首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 8 毫秒
1.
Ferredoxin II from Desulphovibrio gigas is a tetrameric protein containing a novel iron-sulphur cluster consisting of three iron atoms. The low-temperature magnetic circular dichroism (MCD) spectra of the oxidized and dithionite-reduced forms of ferredoxin II have been measured over the wavelength range approx. 300-800 nm. Both oxidation levels of the cluster are shown to be paramagnetic, although only the oxidized form gives an EPR signal. MCD magnetization curves have been constructed over the temperature range approx. 1.5-150 K and at fields between 0 and 5.1 Tesla. The curve for the oxidized protein can be fitted to a ground state of spin S = 1/2 with an isotropic g factor of 2.01. There is evidence for the thermal population of a low-lying electronic state above 50 K. The reduced protein gives a distinctive set of magnetization curves that are tentatively assigned to a ground state of S = 2, with a predominantly axial zero-field distortion that leaves the doublet Ms = +/-2 lowest in energy. The zero-field components have a maximum energy spread of approx. 15 cm-1. which places an upper limit of 4 cm-1 on the axial zero-field parameter D. The MCD spectra of the oxidized and reduced forms of the cluster are quite distinctive from one another. The spectra of the oxidized state are also different from those of oxidized high-potential iron protein from Chromatium and should provide a useful criterion for distinguishing between four- and three-iron clusters in their highest oxidation levels.  相似文献   

2.
3.
Summary Ferredoxin fromClostridium pasteurianum substituted with two Co atoms did not give any cobalt EPR signal at 8 K as isolated, but upon reduction with sodium dithionite, a broad signal appeared withg values that indicate highspin (S=3/2) Co(II). These signals were distinct from Co(II)-dithiothreitol signals, and disappeared upon reoxidation with air. Under anaerobic incubation of apoferredoxin with Co(II), a green derivative showed a visible spectrum typical of tetrahedral Co(Il)-thiolate coordination, which shifted dramatically upon exposure to air. The1H-NMR spectrum of the aerobically isolated protein is reported at 300 MHz; magnetic susceptibility measurements were indicative of a diamagnetic species. These spectroscopic studies indicate that Co(II)-substituted ferredoxin is oxidized to low-spin Co(III)-ferredoxin in the presence of sulfide and oxygen. The diamagnetic Co(III) state could reversibly be reduced to highspin Co(II) by sodium dithionite.  相似文献   

4.
Spectroscopic studies on spinach ferredoxin and adrenodoxin   总被引:5,自引:0,他引:5  
  相似文献   

5.
Dg ferredoxin gene was cloned using the polymerase chain reaction (PCR), inserted into vector pT7-7, and overexpressed in Escherichia coli (E. coli) grown in aerobic media. The recombinant protein is a dimer and contains a [3Fe-4S] cluster per monomer. EPR and (1)H NMR data of recombinant and wild-type protein are compared.  相似文献   

6.
The ultraviolet visible, and near infrared spectrum of a two-iron protein from Desulphovibrio gigas, a new type of non-haem iron protein lacking labile sulphide, is compared with that of D. gigas rubredoxin. The charge transfer band maxima of rubredoxin at 495 and 565 nm are less separated in the new protein implying a higher symmetry of the two iron centres. The existence of a spin-spin interaction between the two iron centres in the new protein is suggested by the magnetic susceptibility measurements of the oxidized and reduced states of both proteins, which gives a smaller value per iron centre for the new protein. The oxidized form of the two iron-protein has a complex EPR spectrum with signals at g values of 8.97, 7.72, 5.73, 4.94, and 1.84. An EPR titration gives a value of --35 +/- 15 mV for the two signals at g values of 7.72 and 5.73. Rubredoxin has the characteristic spectrum of rubredoxins with two signals at g values of 9.4 and 4.27.  相似文献   

7.
Thermococcus litoralis (Tl) have been investigated by using the combination of EPR and variable-temperature magnetic circular dichroism (VTMCD) spectroscopies. The results reveal a [Fe4S4]2+,+ cluster (E m=−368 mV) that undergoes redox cycling between an oxidized form with an S=0 ground state and a reduced form that exists as a pH- and medium-dependent mixture of S=3/2 (g=5.4; E/D=0.33) and S=1/2 (g=2.03, 1.93, 1.86) ground states, with the former dominating in the presence of 50% (v/v) glycerol. Three distinct types of W(V) EPR signals have been observed during dye-mediated redox titration of as-isolated Tl FOR. The initial resonance observed upon oxidation, termed the “low-potential” W(V) species (g=1.977, 1.898, 1.843), corresponds to approximately 25–30% of the total W and undergoes redox cycling between W(IV)/W(V) and W(V)/W(VI) states at physiologically relevant potentials (E m=−335 and −280 mV, respectively). At higher potentials a minor “mid-potential” W(V) species, g=1.983, 1.956, 1.932, accounting for less than 5% of the total W, appears with a midpoint potential of −34 mV and persists up to at least +300 mV. At potentials above 0 mV, a major “high-potential” W(V) signal, g=1.981, 1.956, 1.883, accounting for 30–40% of the total W, appears at a midpoint potential of +184 mV. As-isolated samples of Tl FOR were found to undergo an approximately 8-fold enhancement in activity on incubation with excess Na2S under reducing conditions and the sulfide-activated Tl FOR was partially inactivated by cyanide. The spectroscopic and redox properties of the sulfide-activated Tl FOR are quite distinct from those of the as-isolated enzyme, with loss of the low-potential species and changes in both the mid-potential W(V) species (g=1.981, 1.950, 1.931; E m=−265 mV) and high-potential W(V) species (g=1.981, 1.952, 1.895; E m=+65 mV). Taken together, the W(V) species in sulfide-activated samples of Tl FOR maximally account for only 15% of the total W. Both types of high-potential W(V) species were lost upon incubation with cyanide and the sulfide-activated high-potential species is converted into the as-isolated high-potential species upon exposure to air. Structural models are proposed for each of the observed W(V) species and both types of mid-potential and high-potential species are proposed to be artifacts of ligand-based oxidation of W(VI) species. A W(VI) species with terminal sulfido or thiol ligands is proposed to be responsible for the catalytic activity in sulfide-activated samples of Tl FOR. Received: 9 September 1999 / Accepted: 17 February 2000  相似文献   

8.
9.
Desulphoviridin in the oxidized state showed EPR signals around g = 6, consistent with the sirohaem being in the high-spin ferric state. This was unreactive with sulphite, sulphide or cyanide; but readily reduced by methyl viologen. When the enzyme was treated with Na2S2O4 the sirohaem was slowly reduced and a spectrum of a reduced iron-sulphur cluster at g = 2.07, 1.93, 1.91 appeared over the course of an hour. An intermediate in this reaction was indicated by a free radical signal which appeared within seconds and then gradually disappeared. On treatment with nitrite and reduced methyl viologen, the enzyme gave a spectrum of a nitroxide derivative similar to that seen with plant nitrite reductase. The midpoint reduction potential of the haem was estimated to be -310 mV or less. The iron-sulphur cluster has a very low potential, being only reduced in the presence of free Na2S2O4 around -560 mV. Desulphoviridin can be classed with sirohaem-containing iron-sulphur proteins.  相似文献   

10.
The tetrameric form of a Desulfovibrio gigas ferredoxin, named Fd II, mediates electron transfer between cytochrome c3 and sulfite reductase. We have studied two stable oxidation states of this protein with M?ssbauer spectroscopy and electron paramagnetic resonance. We found 3 iron atoms/monomer and a spin concentration of 0.9 spins/monomer for the oxidized protein. Taken together, the EPR and M?ssbauer data demonstrate conclusively the presence of a spin-coupled structure containing 3 iron atoms and labile sulfur. The M?ssbauer data show also that this metal center is structurally similar, if not identical, with the low potential center of a ferredoxin from Azotobacter vinelandii, a novel cluster described recently (Emptage, M.H., Kent, T.A., Huynh, B.H., Rawlings, J., Orme-Johnson, W.H., and Münck, E. (1980) J. Biol. Chem. 255, 1793-1796).  相似文献   

11.
12.
Two crystal forms of Azotobacter vinelandii (4Fe-4s)2 ferredoxin I (Fd I) have been grown which are suitable for high resolution x-ray diffraction studies. Tetragonal crystals grow as square bipyramids from ammonium sulfate and Tris buffer using a temperature gradient. The space group is P41212 (or P43212) with a = 55.3, c = 95.9 A and 1 molecule/asymmetric unit. Triclinic crystals grow as plates or laths from ammonium sulfate and phosphate buffer at constant temperature. The space group is P1 with a = 46.8, b = 58.7, c = 64.3 A, alpha = = 105 degrees 05 min, beta = 82 degrees 30 min, gamma = 110 degrees 30 min and 4 or 5 molecules/unit cell. Both crystal forms are stable to x-ray irradiation and diffract beyond 3.0 A resolution.  相似文献   

13.
The crystal structures of two active forms of dissimilatory sulphite reductase (Dsr) from Desulfovibrio gigas, Dsr‐I and Dsr‐II, are compared at 1.76 and 2.05 Å resolution respectively. The dimeric α2β2γ2 structure of Dsr‐I contains eight [4Fe–4S] clusters, two saddle‐shaped sirohaems and two flat sirohydrochlorins. In Dsr‐II, the [4Fe–4S] cluster associated with the sirohaem in Dsr‐I is replaced by a [3Fe–4S] cluster. Electron paramagnetic resonance (EPR) of the active Dsr‐I and Dsr‐II confirm the co‐factor structures, whereas EPR of a third but inactive form, Dsr‐III, suggests that the sirohaem has been demetallated in addition to its associated [4Fe–4S] cluster replaced by a [3Fe–4S] centre. In Dsr‐I and Dsr‐II, the sirohydrochlorin is located in a putative substrate channel connected to the sirohaem. The γ‐subunit C‐terminus is inserted into a positively charged channel formed between the α‐ and β‐subunits, with its conserved terminal Cysγ104 side‐chain covalently linked to the CHA atom of the sirohaem in Dsr‐I. In Dsr‐II, the thioether bond is broken, and the Cysγ104 side‐chain moves closer to the bound sulphite at the sirohaem pocket. These different forms of Dsr offer structural insights into a mechanism of sulphite reduction that can lead to S3O62?, S2O32? and S2?.  相似文献   

14.
A NMR and magnetic susceptibility study of the oxidized and reduced states of three different oligomers (forms) of a [4Fe-4S] ferredoxin protein from Desulphovibrio gigas, FdI, FdI′, and FdII was carried out. FdI and FdI′ are different trimers and FdII a tetramer of the same basic subunit. A probable assignment of the contact shifted resonances is indicated. Since the temperature dependences of the contact shifted resonances associated with each [4Fe-4S] are not all similar a delocalized model for the spin densities on the 4Fe does not apply. The exchange rate between oxidized and reduced states is slow on the NMR time scale. The three oligomers are not magnetically equivalent. Using the “three state hypothesis” terminology it is shown that FdIox is predominantly in the C2? state and changes upon reduction into the C3? state, while FdIIox is in the C? state and changes into the C2? state. FdI′ does not easily fit into this classification. This study shows a similarity of magnetic behaviour between FdI and bacterial ferredoxins (e.g. Bacillus polymyxa) and between FdII and HiPIP from Chromatium sp.. The influence of the quaternary structure on the stabilization of the different oxidation states of ferredoxins as well as on their redox potentials is discussed.  相似文献   

15.
16.
The crystal structure of ferredoxin II from Desulfovibrio gigas has been determined using phasing from anomalous scattering data at a resolution of 1.7 A and refined to an R-factor of 0.157. The molecule has an overall chain fold similar to that of the other bacterial ferredoxins of known structure. The molecule contains a single 3Fe-4S cluster with geometry indistinguishable from the 4Fe-4S clusters, and a disulfide bond near the site corresponding to the position of the second cluster of two-cluster ferredoxins. The cluster is bound by cysteine residues 8, 14 and 50. The side-chain of cysteine 11 extends away from the cluster, but could rotate to become the fourth cysteine ligand in the four-iron form of the molecule given a local adjustment of the polypeptide chain. This residue is modified, however, by what appears to be a methanethiol group. There are a total of eight NH . . . S bonds to the inorganic and cysteine sulfur atoms of the Fe-S cluster. There is an additional residue found that is not reported for the chemical sequence: according to the electron density a valine residue should be inserted after residue 55.  相似文献   

17.
Hemocyanin was prepared from an Asian horseshoe crab, Tachypleus gigas. The hemocyanin was found to be similar to Limulus hemocyanin in the size of native molecules (48-mer) and dissociation under nonphysiological conditions. It also showed the reverse Bohr effect. The O2 affinity of the dissociated monomer was higher than that of the native molecule. Equilibrium O2 binding to T. gigas hemocyanin was studied with special attention to the effect of inorganic ions. Neutral salts decreased the O2 affinity of the associated hemocyanin. In the presence of CaCl2 the strength of the effect was in the order of Na+ greater than Cs+ not equal to K+ for the series of chlorides, and Br- not equal to Cl- greater than SO4(2-) for the series of Na+ salts. A high concentration of CaCl2 (50-500 mM) considerably increased the Hill coefficient. The O2 binding data obtained under various ionic conditions were analyzed by model fitting. The two-state concerted model could be fitted to the data, if the ligand affinity of the states was allowed to vary. Statistical tests of the fitting showed that the hexameric structure can be regarded as the functional unit under physiological conditions.  相似文献   

18.
19.
20.
The use of standard 2D NMR experiments in combination with 1D NOE experiments allowed the assignment of 51 of the 58 spin systems of oxidised [3Fe-4S] ferredoxin isolated from Desulfovibrio gigas. The NMR solution structure was determined using data from 1D NOE and 2D NOESY spectra, as distance constraints, and information from the X-ray structure for the spin systems not detected by NMR in torsion angle dynamics calculations to produce a family of 15 low target function structures. The quality of the NMR family, as judged by the backbone r.m.s.d. values, was good (0.80?Å), with the majority of φ/ψ angles falling within the allowed region of the Ramachandran plot. A comparison with the X-ray structure indicated that the overall global fold is very similar in solution and in the solid state. The determination of the solution structure of ferredoxin II (FdII) in the oxidised state (FdIIox) opens the way for the determination of the solution structure of the redox intermediate state of FdII (FdIIint), for which no X-ray structure is available.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号