首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We investigated how dietary fats and oils of different fatty acid composition influence the seasonal change of body mass, fur colour, testes size and torpor in Djungarian hamsters, Phodopus sungorus, maintained from autumn to winter under different photoperiods and temperature regimes. Dietary fatty acids influenced the occurrence of spontaneous torpor (food and water ad libitum) in P. sungorus maintained at 18°C under natural and artificial short photoperiods. Torpor was most pronounced in individuals on a diet containing 10% safflower oil (rich in polyunsaturated fatty acids), intermediate in individuals on a diet containing 10% olive oil (rich in monounsaturated fatty acids) and least pronounced in individuals on a diet containing 10% coconut fat (rich in saturated fatty acids). Torpor in P. sungorus on chow containing no added fat or oil was intermediate between those on coconut fat and olive oil. Dietary fatty acids had little effect on torpor in animals maintained at 23°C. Body mass, fur colour and testes size were also little affected by dietary fatty acids. The fatty acid composition of brown fat from hamsters maintained at 18°C and under natural photoperiod strongly reflected that of the dietary fatty acids. Our study suggests that the seasonal change of body mass, fur colour and testes size are not significantly affected by dietary fatty acids. However, dietary fats influence the occurrence of torpor in individuals maintained at low temperatures and that have been photoperiodically primed for the display of torpor.Abbreviations BAT brown adipose tissue - bm body mass - FA fatty acid(s) - MR metabolic rate - MUFA monounsaturated fatty acid(s) - PUFA polyunsaturated fatty acid(s) - SFA saturated fatty acid(s) - T a air temperature - T b body temperature - Ts body surface temperature(s) - TNZ thermoneutral zone - UFA unsaturated fatty acid(s)  相似文献   

2.
Our experiments were designed to test the hypotheses that dietary lipids can affect whole-animal physiological processes in a manner concordant with changes in the fluidity of cell membranes. We measured (1) the lipid composition of five tissues, (2) body temperatures selected in a thermal gradient (T(sel)), (3) the body temperature at which the righting reflex was lost (critical thermal minimal [CTMin]), and (4) resting metabolic rate (RMR) at three body temperatures in desert iguanas (Dipsosaurus dorsalis) fed diets enriched with either saturated or unsaturated fatty acids. The composition of lipids in tissues of the lizards generally reflected the lipids in their diets, but the particular classes and ratios of fatty acids varied among sampled organs, indicating the conservative nature of some tissues (e.g., brain) relative to others (e.g., depot fat). Lizards fed the diet enriched with saturated fatty acids selected warmer nighttime body temperatures than did lizards fed a diet enriched with unsaturated fatty acids. This difference is concordant with the hypothesis that the composition of dietary fats influences membrane fluidity and that ectotherms may compensate for such changes in fluidity by selecting different body temperatures. The CTMin of the two treatment groups was indistinguishable. This may reflect the conservatism of some tissues (e.g., brain) irrespective of diet treatment. The RMR of the saturated treatment group nearly doubled between 30 degrees and 40 degrees C. Here, some discrete membrane domains in the lizards fed the saturated diet may have been in a more-ordered phase at 30 degrees C and then transformed to a less-ordered phase at 40 degrees C. In contrast, the RMR of the unsaturated treatment group exhibited temperature independence in metabolic rate from 30 degrees to 40 degrees C. Perhaps the unsaturated diet resulted in membranes that developed a higher degree of disorder (i.e., a certain phase) at a lower temperature than were membranes of lizards fed the saturated diet. Our study demonstrates links between dietary fats and whole-animal physiology; however, the mechanistic basis of these links, and the general knowledge of lipid metabolism in squamate reptiles, remain poorly understood and warrant further study.  相似文献   

3.
During energy-demanding periods of the annual cycle such as migration or during cold days in winter, birds store fat comprised mostly of 16- or 18-carbon unsaturated fatty acids. In such situations, birds may feed selectively on foods with specific fatty acids that enable efficient fat deposition. We offered wild-caught yellow-rumped warblers Dendroica coronata paired choices between semi-synthetic diets that differed only in their fatty acid composition. Warblers strongly preferred diets containing long-chain (18:1; carbon atoms:double bonds) unsaturated, unesterified fatty acids to diets containing long-chain saturated, unesterified fatty acids (18:0) and they preferred diets containing mono-unsaturated fats (18:1) to diets containing poly-unsaturated fats (18:2). The preference for diets containing long-chain unsaturated fatty acids to diets containing long-chain saturated fatty acids was consistent in birds tested one week after capture at 21°C, one month after capture when cold-acclimated (1°C), and six weeks after capture at 21°C. Birds acclimated to a diet with 50% of the fat comprised of unesterified stearic acid (18:0) lost mass and reduced their food intake when we reduced ambient temperature from 21°C to 11°C over three days. We conclude that especially in energy-demanding situations there are limits to the yellow-rumped warblers' ability to assimilate some long-chain saturated fatty acids and that this digestive constraint can explain in part why yellow-rumped warblers prefer diets containing long-chain unsaturated fatty acids to diets containing long-chain saturated fatty acids.  相似文献   

4.
Heterothermic rodents increase self-selection of diets rich in polyunsaturated fatty acids (PUFAs) when exposed to cold, short days, or short-day melatonin profiles, and Djungarian hamsters (Phodopus sungorus) do so in long days in response to cold exposure alone. To determine whether Djungarian hamsters are also capable of selecting a thermal environment in response to dietary lipid composition, continuously normothermic hamsters were fed either a PUFA-rich diet or a diet rich in saturated fatty acids (SFAs) for 6-10 wk and given a choice of thermal environments. As predicted, SFA-fed hamsters were more likely than PUFA-fed hamsters to occupy the single heated corner of their cage ([Formula: see text]) and were most likely to show this diet-related difference in behavior when T(a) fell within the thermal neutral zone. Respirometry revealed no effect of diet on whole-animal or mass-specific resting metabolic rate or on lower critical temperature. The results are more consistent with the homeoviscous adaptation hypothesis, which predicts that organisms should make physiological and/or behavioral adjustments that preserve membrane fluidity within a relatively small range, than with the membrane pacemaker hypothesis, which predicts that high PUFA content in membrane phospholipids should increase basal metabolic rate.  相似文献   

5.
Fatty acid composition of body fat in birds often differs between bird species and between seasons, and changes in diet may be responsible for this variation. We tested two related hypotheses using Red-eyed Vireos, a long-distance migratory songbird: (1) birds prefer diets with certain fatty acids, and (2) fatty acid composition of the diet primarily determines the composition of lipid reserves. During paired-choice experiments, vireos preferred semi-synthetic diets with triolein (81% digestive extraction efficiency) over diets with tristearin (54% digestive extraction efficiency) and, in general, ate more when offered diets with unsaturated fats compared to saturated fats. These results demonstrate that vireos can discriminate between diets differing only in fatty acid composition and prefer diets with long-chain unsaturated fatty acids. When vireos were fed one of two diets for 1 month, the primary fatty acids in each diet also predominated in the tissues of birds fed each diet. However, some fatty acids that were absent in the diet occurred in bird tissues (e.g., 22:4, 22:5) suggesting that selective metabolism of fatty acids along with diet composition determine the fatty acid composition of lipid reserves in migratory birds.  相似文献   

6.
Diets supplemented with high levels of either saturated fatty acids or unsaturated fatty acids were fed to adult rats for a period of 9 weeks and changes in the liver mitochondrial membrane phospholipid fatty acid composition and thermal behaviour of succinate: cytochrome c reductase were determined. The dietary treatment induced a change in the omega 6 to omega 3 unsaturated fatty acid ratio in the membrane lipids, with the ratio being highest with the unsaturated fatty acid and lowest with the saturated fatty acid diet. Arrhenius plots of succinate: cytochrome c reductase activity exhibited differences in both critical temperature (Tf) and Arrhenius activation energy (Ea) depending on the type of dietary treatment. The Tf was elevated from 23 degrees C in control to 32 degrees C in the saturated fatty acid-supplemented group. No significant effect on the Tf was observed in the unsaturated fatty acid-supplemented group however higher Ea values were observed due to the unsaturated fatty acid diet. The changes in succinate: cytochrome c reductase are probably due to changes in the lipid-protein interactions in the membrane, induced by the dietary lipid supplementation.  相似文献   

7.
Hepatic cholesterol synthesis was studied in rats after consuming diets of varying neutral lipid and cholesterol content. Cholesterol synthesis was evaluated by measuring 3-hydroxy-3-methylglutaryl-CoA reductase and by determining the rate of 3H-labeled sterol production from [3H]mevalonate. Results were correlated with sterol balance data and hepatic lipid content. Hepatic cholesterol synthesis was relatively great when cholesterol was excluded from the diet. The source of neutral dietary lipids, saturated vs. unsaturated, produced no change in hepatic sterol synthesis. Values for fecal sterol outputs and hepatic cholesterol levels were also similar in rats consuming either saturated or unsaturated fats. When 1% cholesterol was added to the diet, hepatic cholesterol synthesis was suppressed but the degree of suppression was greater in rats consuming unsaturated vs. saturated fats. This was associated with greater accumulation of cholesterol in livers from rats consuming unsaturates and a reduction in fecal neutral sterol output in this group as opposed to results from rats on saturated fats. Cholesterol consumption also altered the fatty acid composition of hepatic phospholipids producing decreases in the percentages of essential polyunsaturated fatty acids. It is concluded that dietary cholesterol alters cholesterol and fatty acid metabolism in the liver and that this effect is enhanced by dietary unsaturated fats.  相似文献   

8.
Fatty acids newly synthesized by Brevibacterium ammoniagenes grown at different temperatures were analyzed. The assay temperature, not the growth temperature, was found to be the major factor affecting the unsaturated/saturated ratio of newly synthesized fatty acids in logarithmic-phase cells. However, in the stationary-phase cells the growth temperature also affected the product profile significantly; cells grown at 7 degrees C produced relatively more oleate and stearate and less palmitate and hexadecenoate when shifted up to 37 degrees C than did cells grown and assayed at 37 degrees C. The unsaturated/saturated ratio as well as average chain length of fatty acids also varied along with the progress of isothermal growth phase. These changes in fatty acid product profiles observed in vivo could be mimicked in vitro assays of the fatty acid synthetase by changing malonyl-CoA concentrations. Our results suggest that the malonyl-CoA concentration is a factor which, in addition to temperature, determines growth-phase-dependent and growth-temperature-dependent changes in the unsaturated/saturated ratios of fatty acids.  相似文献   

9.
The composition of tissue and membrane fatty acids in ectothermic vertebrates is influenced by both temperature acclimation and diets. If such change in body lipid composition and thermal physiology were linked, a diet-induced change in body lipid composition should result in a change in thermal physiology. We therefore investigated whether the selected body temperature of the agamid lizardAmphibolurus nuchalis (body mass 20 g) is influenced by the lipid composition of dietary fatty acids and whether diet-induced changes in thermal physiology are correlated with changes in body lipid composition. The selected body temperature in two groups of lizards was indistinguishable before dietary treatments. The selected body temperature in lizards after 3 weeks on a diet rich in saturated fatty acids rose by 2.1 °C (photophase) and 3.3 °C (scotophase), whereas the body temperature of lizards on a diet rich in unsaturated fatty acids fell by 1.5 °C (photophase) and 2.0 °C (scotophase). Significant diet-induced differences were observed in the fatty acid composition of depot fat, liver and muscle. These observations suggest that dietary lipids may influence selection of body temperature in ectotherms via alterations of body lipid composition.Abbreviations bm body mass - FA fatty acid(s) - MUFA monounsaturated fatty acids - PUFA polyunsaturated fatty acids - SFA saturated fatty acids - T a air temperature - T b body temperature - UFA unsaturated fatty acids  相似文献   

10.
Hepatic 3-hydroxy-3-methylglutaryl CoA reductase activity in hamsters given a fat-free high-glucose diet for 21 days was approximately 20 times higher than that in chow-fed hamsters. The increase in enzyme activity by dietary glucose was affected by saturated or unsaturated fatty acids or cholesterol added to the high-glucose diet. Ethyllinoleate or ethyloleate, added to the diet at a concentration of 5%, suppressed the increase in the enzyme activity. In contrast, addition of ethylpalmitate to the diet further stimulated the increase in the enzyme activity. Addition of 2% cholesterol to the high-glucose diet moderately suppressed, and addition of both cholesterol and ethyllinoleate completely prevented, the increase in the enzyme activity. The enzyme activity closely correlated with the incidence of formation of cholesterol gallstones but not with the liver cholesterol level. Marked increase in the enzyme activity was observed by feeding the high-glucose diet to starved hamsters for even a short period. On the third day after feeding was resumed, the enzyme activity was increased 500-fold compared to that during starvation. This increase in the enzyme activity was also reduced by dietary unsaturated fatty acid esters and stimulated by a dietary saturated fatty acid ester.  相似文献   

11.
The effects of irradiation doses of 200-1000 krad on the fatty acid compositions of saturated and unsaturated natural food fats have been studied. Lard, coconut oil, corn oil, methyl linoleate and herring oil have been analysed before and after irradiation for lipid peroxide content and fatty acid composition. The effects of storage under varied conditions after irradiation have also been investigated. Irradiation doses of 200-1000 krad had little effect on the fatty acid compositions of saturated fats (lard and coconut oil) or of fats with a high antioxidant content (corn oil) but caused destruction of 98 per cent of the highly unsaturated acids (18: 4,20 :5,22 : 6) and 46 per cent of the diene acids (18:2) in herring oil. The destruction of the polyunsaturated fatty acids increased with increasing storage temperature and storage time. The destruction of polyunsaturated fatty acids is accompanied by an increase in lipid peroxide formation. It is considered that changes in fatty acid composition in natural foods after irradiation are important in consideration of the use of irradiation for food preservation.  相似文献   

12.
Escherichia coli K12 cells grown at higher temperatures and then subjected to lower temperatures produce fatty acids with higher unsaturated/saturated ratios than cells completely adapted to the lower temperatures (Okuyama et al. (1982) J. Biol. Chem. 257, 4812-4817). This hyper-response was not an artefact of chloramphenicol treatment and was observed when the shift-down was more than 20 degrees C in the cells grown at either 40 degrees C or 35 degrees C. In contrast, cells grown at either 25 degrees C or 30 degrees C showed no appreciable hyper-response in terms of unsaturated/saturated ratio on temperature shifts to as low as 10 degrees C. By combining shift-down and shift-up experiments, we could show the presence of different types of temperature dependency in the fatty acid-synthesizing systems of cells grown at various temperatures. Contrary to wild-type cells which synthesized mainly cis-vaccenate on down-shift to 10 degrees C, a mutant strain lacking beta-ketoacyl acyl-carrier protein synthase II synthesized more palmitoleate (16:1) and less palmitate at 10 degrees C than at 40 degrees C. The average chain lengths of saturated and unsaturated fatty acids also changed, but differently, between the mutant and wild-type cells on shifts of temperature. Thus, the mutant strain has a temperature-dependent fatty acid-synthesizing system qualitatively different from that seen in a wild-type strain.  相似文献   

13.
Summary Dieary lipids strongly influence the pattern of torpor and the body lipid composition of mammalian hibernators. The object of the present study was to investigate whether these diet-induced physiological and biochemical changes also occur in species that show shallow, daily torpor. Deer mice, Peromyscus maniculatus, were fed with rodent chow (control diet) or rodent chow with either 10% sunflower seed oil (unsaturated diet) or 10% sheep fat (saturated diet). Animals on the unsaturated diet showed a greater occurrence of torpor (80–100% vs 26–43%), longer torpor bouts (4.5 vs 2.25 h), a lower metabolic rate during torpor (0.96 vs 2.25 ml O2·g-1·h-1), and a smaller loss of body mass during withdrawal of food (2.35 vs 3.90 g) than animals on the saturated diet; controls were intermediate. These diet-induced physiological changes were associated with significant alterations in the fatty acid composition of depot fat, leg muscle and brain total lipids, and heart mitochondrial phospholipids. Significant differences in the total unsaturated fatty acid (UFA) content between animals on saturated and unsaturated diet were observed in depot fat (55.7% vs 81.1%) and leg muscle (56.4% vs 72.1%). Major compositional differences between diet groups also occurred in the concentration of n6 and/or n3 fatty acids of brain and heart mitochondria. The study suggests that dietary lipids may play an important role in the seasonal adjustment of physiology in heterothermic mammals.Abbreviations EDTA ethylenediaminetetra-acetic acid - HEPES N-2 hydroxyethylpiperazine-N1-2-ethanesulphonic acid - MUFA monounsaturated fatty acids - PUFA polyunsaturated fatty acids - RMR Testing metabolic rate - SD standard deviation - SFA saturated fatty acids - SNK Student-Newman-Keuls test - T1 air temperature - Tb body temperature - UFA unsaturated fatty acids - rate of oxygen consumption Dedicated to the late John K. Raison  相似文献   

14.
The olfactory (non-myelinated) and trigeminal (myelinated) nerve axons of garfish show changes in phospholipid fatty acid composition when these fish are acclimated to temperatures ranging from 11 to 35 degrees C. Myelinated and non-myelinated nerve axons show similar changes in the percent saturated, percent 16-carbon, percent 18-carbon, and percent 20-carbon-and-greater unsaturated fatty acids. The observed changes in phospholipid fatty acid composition fit a linear regression model suggesting a gradual change in axonal phospholipid fatty acid composition with temperature. The temperature-induced changes in garfish nerve phospholipid fatty acid composition are consistent with the general observation of increased saturated fatty acid residues in plasma membrane phospholipids of organisms acclimated to higher environmental temperatures. The garfish data are similar to data previously obtained for goldfish tissues and Tetrahymena.  相似文献   

15.
The saturated/unsaturated fatty acid ratio of Escherichia coli 15T- decreases almost threefold as growth temperature decreases from 43 to 27 degrees C, wheras the ratio of a fast-growing mutant derived from 15T- changes only half as much. Strain 15T- experiences a 2.4-fold change in doubling time across this temperature range, but doubling time in the mutant changes 3.3-fold.  相似文献   

16.
1. Differential sanning calorimetry and light-scattering have been used to investigate temperature-dependent transitions in low-density lipoprotein and in lipids from hens' egg yolk. Yolks of different fatty acid composition were obtained by varying the dietary lipid and by adding methyl sterculate to the hen's diet. 2. Lipoprotein solutions in 50 percent glycerol/water gave characteristic melting curves between -25 degrees C and 50 degrees C, and on cooling showed increases in light-scattering between 10 degrees C and -20 degrees C. The temperatures at which major changes occurred depended on the proportions of saturated and unsaturated fatty acids. 3. The thermal transitions in the intact lipoprotein in glycerol solution were reversible, but with marked hysteresis. Lipid extracted from the lipoprotein did not show temperature hystersis but the transition heats and melting curves similar to those of the intact lipoprotein. The results support the hypothesis of a "lipid-core" structure for low-density lipoproteins. 4. Scanning calorimetry of egg-yolk lecithins indicated a strong dependence of transition temperature on water content in the rane 3 percent-20 percent water. A rise in the mid-temperature of the liquid-crystalline to gel transition as the water content is lowered on freezing may be the primary event in the irreversible gelation of egg yolk and aggregation of lipoprotein.  相似文献   

17.
Summary In Djungarian hamsters,Phodopus sungorus, daily torpor occurs spontaneously in winter in the presence of abundant food, but individuals show different tendencies to enter torpor. The results show that in hamsters fed rodent chow ad libitum individual torpor frequencies were negatively correlated with both food consumption and the amount of nocturnal locomotor activity. Provision of cafeteria diet at ambient temperatures below thermoneutrality significantly lowered torpor frequencies and induced body weight gains. However, in hamsters fed seeds with a high fat or carbohydrate content (i.e., sunflower seeds or wheat, respectively) neither a decrease of torpor frequencies nor an increase of body weights was observed. The results suggest that in Djungarian hamsters, daily torpor is an intrinsic component of energy balance control and is functionally linked to individual physiological adjustments of food consumption and foraging activity. In addition, the employment of daily torpor can be affected by social interactions, since the long-term pattern of alternations between torpor and normothermia was found to be synchronized in breeding pairs caged together.Abbreviations T a ambient temperature - DIT diet-induced thermogenesis  相似文献   

18.
The effects of artificial photoperiod, temperature, and long-term testosterone treatment on testicular luteinizing hormone (LH) binding were studied in adult male Djungarian hamsters. In hamsters transferred to long-day (LD; 16 hr light, 8 hr dark) photoperiod 8 weeks after adaptation in short-day (SD; 8 hr light, 16 hr dark) photoperiod of 25 degrees C, testicular growth was associated with an increase in the total LH binding per two testes and a decrease in LH binding per unit testicular weight. Plasma testosterone levels reached a peak 47 days after transfer to LD and tended to decrease thereafter, while the testes continued growing. In contrast, when hamsters reared under LD conditions at 25 degrees C for 12 weeks were transferred to SD, testicular regression was associated with a decrease in plasma testosterone and the total LH binding per two testes and an increase in LH binding per unit testicular weight. A significant decrease in LH binding per unit weight compared to SD controls was observed in those hamsters exposed to SD with continuous testosterone treatment. The testosterone treatment tended to induce decrease in the total LH binding. Scatchard plot analyses of the binding suggested that changes in LH binding were due to changes in the number of binding sites. When sexually mature male hamsters were subjected for 8 weeks to two different ambient temperatures (7 degrees C and 25 degrees C) and photoperiods (LD and SD), the difference between the two temperature groups was statistically not significant regarding the weights of testes, epididymides, and prostates; plasma testosterone levels; and LH binding in either LD or SD group. These results suggest that photoperiod is a more important environmental factor than temperature for the regulation of testicular activity and LH receptors and that testosterone reduces the number of LH receptors per unit testicular weight in adult male Djungarian hamsters.  相似文献   

19.
The addition of normal alcohols in the series n-butanol to n-octanol to cultures of Escherichia coli ML308 grown on defined or lipid-free medium (at 17, 27, and 37 degrees C) caused an alteration in the fatty acid composition of this organism: the ratio of saturated to unsaturated fatty acids increased. Changes in the relative quantities of individual fatty acid species elicited by increasing concentrations of these alcohols were as follows: (i) myristic acid remained constant: (ii) palmitic acid increased; and (iii) the combined amount of palmitoleic plus cis-methylene hexadecanoic acids changed in a way which was reflected inversely by changes in the amount of cis-vaccenic acid. Comparable changes were not observed when cells were grown in the presence of n-nonanol and n-decanol in the concentration range tested. The changes observed upon addition of normal alcohols (n-butanol to n-octanol) paralleled, in part, the alterations in fatty acid composition observed when growth temperature was increased.  相似文献   

20.
1. The fatty acid composition of mitochondrial membranes from sheep and rats was altered by feeding these animals diets which were rich in unsaturated fatty acids. Changes in membrane lipid fluidity resulting from the altered membrane lipid composition were assessed by determining the upper temperature limit of the disorder-order transition (Tf) and the Arrhenius activation energy (Ea) of succinate oxidase. 2. After feeding the unsaturated fatty acid-rich diet to sheep the Ea, in the temperature range above Tf, increased from 8 to 63 kJ . mol-1 while Tf decreased from 32 to 15 degrees C. Rats fed an unsaturated fatty acid-rich diet exhibited an increase in Ea from 17 to 63 kJ . mol-1 and a decrease in Tf from 23 to 4 degrees C. 3. This decrease in Tf was related to an increase in the ratio of linoleic acid to stearic acid in the membrane lipid. Tf was not related to the proportion of unsaturated fatty acids in the membrane lipids, although an increase in unsaturation usually led to a decrease in Tf. 4. The results show that membrane lipid fluidity has a direct influence on the conformation of the active site of some membrane-associated enzymes, with the result that such enzymes display a higher Ea when the membrane lipids are comparatively more fluid. The increase in Ea of membrane-associated enzymes which accompanies changes in the physical state of membrane suggests that some proteins may phase separate with the more fluid lipids at low temperatures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号