首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 984 毫秒
1.
The steady-state levels of four members of the heat shock proteins families (HSP84, HSC73, HSP71, and HSP25) were examined by immunoblot analysis of several different tissues of young and adult mice in the absence of stress. These hsps were detected in all tissues but their level was variable. The levels of HSC73 and HSP84 varied only slightly between different tissues in either young or adult mice, with the exception of skin where these hsps were found in reduced amounts. In contrast, the stress-inducible member of the HSP70 family, HSP71, was found to be expressed in all tissues but in amounts which differed by as much as two orders of magnitude between tissues. In general, the levels of both HSP71 and HSP25 were found to be tissue dependent, with higher levels found in tissues such as stomach, intestine, colon and bladder, tissues which are exposed to toxic environmental or metabolic products, and which may concentrate these substances by water resorption and/or be exposed to them for longer periods. The levels of HSP71 and HSP25 were generally positively correlated both in young and adult mice although this correlation was not found in certain tissues such as kidney, testes, and bone. Tissues of young mice contained lower amounts of HSP25 and HSP71 than were found in the same tissues from adults. We conclude that hsps are expressed in all tissues of the mouse in the absence of stress and that some organs, particularly those exposed to potentially toxic metabolites, show a higher level of expression of HSP71 and HSP25. © 1993Wiley-Liss, Inc.  相似文献   

2.
3.
4.
The High Mobility Group A1 proteins (HMGA1) are nonhistone chromatinic proteins with a critical role in development and cancer. We have recently reported that HMGA1 proteins are able to increase the expression of spindle assembly checkpoint (SAC) genes, thus impairing SAC function and causing chromosomal instability in cancer cells. Moreover, we found a significant correlation between HMGA1 and SAC genes expression in human colon carcinomas. Here, we report that mouse embryonic fibroblasts null for the Hmga1 gene show downregulation of Bub1, Bub1b, Mad2l1 and Ttk SAC genes, and present several features of chromosomal instability, such as nuclear abnormalities, binucleation, micronuclei and karyotypic alterations. Interestingky, also MEFs carrying only one impaired Hmga1 allele present karyotypic alterations. These results indicate that HMGA1 proteins regulate SAC genes expression and, thereby, genomic stability also in embryonic cells.  相似文献   

5.
6.
Myogenesis is mainly sustained by a subpopulation of myogenic cells known as satellite cells (SC). In this paper we studied alpha-smooth muscle (alphaSMA) and alpha-sarcomeric muscle (alphaSRA) actin isoform expression in cultures of human satellite cells (HSC) isolated from skeletal muscle biopsies from a 5-day-old newborn, a 34-year-old young adult and a 71-year-old donor. Myogenicity of cultures was assessed using immunocytochemical detection of desmin and myosin heavy chain. Time-course expression of alphaSRA and alphaSMA were studied with both immunocytochemistry and western blotting procedures. Although alphaSMA was never detected in whole skeletal muscle, both alphaSMA and alphaSRA were detected in proliferating and differentiating HSC derived from donors of all examined ages. The expression level experiments showed that alphaSRA was gradually up-regulated during HSC differentiation, but no significant differences were observed between newborn, young, and elderly HSC cultures. Our data demonstrated that HSC, isolated from subjects of different ages, re-expressed alphaSMA, but its levels and expression pattern varied considerably in the newborn with respect to the young adult and elderly donors. These results are discussed in relation to the myogenic differentiation capability of HSC during human muscle senescence.  相似文献   

7.
8.
9.
We previously showed that the fetal component of the placenta has a vigorous hematopoietic activity. Whether this organ is an environmental niche where hematopoietic stem cells (HSC) proliferate and become committed to various lineages, or whether it is also a site for HSC emergence, was left open. This issue can be addressed only if the components that will give rise to the placenta are tested prior to vascularization. The fetal part of the placenta forms through the fusion of the allantois and the chorionic plate around the stage of 7 somite pairs. The allantois, a mesodermal rudiment that provides fetal blood vessels to the placenta, was retrieved before fusion. We found in this rudiment expression of CD41, a known marker of early embryonic hematopoietic progenitors. c-Kit encoding a progenitor specific receptor was also expressed. Significantly, as early as the 1-2 somite stage, the allantois yielded erythroid, myeloid and multipotent clonogenic progenitors, when pre-cultured in toto prior to seeding in a semisolid medium. These results provide evidence that the allantois has hematopoietic potential per se. Whether this potential also involves the ability to produce HSC is still to be determined.  相似文献   

10.
In anural (tailless) ascidian species, functional embryonic muscle is not formed. In urodele (tailed) ascidians, macho-1 functions as a maternally supplied factor for embryonic muscle formation. The failure of embryonic muscle development in anural ascidians may be due to the suppression of macho-1 expression. In this paper, however, we report the expression of macho-1 in embryos of an anural ascidian, Molgula tectiformis. Although M. tectiformis has lost the developmental potential to form functional embryonic muscle, macho-1 was expressed in a very similar manner as in urodele ascidians. This result, together with those of previous studies, strongly suggests that in M. tectiformis the upstream genetic cascade responsible for muscle formation is intact, while the downstream cascade including the expression of muscle structural genes is severely affected.Electronic Supplementary Material Supplementary material is available for this article at  相似文献   

11.
12.
Hypoxia is an important physiological condition during embryonic development. Hypoxia-inducible factor (HIF) is the mediator of hypoxic response of cells. The prolyl hydroxylase (PHD) of HIF plays a key role in stabilizing of HIF and the oxygen homeostasis of organisms. In this study, we isolated two PHD proteins, PHD45 and PHD28, and characterized them during the embryonic development of Xenopus laevis, which is an excellent model for embryonic development because of the ease of embryonic manipulation and the feasibility of transgenesis. Based on amino acid sequences, Xenopus PHD45 and PHD28 were homologous with human PHD2 and PHD3, respectively. In embryonic development, PHD45 expression was complementary to that of PHD28. xHIF-1alpha protein level was at a maximum around stage 20 when expression of PHD45 disappeared, while expression of PHD28 reached a maximum at stage 20, suggesting that PHD28 is inducible by HIF-1alpha. Recently, Siah2 was found to be an ubiquitin ligase of PHD proteins and to regulate degradation of PHD proteins. Over-expression of xSiah2 decreased PHD45 but not PHD28 and caused the small-eye phenotype of Xenopus. Additional over-expression of PHD47 rescued the abnormality caused by xSiah2, suggesting that the level of expression or activity of PHD proteins is important to the maintenance of homeostasis in embryonic development.  相似文献   

13.
The self-fertilizing fish Rivulus marmoratus (R. marmoratus) heat shock cognate 71 (HSC71) gene was cloned and characterized recently (Park et al., 2001). Here, we report the isolation of a homologue of the R. marmoratus HSC71 gene via screening of an R. marmoratus genomic DNA library. A 12,591 bp genomic fragment was sequenced and found to contain a 2844 bp open reading frame that consisted of 8 exons and showed high similarity to the previously reported R. marmoratus HSC71 gene. The two genes differed slightly at exons 5 and 8, and intron 3. On a deduced amino acid sequence level, the two R. marmoratus HSC71 genes were highly similar (89.3% in amino acid residues). In this paper, the author presented a homologous gene (R. marmoratus HSC71-1) similar to R. marmoratus HSC71 gene.  相似文献   

14.
15.
16.
17.
Rat Kupffer cells (KC), hepatic stellate cells (HSC) and sinusoidal endothelial cells (SEC) all express the C5a receptor (C5aR) constitutively in contrast to hepatocytes (HC). HSC showed an unexpectedly high level of expression of the C5aR. As these cells are known to play a key role in the induction of liver fibrosis we hypothesized that C5a may possibly induce fibrogenetic proteins in these cells. HSC are known to express the extracellular matrix (ECM) proteins collagen IV, fibronectin, entactin and the structure protein smooth muscle actin (SMA) which is regarded as a marker for the fibrotic conversion of HSC to myofibroblast-like cells. We investigated the effect of recombinant rat C5a (rrC5a) on the upregulation of these ECM-proteins and of SMA, all of which are known to be expressed by HSC. The profibrotic cytokine TGF-beta1 (2 ng/ml), which was used as a control, clearly upregulated the three matrix proteins but not SMA. In the absence of any stimulus HSC upregulated the three ECM-proteins as well as SMA during their conversion into myofibroblast-like cells. This resulted in a high stimulus-independent plateau of the mRNA expressions for all four proteins after four to five days of culture. Readouts were therefore taken at 72 h after the isolation of the HSC when the investigated mRNA levels had not yet reached their maxima due to the conversion of the cells. The first 24 h of culture were performed without stimulus and the following 48 h in the presence of 100 nM rrC5a (1 micro g/ml) or TGF-beta1 (2 ng/ml). Only fibronectin-specific mRNA was clearly upregulated by C5a whereas entactin, collagen IV and SMA were not affected by C5a. By competitive-quantitative PCR the upregulation of fibronectin-specific mRNA was determined to be about five-fold. As TGF-beta1 upregulated all of the three investigated ECM-proteins but not SMA it was checked as to whether C5a might act indirectly by upregulating the expression of TGF-beta1 in KC and HSC, as both cell types are known to be sources of this profibrotic cytokine. However, using RT-PCR, such an effect was not detectable in either cell type after 3, 10 or 24 h.  相似文献   

18.
MusTRD can regulate postnatal fiber-specific expression   总被引:1,自引:0,他引:1  
Human MusTRD1alpha1 was isolated as a result of its ability to bind a critical element within the Troponin I slow upstream enhancer (TnIslow USE) and was predicted to be a regulator of slow fiber-specific genes. To test this hypothesis in vivo, we generated transgenic mice expressing hMusTRD1alpha1 in skeletal muscle. Adult transgenic mice show a complete loss of slow fibers and a concomitant replacement by fast IIA fibers, resulting in postural muscle weakness. However, developmental analysis demonstrates that transgene expression has no impact on embryonic patterning of slow fibers but causes a gradual postnatal slow to fast fiber conversion. This conversion was underpinned by a demonstrable repression of many slow fiber-specific genes, whereas fast fiber-specific gene expression was either unchanged or enhanced. These data are consistent with our initial predictions for hMusTRD1alpha1 and suggest that slow fiber genes contain a specific common regulatory element that can be targeted by MusTRD proteins.  相似文献   

19.
20.
ObjectivesDNA damages pose threats to haematopoietic stem cells (HSC) maintenance and haematopoietic system homeostasis. Quiescent HSCs in adult mouse bone marrow are resistant to DNA damage, while human umbilical cord blood‐derived proliferative HSCs are prone to cell death upon ionizing radiation. Murine embryonic HSCs proliferate in foetal livers and divide symmetrically to generate HSC pool. How murine embryonic HSCs respond to DNA damages is not well‐defined.Materials and methodsMice models with DNA repair molecule Nbs1 or Nbs1/p53 specifically deleted in embryonic HSCs were generated. FACS analysis, in vitro and in vivo HSC differentiation assays, qPCR, immunofluorescence and Western blotting were used to delineate roles of Nbs1‐p53 signaling in HSCs and haematopoietic progenitors.ResultsNbs1 deficiency results in persistent DNA breaks in embryonic HSCs, compromises embryonic HSC development and finally results in mouse perinatal lethality. The persistent DNA breaks in Nbs1 deficient embryonic HSCs render cell cycle arrest, while driving a higher rate of cell death in haematopoietic progenitors. Although Nbs1 deficiency promotes Atm‐Chk2‐p53 axis activation in HSCs and their progenies, ablation of p53 in Nbs1 deficient HSCs accelerates embryonic lethality.ConclusionsOur study discloses that DNA double‐strand repair molecule Nbs1 is essential in embryonic HSC development and haematopoiesis. Persistent DNA damages result in distinct cell fate in HSCs and haematopoietic progenitors. Nbs1 null HSCs tend to be maintained through cell cycle arrest, while Nbs1 null haematopoietic progenitors commit cell death. The discrepancies are mediated possibly by different magnitude of p53 signaling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号