首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
2.
A marked reduction in the rate of viral DNA synthesis is accompanied by an alteration to the superhelicity of progeny DNA in polyoma virus-infected cells in which protein synthesis has been inhibited by cycloheximide. Viral DNA molecules formed in the presence of cycloheximide consist predominantly of closed-circular monometric species (referred to as form Ic) characterized by a decreased superhelix density, corresponding to deltasigmao = 0.0195, as compared to form I DNA by propidium diiodide-cesium chloride isopycnic analysis. Form Ic is synthesized on pre-existing form I templates without the intervention of progeny form I as an intermediate. It is concluded that inhibition of protein synthesis results in the alteration of some process in the closure of daughter DNA that leads to a marked reduction of superhelical turns of progeny molecules. About two-thirds of form Ic molecules return to the form I conformation upon reversal of cycloheximide inhibition by a mechanism independent of DNA replication.  相似文献   

3.
The localization of H-1 viral replicative-form double-stranded DNA and progeny single-stranded DNA replication in parasynchronously infected, simian virus 40-transformed newborn human kidney cells was studied with high-resolution electron microscope autoradiography (80-nm silver grains). We analyzed wild-type H-1 and ts1 H-1 (a conditional mutant defective in progeny single-stranded DNA synthesis). The proportion of the total DNA synthesis that was viral was estimated to be >90% by comparing the amount of [(3)H]thymidine uptake in cultures infected with wild-type H-1 versus ts14 (an H-1 mutant defective in DNA replication). Simultaneous staining with cytochrome c-conjugated anti-H-1 immunoglobulin G was performed to ensure that cells incorporating [(3)H]thymidine (2- to 60-min pulses) were H-1 infected. The sites of H-1 replicative-form (in ts1-infected cells) and progeny (in wild-type-infected cells) DNA synthesis were identical. Immunospecifically labeled nuclei at the earliest stages of infection exhibited dense clusters of silver grains over material extruded from nucleolar fibrillar centers. These foci became larger with increasing cellular damage, forming a limited number of H-1 DNA synthetic centers in the euchromatin. Each island-like focus was surrounded by tufts of heterochromatin containing high concentrations of unassembled H-1 capsid proteins. In late phases of infection, the heterochromatin became completely marginated, and the nucleoplasm contained only euchromatin that exhibited randomly distributed sites of H-1 DNA replication. This indicates that H-1 DNA synthesis begins at localized euchromatic or nucleolar sites and then spreads outward. Immunostained heterochromatin and nucleolar chromatin never incorporated [(3)H]thymidine. Our results suggest that H-1 proteins and cellular cofactors associated with the fibrillar component of the nucleolus and the euchromatin may play a role in the regulation of H-1 DNA synthesis.  相似文献   

4.
Infection of synchronized bovine fetal spleen cells with bovine parvovirus results in changes in the levels and patterns of DNA polymerases alpha and gamma during the cell cycle. The pattern of DNA polymerase alpha activity closely paralled viral DNA synthesis and the production of progeny virus, and levels, of this enzyme were threefold greater than in mock-infected cells during the period of maximal viral DNA synthesis. DNA polymerase gamma activity remained slightly elevated during viral DNA replication. Levels and patterns of DNA polymerase beta were similar in mock- and virus-infected cells.  相似文献   

5.
Gene IV mutants of bacteriophage S13 are known to be blocked in infectious replicative form (RF) DNA synthesis, producing only a small fraction of the RF formed by wild-type phage. This investigation shows that gene IV mutants form only parental RF and are blocked in the synthesis of any progeny RF, either infectious or noninfectious. This was determined by density labeling of RF in cells treated with mitomycin C to suppress host deoxyribonucleic acid (DNA) synthesis. RF synthesis was also studied in untreated cells, using methylated albumin columns to separate RF from host DNA. In this case it was also found that synthesis of progeny RF by gene IV mutants is negligible. It has been found by DNA-ribonucleic acid (RNA) hybridization experiments that gene IV mutants form at least as much or more messenger RNA than wild-type phage. Therefore, parental RF alone can form messenger RNA in appreciable amounts.  相似文献   

6.
The effect of nalidixic acid on deoxyribonucleic acid (DNA) synthesis in Bacillus subtilis cells infected with bacteriophage SPO1 was studied. Nalidixic acid had little inhibitory effect on SPO1 DNA synthesis at concentrations that drastically inhibited B. subtilis DNA synthesis. Inhibition of DNA synthesis, appropriate to the concentration used, was imposed within 1 min after addition of nalidixic acid, suggesting that it acts directly on DNA synthesis in both infected and uninfected cells. The SPO1 DNA synthesized in the presence of high concentrations of nalidixic acid had a density characteristic of normal SPO1 DNA and was packaged into viable progeny phage particles, but its rate of synthesis was reduced and bacterial lysis was delayed.  相似文献   

7.
Cell division in Caulobacter crescentus yields a swarmer and a stalked cell. Only the stalked cell progeny is able to replicate its chromosome, and the swarmer cell progeny must differentiate into a stalked cell before it too can replicate its chromosome. In an effort to understand the mechanisms that limit chromosomal replication to the stalked cell, plasmid DNA synthesis was analyzed during the developmental cell cycle of C. crescentus, and the partitioning of both the plasmids and the chromosomes to the progeny cells was examined. Unlike the chromosome, plasmids from the incompatibility groups Q and P replicated in all C. crescentus cell types. However, all plasmids tested showed a ten- to 20-fold higher replication rate in the stalked cells than the swarmer cells. We observed that all plasmids replicated during the C. crescentus cell cycle with comparable kinetics of DNA synthesis, even though we tested plasmids that encode very different known (and putative) replication proteins. We determined the plasmid copy number in both progeny cell types, and determined that plasmids partitioned equally to the stalked and swarmer cells. We also reexamined chromosome partitioning in a recombination-deficient strain of C. crescentus, and confirmed an earlier report that chromosomes partition to the progeny stalked and swarmer cells in a random manner that does not discriminate between old and new DNA strands.  相似文献   

8.
Controlled regulation of genomic DNA synthesis is a universally conserved process for all herpesviruses, including human cytomegalovirus (HCMV), and plays a key role in viral pathogenesis, such as persistent infections. HCMV UL105 is believed to encode the helicase of the DNA replication machinery that needs to localize in the nuclei, the site of viral DNA synthesis. No host factors that interact with UL105 have been identified. In this study, we show that UL105 specifically interacts with Snapin, a human protein that is predominantly localized in the cytoplasm and associated with cellular vesicles. UL105 was found to interact with Snapin in both the yeast two-hybrid screen and coimmunoprecipitation experiments in HCMV-infected cells. The nuclear and cytoplasmic levels of UL105 were decreased and increased in cells overexpressing Snapin, respectively, while the levels of UL105 in the nuclei and cytoplasm were increased and decreased in cells in which the expression of Snapin was downregulated with anti-Snapin small interfering RNA (siRNA) molecules, respectively. Furthermore, viral DNA synthesis and progeny production were decreased in cells overexpressing Snapin and increased in the anti-Snapin siRNA-treated cells, respectively. Our results provide the first direct evidence to suggest that Snapin interacts with UL105 and alters its cellular distribution, leading to modulation of viral DNA synthesis and progeny production. Our study further suggests that modulation of the cellular distribution of viral helicase by Snapin may represent a possible mechanism for regulating HCMV genomic DNA synthesis, a key step during herpesvirus lytic and persistent infections.  相似文献   

9.
Protein synthesis in polyoma virus-infected cells was inhibited by 99% within 4 min after exposure to 10 mug of cycloheximide per ml. Subsequent to the block in protein synthesis, the rate of viral DNA synthesis declined via inhibition of the rate of initiation of new rounds of genome replication (Yu and Cheevers, 1976). This process was inhibited with complex kinetics: within 15 min after the addition of cycloheximide, the rate of formation of closed-circular viral DNA was reduced by about one-half. Thereafter, DNA synthesis in cycloheximide-treated cells declined more slowly, reaching a level of 10% of untreated cells only after approximately 2 h. Protein synthesis was also required for normal closure of progeny form I DNA: in the presence of cycloheximide, DNA synthesis was diverted from the production of form I to form Ic, a monomeric closed-circular DNA component deficient in superhelical turns (Yu and Cheevers, 1976). Form I is replaced by Ic with first-order exponential kinetics. It is concluded that at least two proteins are involved in the control of polyoma DNA replication. One is apparently a stoichiometric requirement involved in the initiation step of viral DNA synthesis, since this process cannot be maintained at a normal rate for more than a few minutes in the absence of protein synthesis. The second protein requirement, governing the closure of newly synthesized progeny DNA, is considered distinct from the "initiation" protein on the basis of the kinetic data.  相似文献   

10.
Yaba tumor poxvirus has been adapted to continuous in vitro cultivation in monolayers of cercopithecus kidney cells. At 35 C, the minimum replicative cycle, after synchronous infection of CV-1 cells with multiplicity of infection of 135 focusforming units per cell, was 35 hr; however, maximum virus yields were not obtained until 75 hr postinfection (PI). Cytoplasmic incorporation of (3)H-thymidine [viral deoxyribonucleic acid (DNA) synthesis] was detected 3 hr PI and was preceded by synthesis of nonstructural associated antigens (YS). Synthesis of YS antigens was not inhibited by the DNA inhibitor, arabinofuranosyl cytosine (ARA-C). Synthesis of at least two virion structural antigens, although not detected by immunofluorescence until 2 hr after the onset of DNA synthesis, occurred in the presence of ARA-C, indicating potential translation of these structural antigens from parental DNA. The first progeny DNA was completed by 20 hr PI but was not detected in infectious form until 35 hr PI. The maximum rate of progeny DNA completion occurred between 20 and 30 hr PI. DNA synthesis continued 45 to 50 hr PI. The adapted virus retained its oncogenicity and, like the wild type, replicated better at 35 C than at 37 C. A synthetic step associated with viral DNA synthesis appears to be temperature-sensitive.  相似文献   

11.
The patterns of nucleic acid synthesis in insect cells infected with iridescent virus types 2 and 6 has been examined using nucleic acid hybridization techniques. Virus-specific RNA synthesis was detected 24 hr after infection. Virus-specific DNA synthesis was detected 96 hr after infection. Host-specific nucleic acid synthesis declined throughout infection, and host-specific nucleic acid synthesis was detected only in the first 48 hr of infection. The synthesis of iridescent virus progeny DNA molecules precedes the appearance of mature iridescent virus particles.  相似文献   

12.
The role of deoxyribonucleic acid (DNA) replication in the control of the synthesis of deoxycytidylate (dCMP) deaminase and lysozyme in Bacillus subtilis infected with bacteriophage 2C has been studied. These phage-induced enzymes are synthesized at different times during the latent period. It was shown by actinomycin inhibition that the formation of the late enzyme (lysozyme) required messenger ribonucleic acid (mRNA) synthesized de novo after the initiation of translation of mRNA which specifies the early function (dCMP deaminase). The inhibition of phage DNA synthesis by mitomycin C prevented the synthesis of lysozyme only when added before the onset of phage DNA replication, but it did not affect the synthesis or action of dCMP deaminase when added at any time during the latent period. Treatment of infected cells with mitomycin C after phage DNA synthesis had reached 8 to 10% of its maximal rate resulted in the production of normal amounts of lysozyme. These observations suggest that mRNA specifying early enzymes can be transcribed from parental (and probably also from progeny) DNA, whereas late functional messengers can be transcribed only after the formation of progeny DNA.  相似文献   

13.
Replication of the single-stranded DNA parvovirus H-1 involves the synthesis of a double-stranded DNA replicative form (RF). In this study, the metabolism of RF DNA was examined in parasynchronous hamster embryo cells. The initiation of RF DNA replication was found to occur late in S phase, as was the synthesis of the DNA upon which subsequent viral hemagglutinin synthesis is dependent. Evidence is presented which indicates that initiation of RF replication requires proteins synthesized in late S phase, but that concomittant protein synthesis is not required for the continuation of RF replication. The data also suggest a requirement for viral protein(s) for progeny strand synthesis. Incorporation of 5-bromo-2'-deoxyuridine (BUdR) into viral DNA resulted in an "all-or-none" inhibition of viral hemagglutinin and viral antigen synthesis. BUdR inactivation of viral protein function was used to explore the time of synthesis of viral DNA serving as template for viral RNA synthesis and the effect of viral protein on RF replication and progeny strand synthesis. Results of this study suggest that parental RF DNA is synthesized shortly after infection, and that viral mRNA is transcribed from only a few copies of the viral genome in each cell. They also support the conclusion that viral protein is inhibitory to RF DNA replication. Density labeling of RF DNA with BUdR, allowing separation of viral strand DNA (V) from viral complementary strand (C), provided additional data in support of the above findings.  相似文献   

14.
We investigated the helper-independent replication of adeno-associated virus (AAV) in cells synchronized by pretreatment with hydroxyurea, reversal of polyamine depletion, or physical mitotic detachment. In Chinese hamster cells (OD4 line) treated with hydroxyurea prior to infection. AAV underwent a complete cycle of replication. Transfection of such cells with plasmid-cloned AAV DNAs also gave rise to infectious viral progeny. Synchronization of OD4 cells by reversal of polyamine depletion or mitotic detachment led to independent AAV DNA synthesis (and infectious viral progeny in the case of the former procedure), but these procedures were not as effective as hydroxyurea pretreatment. Independent AAV DNA synthesis was also detected in some other cell lines of Chinese hamster, human, and monkey origin treated with hydroxyurea prior to infection. The results demonstrate that, in contrast to previous notions, the AAV infectious process is not absolutely dependent upon the addition of a coinfecting helper virus.  相似文献   

15.
W K Yang  D M Yang    J O Kiggans  Jr 《Journal of virology》1980,36(1):181-188
Formation of viral closed circular supercoiled DNA duplexes and production of progeny virus were both inhibited in cultured mouse cells treated with cycloheximide in the first 4 h of type C retrovirus infection. With different doses of cycloheximide to cause different degrees of inhibition, the number of viral supercoiled DNA duplexes detected in the cells at 11 h showed an apparent correlation with the amount of progeny virus produced in the 12- to 22-h period of infection. A slight accumulation of the full-genome linear duplex and an open circular duplex of viral DNA intermediate was observed in the cycloheximide-treated cells. Cycloheximide given to the cells during the time of conversion of viral DNA from linear to supercoiled duplex forms (6 to 11 h after virus inoculation) did not inhibit the conversion. These kinetic data suggest that a cycloheximide-sensitive metabolic process, probably early viral protein synthesis, is required for retrovirus replication and supercoiled viral DNA formation in the cell.  相似文献   

16.
In this study we have investigated the rates and spatial patterns of chromosome replication and cell elongation during the growth phase of wild-type and facultatively prey-independent mutant strains of Bdellovibrio bacteriovorus. For the facultatively prey-independent mutants, the total DNA content of synchronously growing cultures was found to increase exponentially, as the multiple chromosomes within each filamentous cell replicated simultaneously. Cell mass, measured as total cellular protein, also increased exponentially during this period, apparently by means of multiple elongation sites along the filament wall. The relative rates of DNA and protein synthesis were unbalanced during growth, however, with the cellular concentration of DNA increasing slightly faster than that of protein. The original cellular DNA: protein ratio was restored in the progeny cells by continued protein synthesis during the septation period that follows the termination of DNA replication. Because of technical problems, these experiments could not be conducted on the wild-type cells, but similar results are assumed. This unusual pattern of unbalanced growth may represent an adaptation by bdellovibrios to maximize their progeny yield from the determinate amount of substrate available within a given prey cell.  相似文献   

17.
The relationship between viral DNA and protein synthesis during herpes simplex virus type 1 (HSV-1) replication in HeLa cells was examined. Treatment of infected cells with cytosine arabinoside (ara-C), which inhibited the synthesis of HSV-1 DNA beyond the level of detection, markedly affected the types and amounts of viral proteins made in the infected cell. Although early HSV-1 proteins were synthesized normally, there was a rapid decline in total viral protein synthesis beginning 3 to 4 h after infection. This is the time that viral DNA synthesis would normally have been initiated. ara-C also prevented the normal shift from early to late viral protein synthesis. Finally, it was shown that the effect of ara-C on late protein synthesis was dependent upon the time after infection that the drug was added. These results suggest that inhibition of progeny viral DNA synthesis by ara-C prevents the "turning on" of late HSV-1 protein synthesis but allows early translation to be "switched off."  相似文献   

18.
K Yu  J Kowalski    W Cheevers 《Journal of virology》1975,15(6):1409-1417
The formation of viral DNA was inhibited in polyoma virus-infected cells in which protein synthesis had been blocked by cycloheximide. The present studies show the following. (i) The pool of replicating viral DNA molecules was reduced in cycloheximide-treated cells by an amount consistent with inhibition of [3-H]thymidine incorporation into viral DNA, whereas the rate of turnover of the replicating population was not affected. (ii) The rate of conversion of replicating molecules into closed-circular DNA was not affected by cycloheximide. (iii) The rate of elongation of nascent viral DNA fragments into strands of unit genome length was unaffected by cycloheximide. It is concluded that viral DNA synthesis is inhibited in the absence of protein synthesis exclusively at the level of initiation of new rounds of genome replication. Replicating molecules already initiated at the time of addition of cycloheximide matured into progeny closed-circular DNA at a normal rate.  相似文献   

19.
Human cytomegalovirus stimulates host cell RNA synthesis.   总被引:14,自引:14,他引:0       下载免费PDF全文
Human cytomegalovirus infection of human fibroblast cells (WI-38) induced cellular RNA synthesis. The RNA synthesis in infected cultures preceded the synthesis of viral DNA and progeny virus by approximately 24 h. RNA species synthesized in infected cells included ribosomal 28S and 18S; and 4S transfer RNA; all were markedly increased in comparison to uninfected cells. This induction of host cell RNA synthesis was dependent upon a protein(s) that was synthesized during the early stages of infection.  相似文献   

20.
To study the regulation of cell cycle events after asymmetric cell division in Caulobacter crescentus, we have identified functions that are required for DNA synthesis in the stalked cell produced at division and in the new stalked cell that develops from the swarmer cell 60 min after division. The initiation of DNA synthesis in the two progeny cells is dependent upon at least two common functions. One of these is a requirement for protein synthesis and the other is a gene product identified in a temperature-sensitive cell cycle mutant. DNA chain elongation requires a third common function. The characteristic pattern of DNA synthesis in C. crescentus appears to be controlled in part by the expression of these functions in the two stalked cells at different times after cell division. The age distribution for Caulobacter cells in an exponential population has been calculated (Appendix by Robert Tax) and used to analyze some of the results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号