首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Basolateral membranes of Aplysia foregut epithelia contain an ATP-dependent Cl transporter (Cl pump). Increased activity of the Cl pump, coupled to apical and basolateral membrane depolarization, changed the Cl transport energetics across the apical membrane but did not change the vectorially-opposite Cl transport energetics across the basolateral membrane.  相似文献   

2.
Summary The current-voltage relationship of carrier-mediated, passive and active ion transport systems with one charge-carrying pathway can exactly be described by a simple reaction kinetic model. This model consists of two carrier states (one inside, one outside) and two pairs (forwards and backwards) of rate constants: a voltage-dependent one, describing the transport of charge and a voltage-insensitive one, summarizing all the other (voltage-independent) reactions. For the electrogenic Cl pump inAcetabularia these four rate constants have been determined from electrical measurements of the current-voltage relationship of the pump (Gradmann, Hansen & Slayman, 1981;in: Electrogenic Ion Pumps, Academic Press, New York). The unidirectional Cl efflux through the pump can also be calculated by the availiable reaction kinetic parameters.36Cl efflux experiments on singleAcetabularia cells with simultaneous electrical stimulation (action potentials) and recording, demonstrate the unidirectional Cl efflux to depend on the membrane potential. After subtraction of an efflux portion which bypasses the pump, agreement is found between the measured flux-voltage relationship and the theoretical one as obtained from the reaction kinetic model and its parameters from the electrical data.  相似文献   

3.
Summary The ability of liver cells to control their volume in the presence of ouabain has been studied in tissue slices that were recovering at 38°C from a period of swelling at 1°C. Morphological observations were made in conjunction with measurements of the net movements of water and ions. Extrusion of water in the presence of ouabain (2mm) was accompanied by a net loss of Na+ and Cl and by the formation of characteristic, rounded vesicles in the peri-canalicular regions of the hepatocytes; bile canaliculi were patent. When incubation was carried out in a medium in which either NO 3 or SO 4 2– replaced Cl, ouabain-resistant water extrusion was prevented and the cytoplasmic vesicles normally found with ouabain were almost totally absent. When these slices were subsequently transferred to Cl medium with oubain, extrusion of intracellular water was initiated and cytoplasmic vesicles reappeared. Replacement of medium Na+ by Li+ mimicked the effects of ouabain on water and ion movements and ultrastructure. In addition, the ouabain-resistant extrusion of water and Cl was reduced and there was some diminution in the number of vesicles induced by ouabain. Furosemide (2mm) had little effect on water movement or ultrastructure in the absence of ouabain, but it slowed the net water loss and substantially reduced the formation of cytoplasmic vesicles in the presence of ouabain. The results show a close relationship between ouabain-resistant water extrusion and the formation of the cytoplasmic vesicles that are characteristic of treatment with ouabain. They further suggest that a cotransport of Na+ and Cl forms an important part of the mechanism underlying ouabain-resistant water extrusion and, specifically, that this cotransport may take place across the membranes of the cytoplasmic vesicles.  相似文献   

4.
This minireview summarizes the current state of knowledge concerning the role of Cl in the oxygen-evolving complex (OEC) of photosystem II (PSII). The model that proposes that Cl is a Mn ligand is discussed in light of more recent work. Studies of Cl specificity, stoichiometry, kinetics, and retention by extrinsic polypeptides are discussed, as are the results that fail to detect Cl ligation to Mn and results that show a lack of a requirement for Cl in PSII-catalyzed H2O oxidation. Mutagenesis experiments in cyanobacteria and higher plants that produce evidence for a correlation between Cl retention and stable interactions among intrinsic and extrinsic polypeptides are summarized, and spectroscopic data on the interaction between PSII and Cl are discussed. Lastly, the question of the site of Cl action in PSII is discussed in connection with the current crystal structures of the enzyme.  相似文献   

5.
Skeletal muscle stores Ca2+ in the sarcoplasmic reticulum (SR) and releases it to initiate contraction, but the concentration of luminal Ca2+ in the SR ([Ca2+]SR) and the amount that is released by physiological or pharmacological stimulation has been difficult to measure. Here we present a novel, yet simple and direct, method that provides the first quantitative estimates of static content and dynamic changes in [Ca2+]SR in mammalian skeletal muscle, to our knowledge. The method uses fluo-5N loaded into the SR of single, mammalian skeletal muscle cells (murine flexor digitorum brevis myofibers) and confocal imaging to detect and calibrate the signals. Using this method, we have determined that [Ca2+]SR, free is 390 μM. 4-Chloro-m-cresol, an activator of the skeletal muscle ryanodine receptor, reduces [Ca2+]SR, free to ∼8 μM, when values are corrected for background fluorescence from cytoplasmic pools of dye. Prolonged electrical stimulation (10 s) at 50 Hz releases 88% of the SR Ca2+ content, whereas stimulation at 1 Hz (10 s) releases only 20%. Our results lay the foundation for molecular modeling of the dynamics of luminal SR Ca2+ and for future studies of the role of SR Ca2+ in healthy and diseased mammalian muscle.  相似文献   

6.
7.
1. A sucrose gap technique was used to study the effects of brief periods of superfusion with solutions in which the potassium content of artificial sea water was reduced or omitted.2. Stepwise reduction in bath potassium had a complex effect, culminating in the response to potassium-free solution. This was composed of a rapid initial hyperpolarizing phase, overtaken by a slower depolarizing phase, which was accompanied by force.3. Readmission of bath potassium induced a transient after-hyperpolarization.4. There was a high degree of individual variability in RPM preparations from different animals. This was particularly evident in cases in which either the hyperpolarizing phase or the depolarizing phase predominated, in the response to zero-potassium, but the muscles from any one animal showed reproducible responses.5. The RPM behaved as predicted on Nernst equation grounds, to the extent that initial hyperpolarization showed stepwise increases with stepwise reduction in [K+]0, but as the steps approached zero-potassium there was a stepwise increase in the slower depolarizing response, suggesting reduction in electrogenic Na-K exchange.6. In Na-free solution the depolarizing phase of the response to zero-K was abolished, leaving only an enhanced hyperpolarizing phase.7. Abrupt chilling had a depolarizing effect.8. There was only a slight increase in resistance during the action of zero K.  相似文献   

8.
Ischemic heart disease is the leading cause of serious morbidity and mortality in Western society. One of the therapeutic approaches is based on the use of thrombolitic drugs that promote clot lysis. Even if the mechanisms leading to clot lysis are not completely understood, it is widely accepted that they depend on the complex biochemical reactions that occur among fibrin fibers and fibrinolitic agents, and by their ready diffusion into the fibers. Here we investigate the effects of specific anions on the architecture of protofibrils within fibrin fibers in fibrin gels prepared in a para-physiological solution. The results obtained through small-angle X-ray scattering (SAXS) demonstrate that the characteristic axial and longitudinal repeat distances among protofibrils are strongly affected by the action of Cl and F anions.  相似文献   

9.
The chemical solvent tetrahydrofuran (THF) increases short-circuit current (Isc) in renal epithelia endogenously expressing the cystic fibrosis transmembrane conductance regulator (CFTR). To understand how THF increases Isc, we employed the Ussing chamber and patch-clamp techniques to study cells expressing recombinant human CFTR. THF increased Isc in Fischer rat thyroid (FRT) epithelia expressing wild-type CFTR with half-maximal effective concentration (KD) of 134?mM. This THF-induced increase in Isc was enhanced by forskolin (10 µM), inhibited by the PKA inhibitor H-89 (10 µM) and the thiazolidinone CFTRinh-172 (10 µM) and attenuated greatly in FRT epithelia expressing the cystic fibrosis mutants F508del- and G551D-CFTR. By contrast, THF (100?mM) was without effect on untransfected FRT epithelia, while other solvents failed to increase Isc in FRT epithelia expressing wild-type CFTR. In excised inside-out membrane patches, THF (100?mM) potentiated CFTR Cl? channels open in the presence of ATP (1?mM) alone by increasing the frequency of channel openings without altering their duration. However, following the phosphorylation of CFTR by PKA (75?nM), THF (100?mM) did not potentiate channel activity. Similar results were obtained with the ?R-S660A-CFTR Cl? channel that is not regulated by PKA-dependent phosphorylation and using 2′deoxy-ATP, which gates wild-type CFTR more effectively than ATP. Our data suggest that THF acts directly on CFTR to potentiate channel gating, but that its efficacy is weak and dependent on the phosphorylation status of CFTR.  相似文献   

10.
Summary A total of 147 muscle spindles was studied histochemically in serial transverse sections of 42 cat tenuissimus muscle specimens. Nuclear bag1, nuclear bag2 and nuclear chain intrafusal muscle fibers were distinguished by the differential staining resulting from the reactions for myosin adenosine 5-triphosphatase and nicotinamide adenine dinucleotide tetrazolium reductase. The majority of intrafusal fibers were of the same histochemical type at both fiber poles. However, seven muscle spindles contained one nuclear bag fiber each that presented as a bag1 in one pole and as a bag2 in the other pole. These mixed nuclear bag fibers were found in spindles that also contained at least one bag1 and one bag2 fiber of equivalent histochemical presentation in both fiber poles. The mixed bag fibers displayed differences of apparent fiber diameter and relative polar length between the two fiber poles. The motor innervation pattern, as revealed by staining for cholinesterase, was also dissimilar between the two poles of mixed bag fibers. The study indicates that the spindle equatorial region may in some instances serve as a boundary between two morphologically and histochemically different poles of the same intrafusal fiber.  相似文献   

11.
The Cl/HCO 3 exchange mechanism usually postulated to occur in gastric mucosa cannot account for the Na+-dependent electrogenic serosal to mucosal Cl transport often observed. It was recently suggested that an additional Cl transport mechanism driven by the Na+ electrochemical potential gradient may be present on the serosal side of the tissue. To verify this, we have studied Cl transport in guinea pig gastric mucosa. Inhibiting the (Na+, K+) ATPase either by serosal addition of ouabain or by establishing K+-free mucosal and serosal conditions abolished net Cl transport. Depolarizing the cell membrane potential with triphenylmethylphosphonium (a lipid-soluble cation), and hence reducing both the Na+ and Cl electrochemical potential gradients, resulted in inhibition of net Cl flux. Reduction of short-circuit current on replacing Na+ by choline in the serosal bathing solution was shown to be due to inhibition of Cl transport. Serosal addition of diisothiocyanodisulfonic acid stilbene (an inhibitor of anion transport systems) abolished net Cl flux but not net Na+ flux. These results are compatible with the proposed model of a Cl/Na+ cotransport mechanism governing serosal Cl entry into the secreting cells. We suggest that the same mechanism may well facilitate both coupled Cl/Na+ entry and coupled HCO 3 /Na+ exit on the serosal side of the tissue.  相似文献   

12.
Cl absorption by theAplysia californica foregut is effected through an active Cl transport mechanism located in the basolateral membrane of the epithelial absorptive cells. These basolateral membranes contain both Cl-stimulated ATPase and ATP-dependent Cl transport activities which can be incorporated into liposomes via reconstitution. Utilizing the proteoliposomal preparation, it was demonstrated that ATP, and its subsequent hydrolysis, Mg2+, Cl, and a pH optimum of 7.8 were required to generate maximal intraliposomal Cl accumulation, electrical negativity, and ATPase activity. Additionally, an inwardly-directed valinomycininduced K+ diffusion potential, making the liposome interior electrically positive, enhanced both ATP-driven Cl accumulation and electrical potential while an outwardly-directed valinomycininduced K+ diffusion potential, making the liposome interior electrically negative, decreased both ATP-driven Cl accumulation and electrical potential compared with proteoliposomes lacking the ionophore. Either orthovanadate orp-chloromercurobenzene sulfonate inhibited both the ATP-dependent intraliposomal Cl accumulation, intraliposomal negative potential difference, and also Cl-stimulated ATPase activity. Both aspects of Cl pump transport kinetics and its associated catalytic component kinetics were the first obtained utilizing a reconstituted transporter protein. These results strongly support the hypothesis that Cl-ATPase actively transports Cl by an electrogenic process.  相似文献   

13.
14.
In order to study the influence of Ser and Thr on the structure of transmembrane helices we have analyzed a database of helix stretches extracted from crystal structures of membrane proteins and an ensemble of model helices generated by molecular dynamics simulations. Both complementary analyses show that Ser and Thr in the g? conformation induce and/or stabilize a structural distortion in the helix backbone. Using quantum mechanical calculations, we have attributed this effect to the electrostatic repulsion between the side chain Oγ atom of Ser and Thr and the backbone carbonyl oxygen at position i ? 3. In order to minimize the repulsive force between these negatively charged oxygens, there is a modest increase of the helix bend angle as well as a local opening of the helix turn preceding Ser/Thr. This small distortion can be amplified through the helix, resulting in a significant displacement of the residues located at the other side of the helix. The crystal structures of aquaporin Z and the β2-adrenergic receptor are used to illustrate these effects. Ser/Thr-induced structural distortions can be implicated in processes as diverse as ligand recognition, protein function and protein folding.  相似文献   

15.
Summary The potential dependence of unidirectional36Cl fluxes through toad skin revealed activation of a conductive pathway in the physiological region of transepithelial potentials. Activation of the conductance was dependent on the presence of Cl or Br in the external bathing solution, but was independent of whether the external bath was NaCl-Ringer's, NaCl-Ringer's with amiloride, KCl-Ringer's or choline Cl-Ringer's To partition the routes of the conductive Cl ion flow, we measured in the isolated epithelium with double-barrelled microelectrodes apical membrane potentialV a , and intracellular Cl activity,a Cl c , of the principal cells indentified by differential interference contrast microscopy. Under short-circuit conditionsI sc=27.0±2.0 A/cm2, with NaCl-Ringer's bathing both surfaces,V a was –67.9±3.8mV (mean ±se,n=24, six preparations) anda Cl c was 18.0±0.9mM in skins from animals adapted to distilled water. BothV a anda Cl a were found to be positively correlated withI sc (r=0.66 andr=0.70, respectively). In eight epithelia from animals adapted to dry milieu/tap waterV a anda Cl c were measured with KCl Ringer's on the outside during activation and deactivation of the transepithelial Cl conductance (G Cl) by voltage clamping the transepithelial potential (V) at 40 mV (mucosa positive) and –100 mV. AtV=40 mV; i.e. whenG Cl was deactivated,V a was –70.1±5.0 mV (n=15, eight preparations) anda Cl c was 40.0±3.8mm. The fractional apical membrane resistance (fR a) was 0.69±0.03. Clamping toV=–100 mV led to an instantaneous change ofV a to 31.3±5.6 mV (cell interior positive with respect to the mucosal bath), whereas neithera Cl c norfR a changed significantly within a 2 to 5-min period during whichG Cl increased by 1.19±0.10 mS/cm2. WhenV was stepped back to 40 mV,V a instantaneously shifted to –67.8±3.9 mV whilea Cl c andfR a remained constant during deactivation ofG Cl. Similar results were obtained in epithelia impaled from the serosal side. In 12 skins from animals adapted to either tap water or distilled water the density of mitochondria-rich (D MRC) cells was estimated and correlated with the Cl current (I Cl though the fully activated (V=–100mV) Cl conductance). A highly significant correlation was revealed (r=–0.96) with a slope of –2.6 nA/m.r. (mitochondria-rich cell and an I-axis intercept not significantly different from zero. In summary, the voltage-dependent Cl currents were not reflected infR a anda Cl a of the principal cells but showed a correlation with the m.r. cell density. We conclude that the pricipal cells do not contribute significantly to the voltage-dependent Cl conductance.  相似文献   

16.
The widely expressed chloride channel ClC-2 is stimulated by the serum and glucocorticoid inducible kinase SGK1. The SGK1-dependent regulation of several carriers involves the mammalian phosphatidylinositol-3-phosphate-5-kinase PIKfyve (PIP5K3). The present experiments explored whether SGK1-dependent regulation of ClC-2 similarly involves PIKfyve. The conductance of Xenopus oocytes is increased more than eightfold by ClC-2 expression. In ClC-2-expressing oocytes, but not in water-injected oocytes, the current was further enhanced by coexpression of either, PIKfyve or constitutively active S422DSGK1. Coexpression of the inactive SGK1 mutant K127NSGK1 did not significantly alter the current in ClC-2-expressing oocytes and abrogated the stimulation of the current by PIKfyve-coexpression. The stimulating effect of PIKfyve was abolished by replacement of the serine with alanine in the SGK1 consensus sequence (S318APIKfyve). Coexpression of S318APIKfyve significantly blunted the stimulating effect of S422DSGK1 on ClC-2-activity. In conclusion, PIKfyve is a potent stimulator of ClC-2-activity and contributes to SGK1-dependent regulation of ClC-2.  相似文献   

17.
Summary Properties of the single Cl channels were studied in excised patches of surface membrane from molluscan neurones using single-channel recording technique. These channels are controlled by Ca2+ and K+ acting on cytoplasmic and outer membrane surfaces, respectively, and by the membrane potential. The channels display about 16 intermediate conductance sublevels, each of them being multiples of 12.5 pS. The upper level of the channel conductance is about 200 pS. The channel behavior is consistent with an aggregation of channel-forming subunits into a cluster.  相似文献   

18.
Ca2+-activated Cl? currents have been implicated in many cellular processes in different cells, but for many years, their molecular identity remained unknown. Particularly intriguing are Ca2+-activated Cl? currents in olfactory transduction, first described in the early 90s. Well characterized electrophysiologically, they carry most of the odorant-induced receptor current in the cilia of olfactory sensory neurons (OSNs). After many attempts to determine their molecular identity, TMEM16B was found to be abundantly expressed in the cilia of OSNs in 2009 and having biophysical properties like those of the native olfactory channel. A TMEM16B knockout mouse confirmed that TMEM16B was indeed the olfactory Cl? channel but also suggested a limited role in olfactory physiology and behavior.

The question then arises of what the precise role of TMEM16b in olfaction is. Here we review the long story of this channel and its possible roles.  相似文献   


19.
There is tight interplay between Ca2+ and Cl flux that can influence brain tumour proliferation, migration and invasion. Glioma is the predominant malignant primary brain tumour, accounting for ˜80% of all cases. Voltage-gated Cl channel family (ClC) proteins and Cl intracellular channel (CLIC) proteins are drastically overexpressed in glioma, and are associated with enhanced cell proliferation, migration and invasion. Ca2+ also plays fundamental roles in the phenomenon. Ca2+-activated Cl channels (CaCC) such as TMEM16A and bestrophin-1 are involved in glioma formation and assist Ca2+ movement from intracellular stores to the plasma membrane. Additionally, the transient receptor protein (TRP) channel TRPC1 can induce activation of ClC-3 by increasing intracellular Ca2+concentrations and activating Ca2+/calmodulin-dependent protein kinase II (CaMKII). Therefore, Ca2+ and Clcurrents can concurrently mediate brain tumour cellular functions. Glioma also expresses volume regulated anion channels (VRACs), which are responsible for the swelling-induced Cl current, ICl,swell. This current enables glioma cells to perform regulatory volume decrease (RVD) as a survivability mechanism in response to hypoxic conditions within the tumour microenvironment. RVD can also be exploited by glioma for invasion and migration. Effective treatment for glioma is challenging, which can be in part due to prolonged chemotherapy leading to mutations in genes associated with multi-drug resistances (MRP1, Bcl-2, and ABC family). Thus, a potential therapeutic strategy for treatment of glioma can be through the inhibition of selected Cl channels.  相似文献   

20.
Summary Reaction kinetic analysis of the electrical properties of the electrogenic Cl pump inAcetabularia has been extended from steady-state to nonsteady-state conditions: electrical frequency responses of theAcetabularia membrane have been measured over the range from 1 Hz to 10 kHz at transmembrane potential differences across the plasmalemma (V m ) between –70 and –240 mV using voltage-clamp techniques. The results are well described by an electrical equivalent circuit with three parallel limbs: a conventional membrane capacitancec m , a steadystate conductanceg o (predominantly of the pump pathway plus a minor passive ion conductance) and a conductanceg s in series with a capacitancec p which are peculiar to the temporal behavior of the pump. The absolute values and voltage sensitivities of these four elements have been determined:c m of about 8 mF m–2 turned out to be voltage insensitive; it is considered to be normal.g o is voltage sensitive and displays a peak of about 80 S m–2 around –180 mV. Voltage sensitivity ofg s could not be documented due to large scatter ofg s (around 80 S m–2).c p behaved voltage sensitive with a notch of about 20 mF m–2 around –180 mV, a peak of about 40 mF m–2 at –120 mV and vanishing at –70 mV. When these data are compared with the predictions of nonsteady-state electrical properties of charge transport systems (U.-P. Hansen, J. Tittor, D. Gradmann, 1983,J. Membrane Biol. in press), model A (redistribution of states within the reaction cycle) consistently provides magnitude and voltage sensitivity of the elementsg o ,g s andc p of the equivalent circuit, when known kinetic parameters of the pump are used for the calculations. This analysis results in a density of pump elements in theAcetabularia plasmalemma of about 50 nmol m–2. The dominating rate constants for the redistribution of the individual states of the pump in the electric field turn out to be in the range of 500 sec–1, under normal conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号