首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
Largemouth bass ( Micropterus salmoides ) with an average weight of 45.5 g were used to study ration level effects on nitrogen excretion, nitrogen retention, and gross efficiency of utilization of nitrogen for growth. Bass were starved 3 to 4 days and then each bass was placed into an aquarium containing a known volume of water. One day after the fishes were placed in aquaria, nitrogen excretion rates were determined; this rate is the maintenance nitrogen excretion. Each fish was then fed one or more shiners ( Notropis cornutus ); fish were fed only once. Nitrogen excretion measurements were made daily until the rates were similar to maintenance rates. The nitrogen excretion rates for each day after feeding which were above the maintenance nitrogen excretion were combined and reflect the total nitrogen excretion for a given ration level. All ration levels were converted to nitrogen consumption in mg and nitrogen absorption was calculated from subtracting the average faecal nitrogen from nitrogen consumption. From data on nitrogen consumption, nitrogen absorption, nitrogen excretion, and faecal nitrogen, calculations were made for nitrogen retention and gross efficiency of utilization of nitrogen for growth.
As ration level and nitrogen absorption increased, nitrogen excretion increased and is described by the equation, Y = 8.56+0.40 X , where Y is total nitrogen excretion and X is nitrogen absorption. Nitrogen retention also increased with nitrogen absorption and is described by the equation, Y =–8.57+0.60 X , where Y is nitrogen retention and X is nitrogen absorption. Efficiency increases rapidly above maintenance, but levels off at higher ration levels and approaches an asymptote of 60%.  相似文献   

2.
实验探讨了建鲤和异育银鲫摄食低质和高质饲料时氮和能量的收支情况.低质饲料以豆粕为主要蛋白源,饲料蛋白含量为33.91%,高质饲料以鱼粉为主要蛋白源,饲料蛋白含量为45.59%.55d的生长结果显示,氮收支和能量收支受到饲料质量和鱼类种类的显著影响:摄食低质饲料时,建鲤的生长氮和生长能比例显著低于异育银鲫,排泄氮、排泄能和代谢能比例显著高于异育银鲫;摄食高质饲料时,两种鱼的氮收支和能量收支无显著差异;建鲤的氮收支和能量收支受饲料质量的显著影响,摄食低质饲料时,其生长氮和生长能比例均显著低于摄食高质饲料时,而排泄氮、粪能和代谢能比例均显著高于摄食高质饲料时;异育银鲫的氮收支、生长能和代谢能比例不受饲料质量的显著影响.结果表明,在低质饲料条件下,建鲤利用氮和能量的能力弱于异育银鲫,在高质饲料条件下,两种鱼没有显著差异.与异育银鲫相比,建鲤利用氮和能量的能力受饲料质量的影响更为显著.    相似文献   

3.
Small groups of juvenile Atlantic cod, Gadus morhua L., were kept at 14°C in through-flow tanks and were fed known quantities of a compounded diet of natural food. The cod were fed single and multiple meals with ration size in the range 0.5 to 4.1% of total wet fish body weight. Ammonia production in each feeding experiment was monitored continuously.
For single-meal experiments, significant relationships were derived between ration size and (a) total ammonia excreted, (b) total exogenous ammonia excreted above endogenous excretion levels, (c) duration of the elevated phase of ammonia excretion, (d) maximum rate of ammonia excretion, and (e) time delay after feeding to reach maximum rate of ammonia excretion. Relationships between nitrogen loss as ammonia and nitrogen intake were examined and estimates of endogenous excretion rate and maintenance ration made.
Repetitive feeding resulted in cyclical variation in ammonia excretion. At the lowest ration size, ammonia excretion rates had nearly returned to the pre-feeding level within 24 h. At higher feeding levels, the effect of each successive meal tended to be cumulative, resulting in increasingly higher ammonia excretion rates which only stabilized towards the end of the experiments.  相似文献   

4.
Bandicoots are opportunistic omnivores that feed on invertebrates, fungi and both epigeal and hypogeal plant parts. We examined the performance of the digestive tract of the long-nosed bandicoot (Perameles nasuta) in terms of intake and total digestibility, patterns of excretion of inert digesta markers, and likely sites of digesta retention, on two diets designed to mimic part of their natural plant and insect diets. On the insect diet (mealworm larvae), bandicoots virtually maintained body mass at a digestible energy intake of 511 kJ · kg-0.75 · day-1 and were in strongly positive nitrogen balance. In contrast, on the plant diet (shredded sweet potato), bandicoots ate only one-third as much digestible energy, lost 7% body mass, and were in negative nitrogen balance. Mean retention times of two particle markers on the plant diet (27.5 and 27.0 h) were more than double those on the insect diet (12.4 and 11.2 h), and on both diets the mean retention time of the fluid digesta marker was greater than those of the particle markers, indicating consistent selective retention of fluid digesta in the gut. It was seen radiographically than in mealwormfed bandicoots major sites of digesta retention were the distal colon and rectum, whereas in the sweet potato-fed animals the caecum and proximal colon were principal sites. It was concluded that retention of plant material in the caecum and proximal colon (the main sites of microbial digestion) and the preferential retention of fluid digesta (together with bacteria and small feed particles) in the caecum were important factors in the ability of bandicoots to switch between insect and plant foods, depending on relative availabilities, and thus to exploit nutritionally unpredictable environments.Abbreviations ADF acid-detergent fibre - bm body mass - Co-ED-TA cobalt-ethylenediaminetetra-acetic acid - CWC cell wall constituents - DE digestable energy - dm dry matter - EUN endogenous urinary nitrogen - ICP inductively-coupled plasma atomic emission spectroscopy - MFN metabolic faecal nitrogen - MRT mean retention time - NDF neutral-detergent fibre - ww wet weight  相似文献   

5.
The effect of feeding time (dawn or midnight) on nitrogen excretion and energy expenditure was studied in immature rainbow trout using measurements of respiratory gas exchange. Fish (mean individual weight 70 g) were maintained indoors under natural photoperiod and fed by hand (commercial food pellets) at a rate of 1% weight/day−1. Rates of ammonia and CO2 excretion and O2 uptake were measured every hour. Ammonia excretion increased immediately after feeding in fish fed at midnight, and 2h after feeding in fish fed at dawn. Ammonia excretion and energy supply from protein catabolism, were higher in trout fed at midnight than in those fed at dawn, while total energy expenditure was the same in both groups. The results suggested that trout fed in phase with their natural feeding rhythm use dietary protein more efficiently for growth than do trout fed out of phase with the natural rhythm.  相似文献   

6.
Greenback flounder Rhombosolea tapirina ( c. 2 g) fed to satiation had significantly ( P <0·01) higher feed consumption in the evening than in the morning whereas there was no difference between feeding times for flounder fed restricted rations (1 or 2% body weight per day) because they consumed all of the ration. Differences in growth performance were due to feeding time and ration. Carcass moisture, lipid and energy content were significantly ( P <0·001) different between rations; length gain was significantly affected by feeding time ( P <0·05) and ration ( P <0·001); weight gain showed a significant ( P <0·001) interaction between feeding time and ration. The relationship between feed consumption and specific growth rate showed that the exponential gradient was significantly higher ( P <0·01) for the evening fed fish and indicated feed efficiency for evening fed fish increased as feed consumption increased. Urea excretion increased from 12–20 to 58–63% of total nitrogen excretion at the 1 and 3% rations, respectively. Ammonia and urea excretion were significantly affected by ration ( P <0·001) and feeding time ( P <0·05). Fish fed the 2% ration in the evening had higher growth efficiency and significantly ( P <0·01) lower rates of urea excretion than fish fed 2 or 3% ration in the morning. It is suggested that the higher energetic costs associated with differences in ammonia and urea excretion contributed to differences in growth efficiency.  相似文献   

7.
Nitrogenous excretion by grass carp, Ctenopharyngodon idella (Val.), was measured in the form of ammonia and urea. Endogenous nitrogen excretion (ENE) was estimated as the daily rate of excretion by grass carp which had been starved for 2 days. ENE was scaled allometrically with body weight with weight exponents of 0.75 for ammonia, 0.63 for total nitrogen and 0.63 for the energy lost. The proportion of nitrogen attributable to urea was smaller than that attributable to ammonia and decreased from 25 to 12% as fish weight increased from 2 to over 10 g.
Linear relationships were found between daily rates of ammonia, total nitrogen and energy loss and daily rates of food intake. High carbohydrate and high lipid diets were not shown to have a protein-sparing action compared to a high protein diet. Differences in the amount of nitrogen excreted were explained by the differing nitrogen contents of the diets. Nitrogen budgets were erected and their implications discussed.  相似文献   

8.
Rates of whole body amino nitrogen flux were measured in 16 obese adolescents undergoing weight reduction with a high protein low energy diet. The subjects received approximately 2.5 g of animal protein per day per kilogram ideal body weight and maintained nitrogen balance throughout the 18 days on the diet. Flux rates were calculated separately from the cumulative excretion of 15N in urinary ammonia and urea following the administration of a single dose of [15N]glycine. The pattern of 15N label appearance in urinary ammonia and urea nitrogen was followed for 72 h after the administration of [15N]glycine. Significant amounts of label continued to be excreted in both urinary ammonia and nitrogen for 36-48 h after label administration. The weight-reducing diet accelerated 15N cumulative excretion in urinary urea, but not in ammonia nitrogen compared with the control diet. Whole body nitrogen flux rates increased rapidly and significantly on the diet. Using the urea end product, this increase was evident on the 4th diet day, but not by the 7th or subsequent days. On the other hand, using the ammonia end product, flux rate increased markedly (p less than 0.0001) and remained elevated throughout the whole study. Our results demonstrate adaptive changes in whole body amino-nitrogen metabolism in response to the reducing diet. Different patterns of change are seen depending upon whether an ammonia or a urea end product is used. Our data thus add to the evidence for compartmentation of the body's amino-nitrogen pools.  相似文献   

9.
曹溪  朱春亚  张茂新  凌冰 《昆虫学报》2015,58(6):625-633
【目的】为研究苦瓜素Ⅰ对亚洲玉米螟 Ostrinina furnacalis (Güenée)的生物活性和体内相关酶活性的影响。【方法】采用饲料混药法测定了苦瓜素Ⅰ对亚洲玉米螟生长发育和繁殖的影响,并以生命表的方法评价了苦瓜素Ⅰ对亚洲玉米螟实验种群增长的控制作用;采用酶标仪测定了苦瓜素Ⅰ对亚洲玉米螟幼虫海藻糖酶和磷酸酯酶活性的影响。【结果】用含0.25, 0.5, 1.0, 2.0和4.0 mg/g浓度苦瓜素Ⅰ的人工饲料饲喂亚洲玉米螟3龄幼虫3 d,幼虫的存活率明显降低, LC50为3.2 mg/g;对幼虫体重增长的抑制作用显著,在4.0 mg/g浓度下,第1, 2和3 天体重增长的抑制率分别为76.87%, 78.24%和79.94%,且发育历期明显延长;苦瓜素Ⅰ各浓度处理组中亚洲玉米螟蛹的历期和成虫寿命与对照相比差异不显著,但苦瓜素Ⅰ明显降低了亚洲玉米螟雌成虫的产卵量,4.0 mg/g浓度下,产卵抑制率高达73.55%。苦瓜素Ⅰ对亚洲玉米螟幼虫海藻糖酶、酸性磷酸酯酶和碱性磷酸酯酶活性均有明显的抑制作用,处理24, 48和72 h后,对亚洲玉米螟幼虫海藻糖酶活性的IC50分别为3.8, 2.9和4.9 mg/g;对酸性磷酸酯酶活性的IC50分别为3.1, 2.6和1.5 mg/g,对碱性磷酸酯酶活性的IC50分别为3.3 ,1.9和3.6 mg/g。【结论】苦瓜素Ⅰ能显著抑制亚洲玉米螟幼虫的生长发育及成虫的生殖力,使其实验种群的增长受到明显控制。苦瓜素Ⅰ抑制亚洲玉米螟幼虫体内海藻糖酶和磷酸酯酶活性是其作用机制之一。  相似文献   

10.
Severe energy restriction in obesity not only leads to fat mass loss but also to lean mass loss. The aim of this study was to compare the capacity of casein, a slowly digested protein, and milk soluble proteins (MSP; rapidly digested) to limit the loss of lean mass induced by energy restriction. Obesity was first induced in male Wistar rats by a 5-week feeding with a high-fat high-sucrose diet. The impact of energy restriction was then studied with high-protein (32%) diets containing either casein, MSP, or a 50/50 mixture of both proteins for 3 weeks (n = 10 per group). Food intake, body weight, nitrogen balance, creatinine, and 3-methyl-histidine excretion were measured during energy restriction. Then, tissue weights, plasma metabolic parameters (amino acids, glucose, insulin, cholesterol, triglycerides), and in vivo liver and extensor digitorum longus (EDL) muscle protein synthesis rates were measured in postabsorptive state at the end of the experimental period. Although significant differences relevant to protein metabolism were observed between groups (protein intake, plasma amino acid concentrations, fecal nitrogen excretion, muscle protein synthesis rates), week per week, there were no significant differences in nitrogen balance whatever the protein used. In conclusion, our results show that in young overweight energy restricted rats, using a high-protein diet, the nature of protein intake has no influence on body protein retention.  相似文献   

11.
The heavy reliance on imported soybean meal (SBM) as a protein source makes it necessary for the European pig industry to search for alternatives and to develop pigs that perform efficiently when fed such ingredients. Digestion and metabolism are major physiological processes contributing to variation in feed efficiency. Therefore, an experiment was conducted to assess the effects of replacing SBM with increasing levels of rapeseed meal (RSM) in diets for young pigs on apparent total tract digestibility (ATTD) of energy and nutrients, nitrogen (N) balance, energy metabolism and carbohydrate, protein and fat oxidation. Four diets were fed to 32 pigs (22.7±4.1 kg initial BW) for three weeks. The diets consisted of a control cereal grain-SBM basal diet and three test diets where SBM and wheat were partially replaced with 10%, 20%, and 30% of expeller RSM. Increasing level of RSM in the diets linearly reduced ATTD of organic matter, CP, total carbohydrates, dietary fiber and energy. Utilization of digested nitrogen (DN) for N retention and total N excretion were not affected by RSM inclusion, however, RSM inclusion induced a shift in N excretion from urine to feces. Despite a linear increase in liver to metabolic BW ratio, heat production and utilization of metabolizable energy (ME) for retention were not affected by increasing RSM inclusion. In conclusion, replacing SBM with up to 30% of expeller RSM in nutritionally balanced diets for young pigs reduced the ATTD of most nutrients and energy, but did not affect N and energy retention in the body or efficiency of utilization of DN or ME for retention.  相似文献   

12.
Summary Cell-bound phytase of Pichia anomala was produced in glucose–beef extract medium in shake flasks and in a laboratory fermenter at 25 °C for 24 h at 250 rev/min. In the fermenter the biomass production increased and the fermentation time was reduced from 24 to 16 h. Two-week-old broiler chicks were fed with the biomass-supplemented feed [at 100 g/7.5 kg; 50-phytase units/bird/day]. The overall weight gain in the biomass-fed chicks was higher (90.2%) than that of the control group (77.7%). The biomass incorporation in the feed of broiler chicks also resulted in a better phosphorus retention (29% in the control, and 73.68% in the biomass-fed) in the body, consequently an improved growth. There was a decrease in the excretion of phosphorus in the faeces of the chicks fed with phytase-supplemented diet (188.9 mg/g dry matter) as compared to the chicks fed on unsupplemented broiler finisher ration (509.4 mg/g dry matter). This eliminated the need to supplement phosphorus in their diet and also reduced phosphorus pollution. The feed conversion ratio was also lowered for chicks, which were biomass-fed as compared to the control.  相似文献   

13.
Growth, daily ration, and gastric evacuation rates of milkfish ( Chanos chanos ) that fed on natural food and supplement diet were evaluated. Milkfish fingerlings (5.5g) were stocked at 1.5 fish/m2 in ten 12 m2 concrete tanks layered with 15-cm thick earthen bottoms. All tanks were regularly fertilized (16–20–0 and chicken manure) to maintain natural food production; 4 of the tanks additionally received a supplemental diet containing 34.3% protein and 4290 kcal/kg gross energy. Estimates or daily ration (based on dry weight of stomach contents) were calculated using the E lliot and P erson (1978) and E ggers 1977) models. Gastric evacuation rate was lower in fish that fed on natural food (1.57) compared to fish fed a supplemental diet (1.79). Consequently, the lower rate resulted in lower food intake and slower fish growth. When fish were provided a high quality supplemental diet, daily rations for fingerlings (35 g) to marketable size (116 g) ranged approximately from 0.60 to 19.68 kcal/fish/day. The deviation in daily ration (kcal/fish/day) from the above estimates may indicate the insufficient quantity of dietary energy taken by fish from natural food alone, which could be provided by supplemental diet.  相似文献   

14.
Recent studies indicate that urea excretion is responsive to protein intake and that turbot, Psetta maxima, appear to differ from other species by their urea excretion pattern and levels. This study was undertaken to evaluate the influence of dietary nitrogen and arginine on ureagenesis and excretion in turbot. Juvenile turbot (29 g) were fed semi-purified diets containing graded levels of nitrogen (0-8% dry matter) and arginine (0-3% dry matter) for 6 weeks. Growth data showed that turbot have high dietary nitrogen (123 mg/kg metabolic body weight/day) and very low dietary arginine (9.3 mg/kg metabolic body weight/day) requirements for maintenance. Requirements for unit body protein accretion were 0.31 g and 0.15 g for nitrogen and arginine respectively. Post-prandial plasma urea levels and urea excretion rates showed that urea production was significantly (P<0.05) influenced by dietary arginine levels. While hepatic arginase (EC 3.5.3.1) activity increased significantly (P<0.05) with increasing dietary arginine levels, activities of other enzymes of the ornithine urea cycle were very low. Our data strongly suggest that the ornithine urea cycle is not active in the turbot liver and that dietary arginine degradation is a major pathway of ureagenesis in turbot.  相似文献   

15.
A study was performed to investigate the effect of different levels of dietary fibre (DF) and dietary protein on visceral organ size, digestibility, nitrogen balance and energy metabolism in rats. Thirty-six male Wistar rats, initial body weight about 76 g, were used in a factorial design consisting of three levels of DF (low, 100 g/kg DM; medium, 250 g/kg DM and high, 290 g/kg DM) and two levels of dietary protein (low, 120 g/kg DM and high, 223 g/kg DM). The added fibre source was soybean hulls and Danish fish meal was used as sole source of dietary protein. Measurements of gas-exchange were done on six rats (one group) while urine and faeces were collected individually. The ratio of food/empty body gain increased (P < 0.05) with increasing DF and decreasing levels of dietary protein. The weight of the digestive tract was larger (P < 0.05) in rats fed the high fibre diet than in those fed the low fibre diet. The digestibility of nutrients and energy decreased linearly with increasing level of soybean fibre (P < 0.05). An increased intake of DF was associated with a concomitant loss of protein and energy to faeces. The microbial degradation of NSP and other unabsorbed carbohydrates caused considerably changes in N metabolism of the colon. In rats fed the low protein diets increased levels of DF decreased N excretion in urine and increased N excretion in faeces, while the ratio of retained/digested protein remained constant. When rats were fed the high protein diet protein retention dropped in response to DF both absolute and relative to digested amount, indicating that energy intake could be a limiting factor. Heat production as a percentage of metabolizable energy (HP/ME) was higher (P < 0.05) in rats fed the low protein diet than in rats fed the high protein diet, but no significant difference was found among DF levels.  相似文献   

16.
The effect of diet (made from either animal or plant material) on the partitioning of energy in small (8-16 mm test diameter (td)) and large (29-37 mm td) Psammechinus miliaris was examined. Diet significantly affected ingestion, digestion and growth of both size groups. Assimilation rates of the different types of feed varied and they supported differential development of the body parts. Urchins fed on an algal diet showed poorer absorption efficiency, assimilation, gonadal and somatic growth than individuals fed on an artificial sea urchin diet (mixed plant and animal material) or on the animal based diets. Small urchins fed on a diet of salmon food utilised proteins as the primary energy source rather than carbohydrates or lipids as indicated by low O/N atomic ratios, and salmon diet promoted a higher energetic investment in reproductive development in both size classes. A negative energy balance resulted when large urchins were fed on the algal diet. Energy losses due to ammonia excretion were negligible and the metabolic losses of assimilated energy, measured as oxygen consumption, were between 0.2% and 1.5% with the different diets. A diet made of mussel flesh stimulated ingestion, gave the highest assimilation rates and best overall growth performance. Such detailed information should assist in the design of diets for the cultivation of sea urchins.  相似文献   

17.
Quantitative changes in fractional catabolic and synthetic rates of the myosin-actin pool in rat muscle under starvation and refeeding, during growth or after treatment with hydrocortisone were studied by estimating urinary excretion of Nτ-methylhistidine (3-methyl- histidine; Me-His).

Following deprivation of food, urinary Me-His output increased from 0.35 mg/day to 0.45 mg/day during first 2 day in spite of decreasing body Me-His pool. This high rate of Me-His excretion was maintained for the following 4 days of starvation and then decreased. When rats were refed a 20% casein diet after 10 days of starvation, Me-His excretion continued to decrease even after 3 days of refeeding. On the fifth day of refeeding, it began to rise progressively. During starvation, fractional catabolic rate of myosin-actin was about 3.7 %/day in comparison with 2.6 %/day of fed rats. After refeeding, the fractional catabolic rate decreased rapidly to a minimum value of 1.7 %/day on the third day. After that, it reached to a value of 2.6 %/day of fed rats. On the other hand, fractional synthetic rate of myosin-actin dropped immediately after fasting and the low rate of about 0.4 %/day was maintained during starvation period. Fractional synthetic rate recovered quickly after refeeding.

Urinary output of nitrogen and creatinine rose quickly on the first day after administration of hydrocortisone and on the second day it fell to their normal value. While Me-His excretion increased after injection of hydrocortisone up to 0.52 mg/day on the second day and this high excretion rate remained until the following day. From these results, it was shown that administration of hydrocortisone to rats enhances catabolism and reduces synthesis of myosin-actin. The results also show that the effect of this hormone on myofibrillar protein catabolism appears to last longer than its effect on nitrogen metabolism in the whole body judged from urinary nitrogen output.

Fractional rates of catabolism and synthesis of rat myosin-actin were 3.3 %/day (half- life of 21 days) and 7.2%/day, respectively, at the growth stage of 129 g body weight. These rates were 2.3 %/day (half-life of 30 days) and 2.8 %/day, respectively, at the mature stage of 363 g body weight.

Under the dietary conditions in this experiment, fractional synthetic rate changed far more dramatically than catabolic rate. This suggests that mass of muscle protein is primarily regulated by the rate of synthesis, although the rate of catabolism should not be neglected.  相似文献   

18.
Increasing levels of a mixture of Ulva spp. produced in an integrated multi-trophic aquaculture (IMTA) system were evaluated in Nile tilapia juveniles for partial replacement of dietary fish meal. A control diet (CTRL) was compared with three experimental diets containing 10 % (U10), 15 % (U15), and 20 % (U20) of Ulva spp. meal. Triplicate groups of fish (13 g initial body weight) were fed each diet for 63 days at 26 °C. Nutrient apparent digestibility coefficients and nitrogen retention efficiency did not vary significantly among diets. By the end of the trial, all groups of fish more than tripled their initial body weight. Specific growth rate and final body weight of U10 diet were similar to CTRL and significantly higher than U15 and U20 diets. Increasing Ulva dietary incorporation levels significantly increased feed conversion ratio (FCR), from 1.0 (CTRL) to 1.4 (U20). Fish fed with U10 diet had the highest protein efficiency ratio and nitrogen retention efficiency allowing this fish to growth and reach a final body weight similar to the CTRL group. Protein content was highest in fish fed with the CTRL diet, whereas the highest lipid content was observed in fish fed with U20 diet. The results show that the incorporation of IMTA-produced Ulva meal in Nile tilapia diets is possible up to 10 % without compromising growth performance, protein utilization, and protein retention of juveniles. The high capacity of Nile tilapia to digest all experimental diets suggests that Ulva meal is a practical partial replacement for fish meal in Nile tilapia diets.  相似文献   

19.
Summary Survival and body composition of starving gypsy moth larvae initially reared on aspen foliage or artificial diet differeing in nitrogen (N) and carbohydrate concentration were examined under laboratory conditions. Diet nitrogen concentration strongly affected starvation resistance and body composition, but diet carbohydrate content had no effects on these. Within any single diet treatment, greater body mass afforded greater resistance to starvation. However, starving larvae reared on 1.5% N diet survived nearly three days longer than larvae reared on 3.5% N diet. Larvae reared on artificial diet survived longer than larvae reared on aspen. Differences in survival of larvae reared on artificial diet with low and high nitrogen concentrations could not be attributed to variation in respiration rates, but were associated with differences in body composition. Although percentage lipid in larvae was unaffected by diet nitrogen concentration, larvae reared on 1.5% N diet had a higher percentage carbohydrate and lower percentage protein in their bodies prior to starvation than larvae reared on 3.5% N diet. Hence, larger energy reserves of larvae reared on low nitrogen diet may have contributed to their greater starvation resistance. Whereas survival under food stress was lower for larvae reared on high N diets, growth rates and pupal weights were higher, suggesting a tradeoff between rapid growth and survival. Larger body size does not necessarily reflect larger energy reserves, and, in fact, larger body size accured via greater protein accumulation may be at the expense of energy reserves. Large, fast-growing larvae may be more fit when food is abundant, but this advantage may be severely diminished under food stress. The potential ecological and evolutionary implications of a growth/survival tradeoff are discussed.  相似文献   

20.
The protein requirement to give maximum body protein retention in the prawn Marsupenaeus japonicus was assessed by determining both daily protein needed for maintenance (M) and daily body protein increment (G) when the juvenile prawn was maintained on a diet containing high quality protein. The body protein increment was obtained by determining carcass nitrogen increment when the prawn was fed on casein-based diets. The protein required for maintenance was estimated by regressing weight gains of the prawn on the diets containing graded levels of casein. True daily increase or retention of body protein in the prawn corresponded to the sum of G and M, and it was 3.2 g protein per kg body weight per day. The dietary protein requirement of juvenile M. japonicus for maximum body protein retention was suggested to be about 10 g per kg body weight per day providing that the prawn was fed the casein-based diet containing 50% crude protein (net protein utilization = 32) at the feeding level of 2%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号