首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Free radical research》2013,47(1):581-589
It was suggested that increased Cu-Zn superoxide dismutase (SOD-I) might be involved in the various biological abnormalities found in Down's syndrome (DS) such as premature aging and Alzheimer-type neurological lesions. As a model system for testing this hypothesis we have developed two strains of transgenic mice carrying only one copy of the human SOD-I gene. In the first strain (TGI). no expression has been found by northern blot analysis. The second strain (TG2) exhibited human SOD-I mRNA and increased SOD-l activity in the brain (1.93 fold), in the heart (I.69 fold), thymus (I.49 fold) and to a lesser extent in muscle (1.25 fold), liver (1.19 fold), kidney (1.18 fold), spleen (1.35 fold), lung (1.26 fold) and erythrocytes (1.09 fold). In this strain, increased SOD-1 activity in the brain did not induce modifications in the seleno-dependent glutathione peroxidase. glutathione reductase and glutathione S-transferase activities. In brain homogenates, we have focused our studies on Tau proteins which are known to be the major antigenic components of paired helical filaments (P11F). both in DS and Alzheimer's disease. Our results suggested that, in our experimental conditions, the overexpression of SOD-I did not induce the modifications of Tau proteins similar to those seen during neurofibrillary degeneration.  相似文献   

2.
It is recognized that the development of hypertension in Dahl salt-sensitive (DS) rats as compared to Dahl salt-resistant (DR) rats is dependent on the addition of a high percentage of sodium chloride, often 8% to the diet. In this work, blood systolic pressure and the concentrations of many elements in different tissues of DS and DR rats were measured. However, to distinguish the modifications linked to the strain from the modifications owing to excess of sodium intake, no additional Na was included in the diet in all our experiments. Without any addition of sodium chloride to the diet, a statistically significant increase of the systolic blood pressure of DS rats (152±10 mmHg) in comparison to DR rats (131 +/? 3 mmHg) was observed. The analysis of the concentrations of many elements in different tissues showed no major modifications of sodium concentrations in DS rats as compared to DR rats, but a decrease of calcium in plasma (?9%), brain (?20%), and heart (?7%) and of magnesium in plasma (?13%), kidney (?11%), and bone (?7%). In conclusion, an increased intake of Na is not necessary to obtain a higher systolic blood pressure in DS rats compared to DR rats. Since we did not find noticeable modifications of Na concentration in tissues but modifications of Ca and Mg, we suggest that an alteration of the homeostasis of these two elements may be involved in the development of the hypertension in DS rats.  相似文献   

3.
The aim of our study was first to obtain a comprehensive profile of the brain antioxidant defense potential and peroxidative damage during aging. We investigated copper-zinc superoxide dismutase (CuZnSOD), manganese superoxide dismutase (MnSOD), seleno-dependent glutathione peroxidase (GSH-PX), glutathione reductase (GSSG-R) activities, endogenous and in vitro stimulated lipid peroxidation in 40 brains of control mice divided into 3 age groups: 2 months (young), 12 months (middle-aged) and 28 months (old). We found a positive correlation between age and activities of CuZnSOD (r = 0.47; P < 0.01) and GSH-PX (r = 0.72; P < 0.0001). CuZnSOD and GSH-PX activities are independently regulated during brain aging since temporal changes of these two enzymes do not correlate. No modification in MnSOD activity and basal lipid peroxidation was observed as a function of age. Nevertheless, stimulated lipid peroxidation was significantly higher at 12 months (6.53 +/- 0.71 mumole MDA/g tissue) than at 2 months (5.69 +/- 0.90) and significantly lower at 28 months (5.13 +/- 0.33) than at 12 months. Second, we used genetic manipulations to construct transgenic mice that specifically overexpress CuZnSOD to understand the role of CuZnSOD in neuronal aging. The human CuZnSOD transgene expression was stable during aging. The increased CuZnSOD activity in the brain (1.9-fold) of transgenic mice resulted in an enhanced rate of basal lipid peroxidation and in increased MnSOD activity in the 3 age groups. Other antioxidant enzymes did not exhibit modifications indicating the independence of the regulation between CuZnSOD and glutathione-related enzymes probably due to their different cellular localization in the brain.  相似文献   

4.
Elevated oxidative stress has been suggested to be associated with the features of Down's syndrome (DS). We previously reported increased oxidative stress in cultured cells from the embryonic brain of Ts1Cje, a mouse genetic DS model. However, since in vivo evidence for increased oxidative stress is lacking, we here examined lipid peroxidation, a typical marker of oxidative stress, in the brains of Ts1Cje and another DS mouse model Ts2Cje with an overlapping but larger trisomic segment. Accumulations of proteins modified with the lipid peroxidation-derived products, 13-hydroperoxy-9Z,11E-octadecadienoic acid and 4-hydroxy-2-nonenal were markedly increased in Ts1Cje and Ts2Cje brains. Analysis with oxidation-sensitive fluorescent probe also showed that reactive oxygen species themselves were increased in Ts1Cje brain. However, electron spin resonance analysis of microdialysate from the hippocampus of Ts1Cje showed that antioxidant activity remained unaffected, suggesting that the reactive oxygen species production was accelerated in Ts1Cje. Proteomics approaches with mass spectrometry identified the proteins modified with 13-hydroperoxy-9Z,11E-octadecadienoic acid and/or 4-hydroxy-2-nonenal to be involved in either ATP generation, the neuronal cytoskeleton or antioxidant activity. Structural or functional impairments of these proteins by such modifications may contribute to the DS features such as cognitive impairment that are present in the Ts1Cje mouse.  相似文献   

5.
Presence of neuritic plaques and neurofibrillary tangles in the brain are two neuropathological hallmarks of Alzheimer's disease (AD), although the molecular basis of their coexistence remains elusive. The neurofibrillary tangles are composed of microtubule binding protein Tau, whereas neuritic plaques consist of amyloid-beta peptides derived from amyloid precursor protein (APP). Recently, the peptidyl-prolyl cis/trans isomerase Pin1 has been identified to regulate the function of certain proteins after phosphorylation and to play an important role in cell cycle regulation and cancer development. New data indicate that Pin1 also regulates the function and processing of Tau and APP, respectively, and is important for protecting against age-dependent neurodegeneration. Furthermore, Pin1 is the only gene known so far that, when deleted in mice, can cause both Tau and Abeta-related pathologies in an age-dependent manner, resembling many aspects of human Alzheimer's disease. Moreover, in the human AD brain Pin1 is downregulated or inhibited by oxidative modifications and/or genetic changes. These results suggest that Pin1 deregulation may provide a link between formation of tangles and plaques in AD.  相似文献   

6.
In human brain extracts, most proteins of pathological interest in Alzheimer's disease are insoluble and their analysis is often performed on denatured and reduced samples by immunoblotting after electrophoresis on polyacrylamide gel in presence of sodium dodecyl sulfate. Because we needed to accurately compare the concentration of several proteins in brain extracts to investigate the etiology of the disease, the quantitative aspect of immunoblotting was assessed and the results compared for a soluble component with those obtained by electroimmunoassay. Glial fibrillary acidic protein (GFAP) and Tau proteins were analysed by immunoblotting in brain homogenates treated with the Laemmli sample buffer from 10 control and 25 Alzheimer's disease brains. The linearity of densitometric measures of dilutions for one given sample was demonstrated. A 8 to 16-fold GFAP increase in Alzheimer brain was established. With regard to Tau proteins it was possible to show the presence of two pathological Tau variants (Tau 64 and 69) in all the Alzheimer brain homogenates, furthermore, the amount of Tau 64 and 69 was proportional to the presence of neurofibrillary degeneration. As far as alpha 1-antichymotrypsin is concerned, we showed, in a second set of brain samples (14 control and 12 Alzheimer brains), discrepancies between the results obtained by immunoblotting and by electroimmunoassay while for a given sample linearity of immunoblotting measures of dilutions of this sample was demonstrated. Quantitation by immunoblotting of such components which can be quantified using other procedures is uncertain whereas the interest of immunoblotting is undoubted for the insoluble proteins in the brain extracts.  相似文献   

7.
Particularly interesting new cysteine- histidine- rich protein (PINCH) is an adaptor protein that our data have shown is required for neurite extension under stressful conditions. Our previous studies also report that PINCH is recalled by neurons showing decreased levels of synaptodendritic signaling proteins such as MAP2 or synaptophysin in the brains of human immunodeficiency virus (HIV) patients. The current study addressed potential role(s) for PINCH in neurodegenerative diseases. Mass spectrometry predicted the interaction of PINCH with Tau and with members of the heat shock response. Our in vitro data confirmed that PINCH binds to hyperphosphorylated (hp) Tau and to E3 ubiquitin ligase, carboxy-terminus of heat shock-70 interacting protein. Silencing PINCH prior to induction of hp-Tau resulted in more efficient clearance of accumulating hp-Tau, suggesting that PINCH may play a role in stabilizing hp-Tau. Accumulation of hp-Tau is implicated in more than 20 neuropathological diseases including Alzheimer''s disease (AD), frontotemporal dementia (FTD), and human immunodeficiency virus encephalitis (HIVE). Analyses of brain tissues from HIVE, AD and FTD patients showed that PINCH is increased and binds to hp-Tau. These studies address a new mechanism by which AD and HIV may intersect and identify PINCH as a contributing factor to the accumulation of hyperphosphorylated Tau.  相似文献   

8.
Trisomy 21 (Down's syndrome) is the most common genetic cause of human mental retardation. In Down's syndrome (DS) patients, deteriorated glucose, lipid, purine, folate and methionine/homocysteine metabolism has been reported. In our study, we used a proteomic approach to evaluate protein expression of enzyme proteins of intermediary metabolism in the brain of Down's syndrome fetuses. In fetal DS brain, we detected increased protein levels of mitochondrial aconitase as well as NADP-linked isocitrate dehydrogenase, decreased protein expression of citrate synthase and cytosolic aspartate aminotransferase. From two spots that corresponded to either pyruvate kinase M1 or M2 isozymes, significant elevation was observed only in one, while the second spot as well as the sum of the spots showed no differences between DS and controls. These results suggest derangement of intermediary metabolism during prenatal development of DS individuals.  相似文献   

9.
Tau proteins are the major components of Paired Helical Filaments (PHF) of Alzheimer's disease. Using the immunoblot technique and an antiserum against PHF, we have studied the distribution of Tau proteins in the different areas of normal human brains and Alzheimer brains. Tau proteins were clearly present in cortical grey matter but were difficult to detect in the white matter. In Alzheimer brains, we observed two differences: first, there is an important background due to the partial dissociation of the lesions containing Tau aggregates. Second, the profile of Tau proteins is modified, due to abnormal phosphorylation. Thus, Tau proteins are found in large amounts in the grey matter of the cortical areas and are not exclusively distributed in the axonal domain. The normal cortical distribution of Tau in the human brain correlates well with the distribution of histological lesions that contain PHF (neurofibrillary tangles and neuritic plaques) in the Alzheimer cortex.  相似文献   

10.
Gene expression profiling in the adult Down syndrome brain   总被引:4,自引:0,他引:4  
  相似文献   

11.
Protein post-translational modifications (PTMs) that potentiate protein aggregation have been implicated in several neurological disorders, including Alzheimer's (AD) and Parkinson's disease (PD). In fact, Tau and alpha-synuclein (ASYN) undergo several PTMs potentiating their aggregation and neurotoxicity.Recent data posits a role for acetylation in Tau and ASYN aggregation. Herein we aimed to clarify the role of Sirtuin-2 (SIRT2) and HDAC6 tubulin deacetylases as well as p300 acetyltransferase in AD and PD neurodegeneration. We used transmitochondrial cybrids that recapitulate pathogenic alterations observed in sporadic PD and AD patient brains and ASYN and Tau cellular models.We confirmed that Tau protein and ASYN are microtubules (MTs)-associated proteins (MAPs). Moreover, our results suggest that α-tubulin acetylation induced by SIRT2 inhibition is functionally associated with the improvement of MT dynamic determined by decreased Tau phosphorylation and by increased Tau/tubulin and ASYN/tubulin binding. Our data provide a strong evidence for a functional role of tubulin and MAPs acetylation on autophagic vesicular traffic and cargo clearance. Additionally, we showed that an accumulation of ASYN oligomers imbalance mitochondrial dynamics, which further compromise autophagy. We also demonstrated that an increase in Tau acetylation is associated with Tau phosphorylation. We found that p300, HDAC6 and SIRT2 influences Tau phosphorylation and autophagic flux in AD. In addition, we demonstrated that p300 and HDAC6 modulate Tau and Tubulin acetylation.Overall, our data disclose the role of Tau and ASYN modifications through acetylation in AD and PD pathology, respectively. Moreover, this study indicates that MTs can be a promising therapeutic target in the field of neurodegenerative disorders in which intracellular transport is altered.  相似文献   

12.
Tau蛋白是神经元中含量最高的微管相关蛋白,其经典生物学功能是促进微管组装和维持微管的稳定性.在阿尔茨海默病(Alzheimer's disease,AD)患者,异常过度磷酸化的Tau蛋白以配对螺旋丝结构形成神经原纤维缠结并在神经元内聚积.大量研究提示,Tau蛋白异常在AD患者神经变性和学习记忆障碍的发生发展中起重要作用.本课题组对Tau蛋白异常磷酸化的机制及其对细胞的影响进行了系列研究,发现Tau蛋白表达和磷酸化具有调节细胞生存命运的新功能,并由此对AD神经细胞变性的本质提出了新见解.本文主要综述作者实验室有关Tau蛋白的部分研究结果.  相似文献   

13.
Oxidative damage increases with age in a canine model of human brain aging   总被引:12,自引:0,他引:12  
We assayed levels of lipid peroxidation, protein carbonyl formation, glutamine synthetase (GS) activity and both oxidized and reduced glutathione to study the link between oxidative damage, aging and beta-amyloid (Abeta) in the canine brain. The aged canine brain, a model of human brain aging, naturally develops extensive diffuse deposits of human-type Abeta. Abeta was measured in immunostained prefrontal cortex from 19 beagle dogs (4-15 years). Increased malondialdehyde (MDA), which indicates increased lipid peroxidation, was observed in the prefrontal cortex and serum but not in cerebrospinal fluid (CSF). Oxidative damage to proteins (carbonyl formation) also increased in brain. An age-dependent decline in GS activity, an enzyme vulnerable to oxidative damage, and in the level of glutathione (GSH) was observed in the prefrontal cortex. MDA level in serum correlated with MDA accumulation in the prefrontal cortex. Although 11/19 animals exhibited Abeta, the extent of deposition did not correlate with any of the oxidative damage measures, suggesting that each form of neuropathology accumulates in parallel with age. This evidence of widespread oxidative damage and Abeta deposition is further justification for using the canine model for studying human brain aging and neurodegenerative diseases.  相似文献   

14.
NADH: ubiquinone oxidoreductase (complex I), one of the most complicated multi-protein enzyme complexes, is important for energy metabolism because it is the initial enzyme of the mitochondrial respiratory chain. Deficiency of complex I is frequently found in various tissues of patients with neurodegenerative disease. Here we studied the protein levels of complex I 24- and 75-kDa subunits in several brain regions from patients with Down syndrome (DS) and Alzheimer's disease (AD). We determined protein levels of complex I 24-, 75-kDa subunits and mitochondrial marker proteins mitochondrial matrix protein P1 (hsp60) and aconitate hydratase from seven brain regions of patients with DS, AD and controls. Proteins were separated by two-dimensional (2-D) gel electrophoresis and identified by matrix-assisted laser desorption ionization mass spectrometry (MALDI-MS). Complex I 24-kDa subunit was significantly reduced in occipital cortex and thalamus in patients with DS and temporal and occipital cortices in patients with AD. Complex I 75-kDa subunit was significantly reduced in brain regions from patients with DS (temporal, occipital and caudate nucleus) and AD (parietal cortex). Reductions of two subunits of complex I may lead to the impairment of energy metabolism and result in neuronal cell death (apoptosis), a hallmark of both neurodegenerative disorders.  相似文献   

15.
Down syndrome (DS) is the most common genetic cause of intellectual disability, due to partial or complete triplication of chromosome 21. DS subjects are characterized by a number of abnormalities including premature aging and development of Alzheimer disease (AD) neuropathology after approximately 40 years of age. Several studies show that oxidative stress plays a crucial role in the development of neurodegeneration in the DS population. Increased lipid peroxidation is one of the main events causing redox imbalance within cells through the formation of toxic aldehydes that easily react with DNA, lipids, and proteins. In this study we used a redox proteomics approach to identify specific targets of 4-hydroxynonenal modifications in the frontal cortex from DS cases with and without AD pathology. We suggest that a group of identified proteins followed a specific pattern of oxidation in DS vs young controls, probably indicating characteristic features of the DS phenotype; a second group of identified proteins showed increased oxidation in DS/AD vs DS, thus possibly playing a role in the development of AD. The third group of comparison, DS/AD vs old controls, identified proteins that may be considered specific markers of AD pathology. All the identified proteins are involved in important biological functions including intracellular quality control systems, cytoskeleton network, energy metabolism, and antioxidant response. Our results demonstrate that oxidative damage is an early event in DS, as well as dysfunctions of protein-degradation systems and cellular protective pathways, suggesting that DS subjects are more vulnerable to oxidative damage accumulation that might contribute to AD development. Further, considering that the majority of proteins have been already demonstrated to be oxidized in AD brain, our results strongly support similarities with AD in DS.  相似文献   

16.
In Alzheimer disease (AD) brain, the level of I (1)(PP2A), a 249-amino acid long endogenous inhibitor of protein phosphatase 2A (PP2A), is increased, the activity of the phosphatase is decreased, and the microtubule-associated protein Tau is abnormally hyperphosphorylated. However, little is known about the detailed regulatory mechanism by which PP2A activity is inhibited by I (1)(PP2A) and the consequent events in mammalian cells. In this study, we found that both I (1)(PP2A) and its N-terminal half I (1)(PP2A(1-120)), but neither I (1)(PP2A(1-163)) nor I (1)(PP2A(164-249)), inhibited PP2A activity in vitro, suggesting an autoinhibition by amino acid residues 121-163 and its neutralization by the C-terminal region. Furthermore, transfection of NIH3T3 cells produced a dose-dependent inhibition of PP2A activity by I (1)(PP2A)(1). I (PP2A) and PP2A were found to colocalize in PC12 cells. I (1)(PP2A) could only interact with the catalytic subunit of PP2A (PP2Ac) and had no interaction with the regulatory subunits of PP2A (PP2A-A or PP2A-B) using a glutathione S-transferase-pulldown assay. The interaction was further confirmed by coimmunoprecipitation of I (1)(PP2A) and PP2Ac from lysates of transiently transfected NIH3T3 cells. The N-terminal isotype specific region of I (1)(PP2A) was required for its association with PP2Ac as well as PP2A inhibition. In addition, the phosphorylation of Tau was significantly increased in PC12/Tau441 cells transiently transfected with full-length I (1)(PP2A) and with PP2Ac-interacting I (1)(PP2A) deletion mutant 1-120 (I (1)(PP2A)DeltaC2). Double immunofluorescence staining showed that I (1)(PP2A) and I (1)(PP2A)DeltaC2 increased Tau phosphorylation and impaired the microtubule network and neurite outgrowth in PC12 cells treated with nerve growth factor.  相似文献   

17.
Abstract: The effects of nitric oxide (NO) and cyclic GMP on in vivo transmitter release in the rat striatum were investigated using microdialysis sampling in urethane-anaesthetised animals. The NO release-inducing substances S -nitrosoacetylpenicillamine (SNAP), S -nitrosoglutathione (SNOG), and sodium nitroprusside (SNP) increased extracellular concentrations of aspartate (Asp), glutamate (Glu), γ-aminobutyric acid (GABA), taurine (Tau), acetylcholine (ACh), and serotonin (5-HT). Dopamine (DA) concentrations were decreased by SNAP but were increased by SNOG and SNP. An NO scavenger, haemoglobin, blocked or reduced the effects of SNAP on transmitter release. However, the control carrier compounds for SNAP, SNOG, and SNP (penicillamine, glutathione, and potassium ferricyanide, respectively, which do not induce release of NO) also increased GABA, Tau, DA, and 5-HT concentrations. When NO gas was given directly by dissolving it in degassed Ringer's solution, DA concentrations decreased significantly, and those of Asp, Glu, GABA, Tau, ACh, and 5-HT increased. These effects of NO gas were all inhibited by coadministration of haemoglobin and for GABA, Tau, ACh, and DA showed some calcium dependency. The cyclic GMP agonists 8-bromo-cyclic GMP and dibutryl-cyclic GMP stimulated dose-dependent increases in Asp, Glu, GABA, Tau, ACh, DA, and 5-HT concentrations. Increased striatal transmitter release in response to NO may therefore be mediated by its stimulatory action on cyclic GMP formation. NO inhibition of DA release may be mediated indirectly through its stimulation of local cholinergic and GABAergic neurones.  相似文献   

18.
Alzheimer's disease (AD), one of the major tauopathies, is multifactorial with a massive demand for disease-modifying treatments rather than symptom management. An AD-affected neuron shows Tau depositions generated due to overload on the proteostasis machinery of the cell and/or abnormal post-translational modifications on Tau protein. Loss of memory or dementia is the most significant concern in AD, occurring due to the loss of neurons and the connections between them. In a healthy brain, neurons interact with the environment and each other through extensions and migratory structures. It can thus be safe to assume that Tau depositions affect these growth structures in neurons. A Histone Deacetylase, HDAC6, has shown elevated levels in AD while also demonstrating direct interaction with the Tau protein. HDAC6 interacts with multiple proteins in the cell and is possibly involved in various signalling pathways. Its deacetylase activity has been a point of controversy in AD; however other functional domains remain unexplored. This review highlights the beneficial potential of HDAC6 in AD in mediating both Tau proteostasis and cytoskeletal rewiring for the neuritic extensions through its Ubiquitin Binding domain (HDAC6 ZnF UBP).  相似文献   

19.
Neurite retraction is a crucial process during nervous system development and neurodegeneration. This process implies reorganization of the neuronal cytoskeleton. Some bioactive lipids such as lysophosphatidic acid (LPA) induce neurite retraction. The reorganization of the actin cytoskeleton during neurite retraction is one of the best-characterized effects of LPA. However, less information is available regarding the reorganization of the microtubule (MT) network in response to LPA in neuronal cells. Here, we first give an overview of the roles of cytoskeleton during neurite outgrowth, and subsequently, we review some of the data from different laboratories concerning LPA-induced cytoskeletal rearrangement in neuronal cells. We also summarize our own recent results about modifications of MTs during LPA-induced neurite retraction. We have shown that LPA induces changes in tubulin pools and increases in the phosphorylation levels of microtubule-associated proteins (MAPs), such as Tau. Tau hyperphosphorylation in response to LPA is mediated by the activation of glycogen synthase kinase-3 (GSK-3). The upregulation of GSK-3 activity by LPA seems to be a general process as it occurs in diverse neuronal cells of different species in correlation with the neurite retraction process.  相似文献   

20.
Siu FK  Lo SC  Leung MC 《Life sciences》2005,77(4):386-399
Reactive oxygen species can directly affect the conformation and activity of sulfhydryl-containing proteins by oxidation of their thiol moiety. During the process of ischemia-reperfusion, the thioredoxin (Trx) system (consisting of thioredoxin reductase (TR), Trx and NADPH) prevents susceptible proteins from this oxidative modification. Oxidative damage is one of the most damaging stress in ischemia. If oxidative stress could be minimized, the damage occurred will be minimized accordingly. We therefore investigated whether electroacupuncture (EA) treatment at Fengchi (GB20) or Zusanli (ST36) acupoints in post-ischemic rats could increase TR-related activities and Trx expression which would translate into maintaining the intact thiol moiety of susceptible proteins in the surrounding. Our results indicated that EA treatment at either acupoint increased the Trx expression in ischemic-reperfused brain tissues. Induced Trx expressed levels gradually increased from post-ischemia day 1 to day 4. Statistical analysis revealed that there was no observable difference in the effect of EA treatment at GB20 and ST36. Sham EA treatment did not induce any Trx expression. EA at either acupoint did not alter TR activities in both non-ischemic and ischemic-reperfused rat brains. Taken overall, our finding suggests that EA treatment at GB20 or ST36 could increase Trx expression which could minimize oxidative modifications of thiol groups of surrounding proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号