首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Background  

Yersinia pestis, the causative agent of plague, is a pathogen with a tremendous ability to cause harm and panic in populations. Due to the severity of plague and its potential for use as a bioweapon, better preventatives and therapeutics for plague are desirable. Subunit vaccines directed against the F1 capsular antigen and the V antigen (also known as LcrV) of Y. pestis are under development. However, these new vaccine formulations have some possible limitations. The F1 antigen is not required for full virulence of Y. pestis and LcrV has a demonstrated immunosuppressive effect. These limitations could damper the ability of F1/LcrV based vaccines to protect against F1-minus Y. pestis strains and could lead to a high rate of undesired side effects in vaccinated populations. For these reasons, the use of other antigens in a plague vaccine formulation may be advantageous.  相似文献   

2.

Background  

The Gram-negative bacterium Yersinia pestis is the causative agent of the bubonic plague. Efficient iron acquisition systems are critical to the ability of Y. pestis to infect, spread and grow in mammalian hosts, because iron is sequestered and is considered part of the innate host immune defence against invading pathogens. We used a proteomic approach to determine expression changes of iron uptake systems and intracellular consequences of iron deficiency in the Y. pestis strain KIM6+ at two physiologically relevant temperatures (26°C and 37°C).  相似文献   

3.
The nucleotide sequences of the Tc’s insect toxin complex genes have been analyzed in 18 natural strains of the main and non-main subspecies of Yersinia pestis isolated in different natural foci in the Russian Federation, as well as neighboring and more remote countries, as compared to the data on Y. pestis and Y. pseudotuberculosis strains stored in the NCBI GenBank database. The nucleotide sequences of these genes in plague agent strains have been found to be highly conserved, in contrast to those of the pseudotuberculosis agent. The sequences of two genes, tcaC and tccC2, have been found to be almost identical in Y. pestis strains, whereas other three genes (tcaA, tcaB, and tccC1) contain a few mutations, which, however, are not common for all strains of the plague agent. Exceptions are only strains of the Y. pestis biovar orientalis, whose tcaB gene is in a nonfunctional state due to a nucleotide deletion. The results suggest that the formation of the species Y. pestis as an agent of a natural focal infection with a transmissive mechanism has not resulted in degradation of the Tc’s complex genes. Instead, these genes are likely to have been altered as the plague agent have been adapting to the new environment.  相似文献   

4.

Background  

Yersinia pestis, the aetiological agent of plague, has been well defined genotypically on local and worldwide scales. In November 2005, five cases of severe pneumonia of unknown causes, resulting in two deaths, were reported in Yulong, Yunnan province. In this study, we compared Y. pestis isolated from the Yulong focus to strains from other areas.  相似文献   

5.
6.

Background

Plague is an ectoparasite-borne deadly infection caused by Yersinia pestis, a bacterium classified among the group A bioterrorism agents. Thousands of deaths are reported every year in some African countries. Tetracyclines and cotrimoxazole are used in the secondary prophylaxis of plague in the case of potential exposure to Y. pestis, but cotrimoxazole-resistant isolates have been reported. There is a need for additional prophylactic measures. We aimed to study the effectiveness of lovastatin, a cholesterol-lowering drug known to alleviate the symptoms of sepsis, for plague prophylaxis in an experimental model.

Methodology

Lovastatin dissolved in Endolipide was intraperitoneally administered to mice (20 mg/kg) every day for 6 days prior to a Y. pestis Orientalis biotype challenge. Non-challenged, lovastatin-treated and challenged, untreated mice were also used as control groups in the study. Body weight, physical behavior and death were recorded both prior to infection and for 10 days post-infection. Samples of the blood, lungs and spleen were collected from dead mice for direct microbiological examination, histopathology and culture. The potential antibiotic effect of lovastatin was tested on blood agar plates.

Conclusions/Significance

Lovastatin had no in-vitro antibiotic effect against Y. pestis. The difference in the mortality between control mice (11/15; 73.5%) and lovastatin-treated mice (3/15; 20%) was significant (P<0.004; Mantel-Haenszel test). Dead mice exhibited Y. pestis septicemia and inflammatory destruction of lung and spleen tissues not seen in lovastatin-treated surviving mice. These data suggest that lovastatin may help prevent the deadly effects of plague. Field observations are warranted to assess the role of lovastatin in the prophylaxis of human plague.  相似文献   

7.

Background  

Accurate identification is necessary to discriminate harmless environmental Yersinia species from the food-borne pathogens Yersinia enterocolitica and Yersinia pseudotuberculosis and from the group A bioterrorism plague agent Yersinia pestis. In order to circumvent the limitations of current phenotypic and PCR-based identification methods, we aimed to assess the usefulness of matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) protein profiling for accurate and rapid identification of Yersinia species. As a first step, we built a database of 39 different Yersinia strains representing 12 different Yersinia species, including 13 Y. pestis isolates representative of the Antiqua, Medievalis and Orientalis biotypes. The organisms were deposited on the MALDI-TOF plate after appropriate ethanol-based inactivation, and a protein profile was obtained within 6 minutes for each of the Yersinia species.  相似文献   

8.
The outer membrane is a key virulence determinant of gram-negative bacteria. In Yersinia pestis, the deadly agent that causes plague, the protein Ail and lipopolysaccharide (LPS)6 enhance lethality by promoting resistance to human innate immunity and antibiotics, enabling bacteria to proliferate in the human host. Their functions are highly coordinated. Here we describe how they cooperate to promote pathogenesis. Using a multidisciplinary approach, we identify mutually constructive interactions between Ail and LPS that produce an extended conformation of Ail at the membrane surface, cause thickening and rigidification of the LPS membrane, and collectively promote Y. pestis survival in human serum, antibiotic resistance, and cell envelope integrity. The results highlight the importance of the Ail–LPS assembly as an organized whole, rather than its individual components, and provide a handle for targeting Y. pestis pathogenesis.  相似文献   

9.
Plague, caused by Yersinia pestis, is an exotic disease in North America circulating predominantly in wild populations of rodents and their fleas. Black-tailed prairie dogs (Cynomys ludovicianus) are highly susceptible to infection, often experiencing mortality of nearly all individuals in a town as a result of plague. The fleas of black-tailed prairie dogs are Oropsylla tuberculata cynomuris and Oropsylla hirsuta. We tested the efficiency of O. tuberculata cynomuris to transmit Y. pestis daily from 24 to 96 h postinfection and compared it to previously collected data for O. hirsuta. We found that O. tuberculata cynomuris has over threefold greater transmission efficiency (0.18 infected fleas transmit Y. pestis at 24 h postinfection) than O. hirsuta (0.05 fleas transmit). Using a simple model of flea-borne transmission, we combine these laboratory measurements with field data on monthly flea loads to compare the seasonal vectorial capacity of these two flea species. Coinciding with seasonal patterns of flea abundance, we find a peak in potential for flea-borne transmission in March, during high O. tuberculata cynomuris abundance, and in September–October when O. hirsuta is common. Our findings may be useful in determining the timing of insecticidal dusting to slow plague transmission in black-tailed prairie dogs.  相似文献   

10.
Meningitis caused by Yersinia pestis developed in 6 (6%) of a total of 105 patients with plague reported to the Centers for Disease Control from 1970 to 1979. Five of the six cases occurred in children aged 10 to 15 years. All six patients received antibiotic therapy before meningitis developed, which appeared between the 9th and 14th days after the onset of acute illness in five of the six patients. There were no neurologic sequelae. The antigenic and biochemical profiles of the Y pestis strains isolated from cerebrospinal fluid in the meningitis cases did not differ from those of the Y pestis strains obtained from blood and bubo aspirates in the other 99 patients, and neither did in vitro studies suggest antibiotic resistance. While plague meningitis is an uncommon complication of acute plague infection, physicians in the western United States should be aware that it may develop as much as 14 days after antibiotic therapy for the acute plague infection has been initiated.  相似文献   

11.
Yersinia pestis is a Gram-negative bacterium that causes plague. Currently, plague is considered a re-emerging infectious disease and Y. pestis a potential bioterrorism agent. Autotransporters (ATs) are virulence proteins translocated by a variety of pathogenic Gram-negative bacteria across the cell envelope to the cell surface or extracellular environment. In this study, we screened the genome of Yersinia pestis KIM for AT genes whose expression might be relevant for the pathogenicity of this plague-causing organism. By in silico analyses, we identified ten putative AT genes in the genomic sequence of Y. pestis KIM; two of these genes are located within known pathogenicity islands. The expression of all ten putative AT genes in Y. pestis KIM was confirmed by RT-PCR. Five genes, designated yapA, yapC, yapG, yapK and yapN, were subsequently cloned and expressed in Escherichia coli K12 for protein secretion studies. Two forms of the YapA protein (130 kDa and 115 kDa) were found secreted into the culture medium. Protease cleavage at the C terminus of YapA released the protein from the cell surface. Outer membrane localization of YapC (65 kDa), YapG (100 kDa), YapK (130 kDa), and YapN (60 kDa) was established by cell fractionation, and cell surface localization of YapC and YapN was demonstrated by protease accessibility experiments. In functional studies, YapN and YapK showed hemagglutination activity and YapC exhibited autoagglutination activity. Data reported here represent the first study on Y. pestis ATs.  相似文献   

12.

Background

Rhombomys opimus (great gerbil) is a reservoir of Yersinia pestis in the natural plague foci of Central Asia. Great gerbils are highly resistant to Y. pestis infection. The coevolution of great gerbils and Y. pestis is believed to play an important role in the plague epidemics in Central Asia plague foci. However, the dynamics of Y. pestis infection and the corresponding antibody response in great gerbils have not been evaluated. In this report, animal experiments were employed to investigate the bacterial load in both the liver and spleen of infected great gerbils. The dynamics of the antibody response to the F1 capsule antigen of Y. pestis was also determined.

Methodology

Captured great gerbils that tested negative for both anti-F1 antibodies and bacterial isolation were infected subcutaneously with different doses (105 to 1011 CFU) of a Y. pestis strain isolated from a live great gerbil during routine plague surveillance in the Junggar Basin, Xinjiang, China. The clinical manifestations, changes in body weight, anal temperature, and gross anatomy of the infected animals were observed. The blood cell count, bacterial load, and anti-F1 antibody titers were determined at different time points after infection using a blood analyzer, plate counts, and an indirect hemagglutination assay, respectively.

Conclusions/Significance

The dynamics of bacterial load and the anti-F1 antibody concentration in great gerbils are highly variable among individuals. The Y. pestis infection in great gerbils could persist as long as 15 days. They act as an appropriate reservoir for plague in the Junggar Basin, which is part of the natural plague foci in Central Asia. The dynamics of the Y. pestis susceptibility of great gerbil will improve the understanding of its variable resistance, which would facilitate the development of more effective countermeasures for controlling plague epidemics in this focus.  相似文献   

13.
Yersinia pestis, the causative agent of human bubonic and pneumonic plague, is spread during natural infection by the fleas of rodents. Historically associated with infected rat fleas, studies on the kinetics of infection in rats are surprisingly few, and these reports have focused mainly on bubonic plague. Although the natural route of primary infection results in bubonic plague in humans, it is commonly thought that aerosolized Y. pestis will be utilized during a biowarfare attack. Accordingly, based on our previous characterization of the mouse model of pneumonic plague, we sought to examine the progression of infection in rats exposed in a whole-body Madison chamber to aerosolized Y. pestis CO92. Following an 8.6 LD50 dose of Y. pestis, injury was apparent in the rat tissues based on histopathology, and chemokines and cytokines rose above control levels (1 h post infection [p.i.]) in the sera and organ homogenates over a 72-h infection period. Bacteria disseminated from the lungs to peripheral organs, with the largest increases in the spleen, followed by the liver and blood at 72 h p.i. compared to the 1 h controls. Importantly, rats were as sensitive to pneumonic plague as mice, having a similar LD50 dose by the intranasal and aerosolized routes. Further, we showed direct transmission of plague bacteria from infected to uninfected rats. Taken together, the data allowed us to characterize for the first time a rat pneumonic plague model following aerosolization of Y. pestis.  相似文献   

14.
It has long been theorized that deer mice (Peromyscus maniculatus) are a primary reservoir of Yersinia pestis in California. However, recent research from other parts of the western USA has implicated deer mice as spillover hosts during epizootic plague transmission. This retrospective study analyzed deer mouse data collected for plague surveillance by public health agencies in California from 1971 to 2016 to help elucidate the role of deer mice in plague transmission. The fleas most commonly found on deer mice were poor vectors of Y. pestis and occurred in insufficient numbers to maintain transmission of the pathogen, while fleas whose natural hosts are deer mice were rarely observed and even more rarely found infected with Y. pestis on other rodent hosts. Seroprevalence of Y. pestis antibodies in deer mice was significantly lower than that of several chipmunk and squirrel species. These analyses suggest that it is unlikely that deer mice play an important role in maintaining plague transmission in California. While they may not be primary reservoirs, results supported the premise that deer mice are occasionally exposed to and infected by Y. pestis and instead may be spillover hosts.  相似文献   

15.
Genome scans using amplified fragment length polymorphism (AFLP) markers became popular in nonmodel species within the last 10 years, but few studies have tried to characterize the anonymous outliers identified. This study follows on from an AFLP genome scan in the black rat (Rattus rattus), the reservoir of plague (Yersinia pestis infection) in Madagascar. We successfully sequenced 17 of the 22 markers previously shown to be potentially affected by plague‐mediated selection and associated with a plague resistance phenotype. Searching these sequences in the genome of the closely related species Rattus norvegicus assigned them to 14 genomic regions, revealing a random distribution of outliers in the genome (no clustering). We compared these results with those of an in silico AFLP study of the R. norvegicus genome, which showed that outlier sequences could not have been inferred by this method in R. rattus (only four of the 15 sequences were predicted). However, in silico analysis allowed the prediction of AFLP markers distribution and the estimation of homoplasy rates, confirming its potential utility for designing AFLP studies in nonmodel species. The 14 genomic regions surrounding AFLP outliers (less than 300 kb from the marker) contained 75 genes encoding proteins of known function, including nine involved in immune function and pathogen defence. We identified the two interleukin 1 genes (Il1a and Il1b) that share homology with an antigen of Y. pestis, as the best candidates for genes subject to plague‐mediated natural selection. At least six other genes known to be involved in proinflammatory pathways may also be affected by plague‐mediated selection.  相似文献   

16.
Structural and functional organization of genes responsible for biosynthesis of amino acid methionine, which plays a leading role in cellular metabolism of bacteria, was studied in 24 natural Yersinia pestis strains of the major and non-main subspecies from various natural plague foci located in the territory of Russian Federation and neighbouring foreign countries, and also in Y. pestis and Y. pseudotuberculosis strains recorded in the files of NCBI GenBank database. Conservatism of genes metA, metC, metE, and metH as well as regulatory genes metR and metJ involved in biosynthesis of this amino acid was established. Sequencing of the variable locus of gene metB in natural Y. pestis strains of major and non-main subspecies revealed that the reason for the methionine dependence of strains belonging to the main subspecies is a deletion of a single nucleotide (−G) in the 988 position from the beginning of the gene, whereas this dependence in strains belonging to subspecies hissarica results from the appearance of a single nucleotide (+G) insertion in the 989 position of gene metB. These mutations are absent in strains of the caucasica, altaica, and ulegeica subspecies of the plague agent and in strains of pseudotuberculosis microbe, which correlates with their capacity for methionine biosynthesis.  相似文献   

17.
18.

Background

Bacteriophages specific for Yersinia pestis are routinely used for plague diagnostics and could be an alternative to antibiotics in case of drug-resistant plague. A major concern of bacteriophage therapy is the emergence of phage-resistant mutants. The use of phage cocktails can overcome this problem but only if the phages exploit different receptors. Some phage-resistant mutants lose virulence and therefore should not complicate bacteriophage therapy.

Methodology/Principal Findings

The purpose of this work was to identify Y. pestis phage receptors using site-directed mutagenesis and trans-complementation and to determine potential attenuation of phage-resistant mutants for mice. Six receptors for eight phages were found in different parts of the lipopolysaccharide (LPS) inner and outer core. The receptor for R phage was localized beyond the LPS core. Most spontaneous and defined phage-resistant mutants of Y. pestis were attenuated, showing increase in LD50 and time to death. The loss of different LPS core biosynthesis enzymes resulted in the reduction of Y. pestis virulence and there was a correlation between the degree of core truncation and the impact on virulence. The yrbH and waaA mutants completely lost their virulence.

Conclusions/Significance

We identified Y. pestis receptors for eight bacteriophages. Nine phages together use at least seven different Y. pestis receptors that makes some of them promising for formulation of plague therapeutic cocktails. Most phage-resistant Y. pestis mutants become attenuated and thus should not pose a serious problem for bacteriophage therapy of plague. LPS is a critical virulence factor of Y. pestis.  相似文献   

19.

Background  

In order to identify new virulence determinants in Y. pseudotuberculosis a comparison between its genome and that of Yersinia pestis was undertaken. This reveals dozens of pseudogenes in Y. pestis, which are still putatively functional in Y. pseudotuberculosis and may be important in the enteric lifestyle. One such gene, YPTB1572 in the Y. pseudotuberculosis IP32953 genome sequence, encodes a protein with similarity to invasin, a classic adhesion/invasion protein, and to intimin, the attaching and effacing protein from enteropathogenic (EPEC) and enterohaemorraghic (EHEC) Escherichia coli.  相似文献   

20.
We determined the role of Yersinia pestis virulence markers in an animal model of pneumonic plague. Eleven strains of Y. pestis were characterized using PCR assays to detect the presence of known virulence genes both encoded by the three plasmids as well as chromosomal markers. The virulence of all Y. pestis strains was compared in a mouse model for pneumonic plague. The presence of all known virulence genes correlated completely with virulence in the Balb/c mouse model. Strains which lacked HmsF initially exhibited visible signs of disease whereas all other strains (except wild-type strains) did not exhibit any disease signs. Forty-eight hours post-infection, mice which had received HmsF strains regained body mass and were able to control infection; those infected with strains possessing a full complement of virulence genes suffered from fatal disease. The bacterial loads observed in the lung and other tissues reflected the observed clinical signs as did the cytokine changes measured in these animals. We can conclude that all known virulence genes are required for the establishment of pneumonic plague in mammalian animal models, the role of HmsF being of particular importance in disease progression.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号