was positive overall, but the reef flat acts as a source for atmospheric CO2, because the measured calcification/photosynthesis ratio of 2.5 is greater than the critical ratio of 1.67. Net photosynthesis on the reef slope was negative. Almost all excess organic production from the reef flat is expected to be effused to the outer reef and consumed by the communities there. Therefore, the total net organic production of the whole reef system is probably almost zero and the whole reef system also acts as a source for atmospheric CO2. Net calcification rates of the reef slope corals were much lower than those of the branching corals. The accumulation rate of the former was approximately 0.5 m kyr−1 and of the latter was ~0.7–5 m kyr−1. Consequently, reef slope corals could not grow fast enough to keep up with or catch up to rising sea levels during the Holocene. On the other hand, the branching corals grow fast enough to keep up with this rising sea level. Therefore, a transition between early Holocene and present-day reef communities is expected. Branching coral communities would have dominated while reef growth kept pace with sea level rise, and the reef was constructed with a branching coral framework. Then, the outside of this framework was covered and built up by reef slope corals and present-day reefs were constructed.  相似文献   

20.
Underwater effects on coral reefs of the six hurricanes which ravaged French Polynesia between December 82 and April 83 were observed by SCUBA diving around high islands and atolls during September and October 1983. Special attention was paid to Tikehau atoll reef formations (Tuamotu archipelago) where quantitative studies on scleractinians, cryptofauna and fishes were conducted in 1982 immediatly prior to the hurricanes. On outer reef slopes coral destruction, varying from 50 to 100%, was a function of depth. Upper slope coral communities composed of small colonies well adapted to high energy level environments, suffered less than deeper formations. However, there is a narrow erosional trough in this zone at a depth of 6 m that was probably the result of storm-wave action (plunge point). Coral destruction was spectacular at depths greater than 12 m: 60 to 80% between 12 m and 30 m and 100% beyond 35 m, whereas earlier living coral coverage ranged from 60 to 75% in these zones. The outer slope was transformed into a scree zone covered with coarse sand and dead coral rubble. Dives on different sites around steep outer slopes (>45°) of the atolls and more gentle slopes (<25°) of some parts of the high islands permitted the formulation of an explanatory hypothesis: direct coral destruction by hurricane-induced waves occurred between the surface and 18–20 m; on low-angle slopes broken colonies were thrown up on reef flats and beaches; on steep slopes avalanches destroyed much of the living corals and left scree slopes of rubble and sand.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号