首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Synthesis Metacommunity theory aims to elucidate the relative influence of local and regional‐scale processes in generating diversity patterns across the landscape. Metacommunity research has focused largely on assemblages of competing organisms within a single trophic level. Here, we test the ability of metacommunity models to predict the network structure of the aquatic food web found in the leaves of the northern pitcher plant Sarracenia purpurea. The species‐sorting and patch‐dynamics models most accurately reproduced nine food web properties, suggesting that local‐scale interactions play an important role in structuring Sarracenia food webs. Our approach can be applied to any well‐resolved food web for which data are available from multiple locations. The metacommunity framework explores the relative influence of local and regional‐scale processes in generating diversity patterns across the landscape. Metacommunity models and empirical studies have focused mostly on assemblages of competing organisms within a single trophic level. Studies of multi‐trophic metacommunities are predominantly restricted to simplified trophic motifs and rarely consider entire food webs. We tested the ability of the patch‐dynamics, species‐sorting, mass‐effects, and neutral metacommunity models, as well as three hybrid models, to reproduce empirical patterns of food web structure and composition in the complex aquatic food web found in the northern pitcher plant Sarracenia purpurea. We used empirical data to determine regional species pools and estimate dispersal probabilities, simulated local food‐web dynamics, dispersed species from regional pools into local food webs at rates based on the assumptions of each metacommunity model, and tested their relative fits to empirical data on food‐web structure. The species‐sorting and patch‐dynamics models most accurately reproduced nine food web properties, suggesting that local‐scale interactions were important in structuring Sarracenia food webs. However, differences in dispersal abilities were also important in models that accurately reproduced empirical food web properties. Although the models were tested using pitcher‐plant food webs, the approach we have developed can be applied to any well‐resolved food web for which data are available from multiple locations.  相似文献   

2.
Using simple food webs, we address how the interactions of food web structure and energetic flows influence dynamics. We examine the effect of food web topologies with equivalent energetics (i.e., trophic interactions are equivalent at each trophic level), following which we vary energetic flows to include weak and strong interactions or nonequivalent energetics. In contrast to some work (Pimm 1979), we find that compartmented webs are more stable than reticulate webs. However, we find that nonequivalent energetics can stabilize previously unstable reticulate structures. It is not only weak flows that can be stabilizing but also the arrangement of the flows that emphasizes stabilizing mechanisms. We find that the main stabilizing mechanism is asynchrony, where structures and energetic arrangements that decrease synchrony such as internal segregation or competition will stabilize dynamics. Since compartments allow prey dynamics to behave somewhat independently, compartmentation readily promotes stability. In addition, these results can be scaled from simple food webs to more complex webs with many interacting subsystems so that linking weak subsystems to strong ones can stabilize dynamics. We show that food web dynamics are determined not only by topology but also the arrangement of weak and strong energetic flows.  相似文献   

3.

Background

We are interested in understanding if metacommunity dynamics contribute to the persistence of complex spatial food webs subject to colonization-extinction dynamics. We study persistence as a measure of stability of communities within discrete patches, and ask how do species diversity, connectance, and topology influence it in spatially structured food webs.

Methodology/Principal Findings

We answer this question first by identifying two general mechanisms linking topology of simple food web modules and persistence at the regional scale. We then assess the robustness of these mechanisms to more complex food webs with simulations based on randomly created and empirical webs found in the literature. We find that linkage proximity to primary producers and food web diversity generate a positive relationship between complexity and persistence in spatial food webs. The comparison between empirical and randomly created food webs reveal that the most important element for food web persistence under spatial colonization-extinction dynamics is the degree distribution: the number of prey species per consumer is more important than their identity.

Conclusions/Significance

With a simple set of rules governing patch colonization and extinction, we have predicted that diversity and connectance promote persistence at the regional scale. The strength of our approach is that it reconciles the effect of complexity on stability at the local and the regional scale. Even if complex food webs are locally prone to extinction, we have shown their complexity could also promote their persistence through regional dynamics. The framework we presented here offers a novel and simple approach to understand the complexity of spatial food webs.  相似文献   

4.
Ecologists have long searched for structures and processes that impart stability in nature. In particular, food web ecology has held promise in tackling this issue. Empirical patterns in food webs have consistently shown that the distributions of species and interactions in nature are more likely to be stable than randomly constructed systems with the same number of species and interactions. Food web ecology still faces two fundamental challenges, however. First, the quantity and quality of food web data required to document both the species richness and the interaction strengths among all species within food webs is largely prohibitive. Second, where food webs have been well documented, spatial and temporal variation in food web structure has been ignored. Conversely, research that has addressed spatial and temporal variation in ecosystems has generally ignored the full complexity of food web architecture. Here, we incorporate empirical patterns, largely from macroecology and behavioural ecology, into a spatially implicit food web structure to construct a simple landscape theory of food web architecture. Such an approach both captures important architectural features of food webs and allows for an exploration of food web structure across a range of spatial scales. Finally, we demonstrated that food webs are hierarchically organized along the spatial and temporal niche axes of species and their utilization of food resources in ways that stabilize ecosystems.  相似文献   

5.
Previous studies have shown that high-resolution, empirical food webs possess a non-random network structure, typically characterized by uniform or exponential degree distributions. However, the empirical food webs that have been investigated for their structural properties represent local communities that are only a subset of a larger pool of regionally coexisting species. Here, we use a simple model to investigate the effects of regional food web structure on local food webs that are assembled by two simple processes: random immigration of species from a source web (regional food web), and random extinction of species within the local web. The model shows that local webs with non-random degree distributions can arise from randomly structured source webs. A comparison of local webs assembled from randomly structured source webs with local webs assembled from source webs generated by the niche model shows that the former have higher species richness at equilibrium, but have a nonlinear response to changing extinction rates. These results imply that the network structure of regional food webs can play a significant role in the assembly and dynamics of local webs in natural ecosystems. With natural landscapes becoming increasingly fragmented, understanding such structure may be a necessary key to understanding the maintenance and stability of local species diversity.  相似文献   

6.
Community level ecological traits are thought to affect invasibility as more diverse communities with complex trophic interactions may be associated with greater biotic resistance. Elucidation of the nature of this relationship is often hampered by difficulties in characterising food webs, particularly where field data are lacking. We attempted to overcome this by coupling food web modelling with information-theoretic analysis of the modelled webs. In addition, we also investigated the possibility that species level trends in trophic traits of established aliens might reflect exploitation of empty niches. We constructed hypothetical food webs of 26 natural and artificial lentic habitats from a data set consisting of 370 fish species representing 71 families. Using these food webs, we investigated associations at the community level between food web traits and network topology and number of alien fish species using an information-theoretic approach based on a set of competing a priori hypotheses. At the species level, we similarly tested for trends in trophic traits of established alien fishes using the information-theoretic approach in addition to nMDS of diet data. We found that native species richness in a community was the most important determinant of the number of alien fish taxa, displaying an inverse relationship. Our data also show that alien fish generally feed lower down the food web. Our findings suggest that the biotic resistance hypothesis, though scale dependent, can result in observable effects in animal communities. Moreover, we also found that the ability to exploit low energy yield food sources could favour the establishment of alien species via avoidance of resistive forces from native taxa.  相似文献   

7.
水生生态系统食物网复杂性与多样性的关系   总被引:1,自引:0,他引:1  
李晓晓  杨薇  孙涛  崔保山  邵冬冬 《生态学报》2021,41(10):3856-3864
探索食物网的复杂结构是生态学的中心问题之一。基于构建的黄河口海草床食物网并耦合实际食物网的数据集,整理了包含河口、湖泊、海洋和河流四种水生生态系统类型的48个实际食物网案例。以食物网的节点数反映食物网多样性,物种之间的营养链接数、链接密度和连通度来表示食物网的复杂性,采用营养缩尺模型描述水生生态系统食物网的复杂性特征与节点数的普适性规律。结果表明:所涉及的48个水生生态系统食物网的多样性和复杂性跨度较大,其中,节点数的分布范围为4-124,链接数为3-1830,链接密度为0.75-15.71,连通度为0.06-0.25。不同类型水生生态系统间的连通度存在显著性差异(P=0.01),节点数、链接数、链接密度不存在显著性差异。各类型生态系统的食物网链接数、链接密度均随节点数的增加而增加(R2=0.92,P<0.001和R2=0.82,P<0.001)。湖泊生态系统的连通度随节点数的变化不明显,围绕在0.20附近;而其他3种类型生态系统的食物网连通度随节点数的增加而降低(R2=0.06-0.41,P<0.001)。对全球尺度的水生食物网多样性和复杂性的定量化研究对于提升对食物网的复杂结构的科学认识,从系统尺度探究多样性和复杂性的关系提供数据支撑。  相似文献   

8.
Food webs are increasingly evaluated at the landscape scale, accounting for spatial interactions involving different nutrient and energy channels. Also, while long viewed as static, food webs are increasingly seen as dynamic entities that assemble during vegetation succession. The next necessary step is, therefore, to link nutrient flows between ecosystems to local food web assembly processes. In this study, we used a 100-year salt marsh succession in which we investigated the long-term changes in food web organization, especially focusing on the balance between internal versus external nutrient sources. We found that during food web assembly, the importance of internal (terrestrial) nutrient cycling increases at the expense of external (marine) inputs. This change from external to internal nutrient cycling is associated with strong shifts in the basis of energy channels within the food web. In early succession, detritivores are mostly fuelled by marine inputs whereas in later succession they thrive on locally produced plant litter, with consequences for their carnivores. We conclude that this 100 years of food web assembly proceeds by gradual decoupling of terrestrial nutrient cycling from the marine environment, and by associated rearrangements in the herbivore and detritivore energy channels. Food web assembly thus interacts with nutrient and energy flows across ecosystem boundaries.  相似文献   

9.
Few models concern how environmental variables such as temperature affect community structure. Here, we develop a model of how temperature affects food web connectance, a powerful driver of population dynamics and community structure. We use the Arrhenius equation to add temperature dependence of foraging traits to an existing model of food web structure. The model predicts potentially large temperature effects on connectance. Temperature-sensitive food webs exhibit slopes of up to 0.01 units of connectance per 1°C change in temperature. This corresponds to changes in diet breadth of one resource item per 2°C (assuming a food web containing 50 species). Less sensitive food webs exhibit slopes down to 0.0005, which corresponds to about one resource item per 40°C. Relative sizes of the activation energies of attack rate and handling time determine whether warming increases or decreases connectance. Differences in temperature sensitivity are explained by differences between empirical food webs in the body size distributions of organisms. We conclude that models of temperature effects on community structure and dynamics urgently require considerable development, and also more and better empirical data to parameterize and test them.  相似文献   

10.
Biological invasions are a key component of global change, and understanding the drivers of global invasion patterns will aid in assessing and mitigating the impact of invasive species. While invasive species are most often studied in the context of one or two trophic levels, in reality species invade communities comprised of complex food webs. The complexity and integrity of the native food web may be a more important determinant of invasion success than the strength of interactions between a small subset of species within a larger food web. Previous efforts to understand the relationship between food web properties and species invasions have been primarily theoretical and have yielded mixed results. Here, we present a synthesis of empirical information on food web connectance and species invasion success gathered from different sources (estimates of food web connectance from the primary literature and estimates of invasion success from the Global Invasive Species Database as well as the primary literature). Our results suggest that higher‐connectance food webs tend to host fewer invaders and exert stronger biotic resistance compared to low‐connectance webs. We argue that while these correlations cannot be used to infer a causal link between food web connectance and habitat invasibility, the promising findings beg for further empirical research that deliberately tests for relationships between food web connectance and invasion.  相似文献   

11.
The structure of food webs is frequently described using phenomenological stochastic models. A prominent example, the niche model, was found to produce artificial food webs resembling real food webs according to a range of summary statistics. However, the size structure of food webs generated by the niche model and real food webs has not yet been rigorously compared. To fill this void, I use a body mass based version of the niche model and compare prey-predator body mass allometry and predator-prey body mass ratios predicted by the model to empirical data. The results show that the model predicts weaker size structure than observed in many real food webs. I introduce a modified version of the niche model which allows to control the strength of size-dependence of predator-prey links. In this model, optimal prey body mass depends allometrically on predator body mass and on a second trait, such as foraging mode. These empirically motivated extensions of the model allow to represent size structure of real food webs realistically and can be used to generate artificial food webs varying in several aspects of size structure in a controlled way. Hence, by explicitly including the role of species traits, this model provides new opportunities for simulating the consequences of size structure for food web dynamics and stability.  相似文献   

12.
13.
Integrating ecosystem engineering and food webs   总被引:1,自引:0,他引:1  
Ecosystem engineering, the physical modification of the environment by organisms, is a common and often influential process whose significance to food web structure and dynamics is largely unknown. In the light of recent calls to expand food web studies to include non‐trophic interactions, we explore how we might best integrate ecosystem engineering and food webs. We provide rationales justifying their integration and present a provisional framework identifying how ecosystem engineering can affect the nodes and links of food webs and overall organization; how trophic interactions with the engineer can affect the engineering; and how feedbacks between engineering and trophic interactions can affect food web structure and dynamics. We use a simple integrative food chain model to illustrate how feedbacks between the engineer and the food web can alter 1) engineering effects on food web dynamics, and 2) food web responses to extrinsic environmental perturbations. We identify four general challenges to integration that we argue can readily be met, and call for studies that can achieve this integration and help pave the way to a more general understanding of interaction webs in nature. Synthesis All species are affected by their physical environment. Because ecosystem engineering species modify the physical environment and belong to food webs, such species are potentially one of the most important bridges between the trophic and non‐trophic. We examine how to integrate the so far, largely independent research areas of ecosystem engineering and food webs. We present a conceptual framework for understanding how engineering can affect food webs and vice versa, and how feedbacks between the two alter ecosystem dynamics. With appropriate empirical studies and models, integration is achievable, paving the way to a more general understanding of interaction webs in nature.  相似文献   

14.
The safety of biological control is a contentious issue. We suggest that constructing and analyzing food webs may be a valuable addition to standard biological control research techniques, as they offer a means of assessing the post-release safety of control agents. Using preliminary data to demonstrate the value of food webs in biocontrol programs, we quantified the extent to which a key agent has infiltrated natural communities in Australia and, potentially, impacted on non-target species. Using these data, we also demonstrate how food webs can be used to generate testable hypotheses regarding indirect interactions between introduced agents and non-target species. We developed food webs in communities invaded to varying degrees by an exotic weed, bitou bush, Chrysanthemoides monilifera ssp. rotundata, and a key biocontrol agent for this weed in Australia, the tephritid fly, Mesoclanis polana. Three food webs were constructed during springtime showing the interactions between plants, seed-feeding insects and their parasitoids. One food web was constructed in a plot of native Australian vegetation that was free of bitou bush (‘bitou-free’), another in a plot of Australian vegetation surrounded by an invasion of bitou bush (‘bitou-threatened’) and a third from a plot infested with a monoculture of bitou bush (‘bitou-infested’). The bitou-free web contained 36 species, the bitou-threatened plot 9 species and the bitou-infested web contained 6 species. One native Australian herbivore attacked the seeds of bitou bush. M. polana, a seed-feeding fly, was heavily attacked by native parasitoids, these being more abundant than the parasitoids feeding on the native seed feeders. A surprising result is that none of the three species of native parasitoids reared from M. polana were reared from any of the native herbivores. The food webs revealed how a highly host-specific biocontrol agent, such as M. polana has the potential to change community structure by increasing the abundance of native parasitoids. The webs also suggest that indirect interactions between M. polana and native non-target species are possible, these been mediated by shared parasitoids. The experiments necessary to determine the presence of these interactions are outlined.  相似文献   

15.
1.  Food webs, the set of predator–prey interactions in an ecosystem, are a prototypical complex system. Much research to date has concentrated on the use of models to identify and explain the key structural features which characterize food webs.
2.  These models often fall into two general categories: (i) phenomenological models which are built upon a set of heuristic rules in order to explain some empirical observation and (ii) population-level models in which interactions between individuals result in emergent properties for the food web. Both types of models have helped to uncover how food-web structure is a product of factors such as foraging behaviour, prey selection and species' body sizes.
3.  Historically, the two types of models have followed rather different approaches to the problem. Despite the apparent differences, the overlap between the two styles of models is substantial. Examples are highlighted here.
4.  By paying greater attention to both the similarities and differences between the two, we will be better able to demonstrate the ecological insights offered by phenomenological models. This will help us, for example, design experiments which could validate or refute underlying assumptions of the models. By linking models to data, scaling from individuals to networks, we will be closer to understanding the true origins of food-web structure.  相似文献   

16.
17.
The ecosystem functioning of two marine food webs covering the north‐eastern (Salento) and south‐western (Calabria) sectors of the North‐Western Ionian Sea (NWIS) (Central Mediterranean Sea) was investigated through a food‐web model. Data inputs covered a wide set of ecological information applied to 58 functional groups (FGs). The sum of consumption and the mean predation mortality rate were calculated for benthic, demersal, and pelagic subsystems indicating the predator and prey roles of the FGs. A complex system of energy and biomass exchanges characterized the investigated food webs indicating an important benthic‐pelagic coupling. In the food webs of both areas, the regulation of flows between the benthic‐pelagic coupling seems to occur through the benthopelagic shrimps and the small pelagics due to their wasp‐waist control role. Differences were observed concerning the top predators. Odontocetes play this keystone role in the Salento food web. Anglers, bathyal squids, and sharks assume this functional role in Calabria. The geomorphology and hydrography in the NWIS could affect the biomass and energy exchanges in this coupling. The higher flows of consumption of the benthic system observed in the Calabria food web could be influenced by a widespread presence of canyons along the continental edge which increase the benthic productivity. In contrast, the flows of consumption in the Salento food web seem to be driven by the planktonic productivity supporting the pelagic, benthopelagic, and demersal compartments. This condition could be favored by the large extension of the shelf break zone. The food‐web models realized for the NWIS represent ideal platforms for the development of analysis with dynamic simulations. The comparative analysis of the two food webs by means of the FGs and their functional traits allowed the general pattern of ecosystem structure and functioning in the NWIS to be identified, making it an interesting approach to investigate the marine ecosystem.  相似文献   

18.
Jonathan J. Borrelli 《Oikos》2015,124(12):1583-1588
Food web structure can be characterized by the particular frequencies of subgraphs found within them. Although there are thirteen possible configurations of three species subgraphs, some are consistently over‐represented in empirical food webs. This is a robust pattern that is found across marine, freshwater or terrestrial environments. The preferential elimination of unstable subgraphs during the assembly of the food web can explain the observed pattern. It follows from this hypothesis that there should be differences in the stability of different subgraphs, and that stability should be positively correlated to their frequency in food webs. Using 50 food webs collected from a variety of databases I determined the frequency of each of the thirteen possible subgraphs with respect to randomized webs. Then by numerical simulation I determined the quasi sign stability (QSS) of each subgraph. My results clearly show a positive correlation between QSS and over‐representation of the different subgraphs in empirical food webs.  相似文献   

19.
Ecologists have long debated the properties that confer stability to complex, species‐rich ecological networks. Species‐level soil food webs are large and structured networks of central importance to ecosystem functioning. Here, we conducted an analysis of the stability properties of an up‐to‐date set of theoretical soil food web models that account both for realistic levels of species richness and the most recent views on the topological structure (who is connected to whom) of these food webs. The stability of the network was best explained by two factors: strong correlations between interaction strengths and the blocked, nonrandom trophic structure of the web. These two factors could stabilize our model food webs even at the high levels of species richness that are typically found in soil, and that would make random systems very unstable. Also, the stability of our soil food webs is well‐approximated by the cascade model. This result suggests that stability could emerge from the hierarchical structure of the functional organization of the web. Our study shows that under the assumption of equilibrium and small perturbations, theoretical soil food webs possess a topological structure that allows them to be complex yet more locally stable than their random counterpart. In particular, results strongly support the general hypothesis that the stability of rich and complex soil food webs is mostly driven by correlations in interaction strength and the organization of the soil food web into functional groups. The implication is that in real‐world food web, any force disrupting the functional structure and distribution pattern of interaction strengths (i.e., energy fluxes) of the soil food webs will destabilize the dynamics of the system, leading to species extinction and major changes in the relative abundances of species.  相似文献   

20.
Predicting food web structure in future climates is a pressing goal of ecology. These predictions may be impossible without a solid understanding of the factors that structure current food webs. The most fundamental aspect of food web structure—the relationship between the number of links and species—is still poorly understood. Some species interactions may be physically or physiologically ‘forbidden''—like consumption by non-consumer species—with possible consequences for food web structure. We show that accounting for these ‘forbidden interactions'' constrains the feasible link-species space, in tight agreement with empirical data. Rather than following one particular scaling relationship, food webs are distributed throughout this space according to shared biotic and abiotic features. Our study provides new insights into the long-standing question of which factors determine this fundamental aspect of food web structure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号