首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 875 毫秒
1.
Diabetes-induced hyperlipidemia, oxidative stress and protein glycation impair cellular calcium and sodium homeostasis associated with abnormal membrane-bound enzyme activities resulting in cardiac dysfunction in diabetes. To explore the cardioprotective mechanism of green tea in diabetes, we measured the changes in the levels of calcium, sodium, potassium and the activities of Na+/K+ -ATPase and Ca2+ -ATPase in green tea treated diabetic rat hearts. The effect of green tea on triglycerides, lipid peroxidation and protein glycation in diabetic heart were also measured to elucidate the underlying mechanisms. Diabetes was induced by streptozotocin (STZ, 60 mg/kg i.p.). Six weeks after the induction of diabetes, some of the diabetic rats were treated orally with green tea extract (GTE) (300 mg/kg/day) for 4 weeks. GTE produced reduction in blood glucose and lowered the levels of lipid peroxides, triglycerides and extent of protein glycation in the heart of diabetic rats. GTE blunted the rise in cardiac [Ca2+] and [Na+] whereas increased the activities of Ca2+ -ATPase and Na+/K+ -ATPase in diabetic rats. In conclusion, the data provide support to the therapeutic effect of GTE and suggest that a possible mechanism of action may be associated with the attenuation of the rise in [Ca2+] and [Na+] by ameliorating Ca2+ -ATPase and Na+/K+ -ATPase activities.  相似文献   

2.
In light of evidence that some complications of diabetes mellitus may be caused or exacerbated by oxidative damage, we investigated the effects of subacute treatment with the antioxidant quercetin on tissue antioxidant defense systems in streptozotocin-induced diabetic Sprague-Dawley rats (30 days after streptozotocin induction). Quercetin, 2-(3,4-dihydroxyphenyl)-3,5,7-trihydroxy-4H-1-benzopyran-4-one, was administered at a dose of 10mg/kg/day, ip for 14 days, after which liver, kidney, brain, and heart were assayed for degree of lipid peroxidation, reduced and oxidized glutathione content, and activities of the free-radical detoxifying enzymes catalase, superoxide dismutase, glutathione peroxidase, and glutathione reductase. Treatment of normal rats with quercetin increased serum AST and increased hepatic concentration of oxidized glutathione. All tissues from diabetic animals exhibited disturbances in antioxidant defense when compared with normal controls. Quercetin treatment of diabetic rats reversed only the diabetic effects on brain oxidized glutathione concentration and on hepatic glutathione peroxidase activity. By contrast, a 20% increase in hepatic lipid peroxidation, a 40% decline in hepatic glutathione concentration, an increase in renal (23%) and cardiac (40%) glutathione peroxidase activities, and a 65% increase in cardiac catalase activity reflect intensified diabetic effects after treatment with quercetin. These results call into question the ability of therapy with the antioxidant quercetin to reverse diabetic oxidative stress in an overall sense.  相似文献   

3.
In this study, we investigated the efficiency of short-term treatment with gemfibrozil in the reversal of diabetes-induced changes on carbohydrate and lipid metabolism, and antioxidant status of aorta. Diabetes was induced by a single injection of streptozotocin (45 mg/kg, i.p.). After 12 weeks of induction of diabetes, the control and diabetic rats were orally gavaged daily with a dosing vehicle alone or with 100 mg/kg of gemfibrozil for 2 weeks. At 14 weeks, there was a significant increase in blood glucose, plasma cholesterol and triglyceride levels of untreated-diabetic animals. Diabetes was associated with a significant increase in thiobarbituric acid reactive substances (TBARS) in both plasma and aortic homogenates, indicating increased lipid peroxidation. Diabetes caused an increase in vascular antioxidant enzyme activity, catalase, indicating existence of excess hydrogen peroxide (H2O2). However, superoxide dismutase (SOD) and glutathione peroxidase (GSHPx) activities in aortas did not significantly change in untreated-diabetic rats. In diabetic plus gemfibrozil group both plasma lipids and lipid peroxides showed a significant recovery. Gemfibrozil treatment had no effect on blood glucose, plasma insulin and vessel antioxidant enzyme activity of diabetic animals. Our findings suggest that the beneficial effect of short-term gemfibrozil treatment in reducing lipid peroxidation in diabetic animals does not depend on a change of glucose metabolism and antioxidant status of aorta, but this may be attributed to its decreasing effect on circulating lipids. The ability of short-term gemfibrozil treatment to recovery of metabolism and peroxidation of lipids may be an effective strategy to minimize increased oxidative stress in diabetic plasma and vasculature.  相似文献   

4.
Using diabetes mellitus as a model of oxidative damage, this study investigated whether subacute treatment (10 mg/kg/day, intraperitoneally for 14 days) with the compound piperine would protect against diabetes-induced oxidative stress in 30-day streptozotocin-induced diabetic Sprague-Dawley rats. Liver, kidney, brain, and heart were assayed for degree of lipid peroxidation, reduced and oxidized glutathione (GSH and GSSG, respectively) content, and activities of the free-radical detoxifying enzymes catalase, superoxide dismutase, glutathione peroxidase, and glutathione reductase. Piperine treatment of normal rats enhanced hepatic GSSG concentration by 100% and decreased renal GSH concentration by 35% and renal glutathione reductase activity by 25% when compared to normal controls. All tissues from diabetic animals exhibited disturbances in antioxidant defense when compared with normal controls. Treatment with piperine reversed the diabetic effects on GSSG concentration in brain, on renal glutathione peroxidase and superoxide dismutase activities, and on cardiac glutathione reductase activity and lipid peroxidation. Piperine treatment did not reverse the effects of diabetes on hepatic GSH concentrations, lipid peroxidation, or glutathione peroxidase or catalase activities; on renal superoxide dismutase activity; or on cardiac glutathione peroxidase or catalase activities. These data indicate that subacute treatment with piperine for 14 days is only partially effective as an antioxidant therapy in diabetes.  相似文献   

5.
Diabetes mellitus and its complications are associated with elevated oxidative stress, leading to much interest in antioxidant compounds as possible therapeutic agents. Two new classes of antioxidant compounds, the pyrrolopyrimidines and the 21-aminosteroids, are known to inhibit lipid peroxidation and other biomolecular oxidation. We hypothesized that in the presence of excess oxidants or the impaired antioxidant defense seen in diabetes mellitus, administration of antioxidants such as these may reverse the effects of diabetes on antioxidant parameters. This study measured the effects of subchronic (14 day) treatment with a pyrrolopyrimidine (PNU-104067F) or a 21-aminosteroid (PNU-74389G) in normal and diabetic Sprague-Dawley rats. Activity levels of superoxide dismutase, catalase, glutathione peroxidase, and glutathione reductase, concentrations of oxidized and reduced glutathione, and lipid peroxidation were used as measures of antioxidant defense in liver, kidney, heart, and brain tissue. In normal rats, the only effect was a 43% increase in cardiac lipid peroxidation after treatment with PNU-104067F. In diabetic rats, the only reversals of the effects of diabetes were a 30% decrease in hepatic glutathione peroxidase activity after PNU-74389G treatment and a 33% increase in cardiac glutathione disulfide concentration after PNU-104067F treatment. In contrast to these effects, increased cardiac glutathione peroxidase and catalase activities, increased brain glutathione peroxidase activity, increased hepatic lipid peroxidation, decreased hepatic glutathione content, and decreased hepatic catalase activity were seen in diabetic rats, reflecting an exacerbation of the effects of diabetes.  相似文献   

6.
Because some complications of diabetes mellitus may result from oxidative damage, we investigated the effects of subacute treatment (10mg/kg/day, intraperitoneal [ip], for 14 days) with the antioxidant isoeugenol on the oxidant defense system in normal and 30-day streptozotocin-induced diabetic Sprague-Dawley rats. Liver, kidney, brain, and heart were assayed for degree of lipid peroxidation, reduced and oxidized glutathione content, and activities of the free radical-detoxifying enzymes catalase, superoxide dismutase, glutathione peroxidase, and glutathione reductase. All tissues from diabetic animals exhibited disturbances in antioxidant defense when compared with normal controls. Treatment with isoeugenol reversed diabetic effects on hepatic glutathione peroxidase activity and on oxidized glutathione concentration in brain. Treatment with the lipophilic compound isoeugenol also decreased lipid peroxidation in both liver and heart of normal animals and decreased hepatic oxidized glutathione content in both normal and diabetic rats. Some effects of isoeugenol treatment, such as decreased activity of hepatic superoxide dismutase and glutathione reductase in diabetic rats, were unrelated to the oxidative effects of diabetes. In heart of diabetic animals, isoeugenol treatment resulted in an exacerbation of already elevated activities of catalase. These results indicate that isoeugenol therapy may not reverse diabetic oxidative stress in an overall sense.  相似文献   

7.
Coenzyme Q10 is an endogenous lipid soluble antioxidant. Because oxidant stress may exacerbate some complications of diabetes mellitus, this study investigated the effects of subacute treatment with exogenous coenzyme Q10 (10 mg/kg/day, i.p. for 14 days) on tissue antioxidant defenses in 30-day streptozotocin-induced diabetic Sprague-Dawley rats. Liver, kidney, brain, and heart were assayed for degree of lipid peroxidation, reduced and oxidized glutathione contents, and activities of catalase, superoxide dismutase, glutathione peroxidase, and glutathione reductase. All tissues from diabetic animals exhibited increased oxidative stress and disturbances in antioxidant defense when compared with normal controls. Treatment with the lipophilic compound coenzyme Q10 reversed diabetic effects on hepatic glutathione peroxidase activity, on renal superoxide dismutase activity, on cardiac lipid peroxidation, and on oxidized glutathione concentration in brain. However, treatment with coenzyme Q10 also exacerbated the increase in cardiac catalase activity, which was already elevated by diabetes, further decreased hepatic glutathione reductase activity, augmented the increase in hepatic lipid peroxidation, and further increased glutathione peroxidase activity in the heart and brain of diabetic animals. Subacute dosing with coenzyme Q10 ameliorated some of the diabetes-induced changes in oxidative stress. However, exacerbation of several diabetes-related effects was also observed.  相似文献   

8.
In the present study we investigated the effects of simvastatin treatment on lipid metabolism and peroxidation, antioxidant enzyme activities and ultrastructure of the diabetic rat myocardium. Diabetes was induced by single injection of streptozotocin (45 mg/kg i.p.). Eight weeks after induction of diabetes, a subgroup of control and of diabetic rats was treated with simvastatin for 4 weeks (10 mg/kg/day, orally). Blood glucose, plasma cholesterol and triacylglycerol, as well as levels of cardiac thiobarbituric acid reactive substances (TBARS) were significantly increased in diabetic rats. The activities of antioxidant enzymes, catalase (CAT) and glutathione peroxidase (GSHPx), were also elevated in the diabetic myocardium. Treatment with simvastatin markedly reduced serum triacylglycerol and cholesterol, and partially controlled hyperglycemia in diabetic animals. The increased activation of antioxidant enzymes and the excess of lipid peroxidation measured by TBARS were completely reversed by simvastatin treatment. Diabetic rats displayed ultrastructural ischemia-like alterations of cardiomyocytes and capillaries, which support oxidative stress-induced tissue remodelling. In the diabetic myocardium simvastatin treatment partly attenuated angiopathic and atherogenic processes, detected by electron microscopy. These results suggest that simvastatin, known as a lipid-lowering drug, may positively affect diabetes induced cardiovascular complications via reducing risks of atherosclerotic pathological processes, such as imbalance between oxidant and antioxidant state.  相似文献   

9.
Lipid disorders and increased oxidative stress may exacerbate some complications of diabetes mellitus. Previous studies have implicated the beneficial effects of some antioxidants, omega-3 polyunsaturated fatty acids (PUFAs), eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) in the protection of cells from the destructive effect of increased lipids and lipid peroxidation products. This study, therefore, was designed to investigate the effects of cod liver oil (CLO, Lysi Ltd. Island), which comprises mainly vitamin A, PUFAs, EPA and DHA. Effects were monitored on plasma lipids, lipid peroxidation products (MDA) and the activities of antioxidant enzymes, glutathione peroxidase (GSHPx) and catalase in heart, liver, kidney and lung of non-diabetic control and streptozotocin (STZ)-induced-diabetic rats. Two days after STZ-injection (55 mg kg(-1) i.p.), non-diabetic control and diabetic rats were divided randomly into two groups as untreated or treated with CLO (0.5 ml kg(-1) rat per day) for 12 weeks. Plasma glucose, triacylglycerol and cholesterol concentrations were significantly elevated in 12-week untreated-diabetic animals; CLO treatment almost completely prevented these abnormalities in triacylglycerol and cholesterol, but hyperglycaemia was partially controlled. CLO also provided better weight gain in diabetic animals. In untreated diabetic rats, MDA markedly increased in aorta, heart and liver but was not significantly changed in kidney and lung. This was accompanied by a significant increase in both GSHPx and catalase enzyme activities in aorta, heart, and liver of diabetic rats. In kidney and lung, diabetes resulted in reduced catalase while GSHPx was significantly activated. In aorta, heart, and liver, diabetes-induced changes in MDA were entirely prevented by CLO treatment. In the tissues of CLO-treated diabetic animals, GSHPx activity paralleled those of control animals. CLO treatment also caused significant improvements in catalase activities in every tissue of diabetic rats, but failed to affect MDA and antioxidant activity in control animals. The current study suggests that the treatment of diabetic rats with CLO provides better control of glucose and lipid metabolism, allows recovery of normal growth rate, prevents oxidative/peroxidative stress and ameliorates endogenous antioxidant enzyme activities in various tissues. Because CLO contains a plethora of beneficial compounds together, its use for the management of diabetes-induced complications may provide important advantages.  相似文献   

10.
Increased oxidative stress has been suggested to be involved in the pathogenesis and progression of diabetic tissue damage. The aim of this study was to investigate the effect of ethanolic extract of Eugenia jambolana seed kernel on antioxidant defense systems of plasma and pancreas in streptozotocin-induced diabetes in rats. The levels of glucose, vitamin-C, vitamin-E, ceruloplasmin, reduced glutathione and lipidperoxides were estimated in plasma of control and experimental groups of rats. The levels of lipidperoxides, reduced glutathione and activities of superoxide dismutase, catalase and glutathione peroxidase were assayed in pancreatic tissue of control and experimental groups of rats. A significant increase in the levels of plasma glucose, vitamin-E, ceruloplasmin, lipid peroxides and a concomitant decrease in the levels of vitamin-C, reduced glutathione were observed in diabetic rats. The activities of pancreatic antioxidant enzymes were altered in diabetic rats. These alterations were reverted back to near normal level after the treatment with Eugenia jambolana seed kernel and glibenclamide. Histopathological studies also revealed that the protective effect of Eugenia jambolana seed kernel on pancreatic beta-cells. The present study shows that Eugenia jambolana seed kernel decreased oxidative stress in diabetic rats, which inturn may be due to its hypoglycemic property.  相似文献   

11.
Diabetes is known to involve oxidative stress and changes in lipid metabolism. Many secondary plant metabolites have been shown to possess antioxidant activities, improving the effects of oxidative stress on diabetes. This study evaluated the effects of extracts from Gongronema latifolium leaves on antioxidant enzymes and lipid profile in a rat model of non insulin dependent diabetes mellitus (NIDDM). The results confirmed that the untreated diabetic rats were subjected to oxidative stress as indicated by significantly abnormal activities of their scavenging enzymes (low superoxide dismutase and glutathione peroxide activities), compared to treated diabetic rats, and in the extent of lipid peroxidation (high malondialdehyde levels) present in the hepatocytes. The ethanolic extract of G. latifolium leaves possessed antioxidant activity as shown by increased superoxide dismutase and glutathione peroxidase activities and decreases in malondialdehyde levels. High levels of triglycerides and total cholesterol, which are typical of the diabetic condition, were also found in our rat models of diabetes. The ethanolic extract also significantly decreased triglyceride levels and normalized total cholesterol concentration.  相似文献   

12.
The effect of Monascus purpureus red mould rice (RMR) on modulation of lipid metabolism and oxidative stress was studied in hypercholesterolemic rats. Cholesterol feeding for 14 weeks caused a significant increase in the lipid peroxides and total thiols and antioxidant enzymes, viz. glutathione peroxidase (GPx), glutathione reductase (GRd), superoxide dismutase (SOD) and catalase (CAT) in serum and liver in comparison to the control group. However, supplementation of RMR to hypercholesterolemic rats at 8, 12 and 16% significantly increased the GRd, GPx, SOD and CAT activities in serum and liver tissues. Furthermore, RMR feeding significantly decreased total thiols and lipid peroxides and also increased other antioxidant molecules such as glutathione and ascorbic acid in high-cholesterol fed rats. The efficiency of RMR (16%) in modulating the antioxidant molecules and antioxidant enzymes is comparable to standard drug-lovastatin. Thus, this study suggests that the long-term administration of RMR may play an important role in suppressing oxidative stress and, thus, may be useful for the prevention and/or early treatment of hypercholesterolemia.  相似文献   

13.
Chromium picolinate is advocated as an anti-diabetic agent for impaired glycemic control. It is a transition metal that exists in various oxidation states and may thereby act as a pro-oxidant. The present study has been designed to examine the effect of chromium picolinate supplementation on hyperglycemia-induced oxidative stress. Diabetes was induced in male Wistar rats by a single intraperitoneal injection of streptozotocin (50 mg/kg body weight) and chromium was administered orally as chromium picolinate (1 mg/kg body weight) daily for a period of four weeks after the induction of diabetes. As is characteristic of diabetic condition, hyperglycemia was associated with an increase in oxidative stress in liver in terms of increased lipid peroxidation and decreased glutathione levels. The activity of antioxidant enzymes like superoxide dismutase, catalase and glutathione reductase were significantly reduced in liver of diabetic animals. Levels of α-tocopherol and ascorbic acid were found to be considerably lower in plasma of diabetic rats. Chromium picolinate administration on the other hand was found to have beneficial effect in normalizing glucose levels, lipid peroxidation and antioxidant status. The results from the present study demonstrate potential of chromium picolinate to attenuate hyperglycemia-induced oxidative stress in experimental diabetes.  相似文献   

14.
Rats fed a galactose-rich diet have been used for several years as a model for diabetes to study, particularly in the eye, the effects of excess blood hexoses. This study sought to determine the utility of galactosemia as a model for oxidative stress in extraocular tissues by examining biomarkers of oxidative stress in galactose-fed rats and experimentally-induced diabetic rats. Sprague-Dawley rats were divided into four groups: experimental control; streptozotocin-induced diabetic; insulin-treated diabetic; and galactose-fed. The rats were maintained on these regimens for 30 days, at which point the activities of catalase, glutathione peroxidase, glutathione reductase, and superoxide dismutase, as well as levels of lipid peroxidation and reduced and oxidized glutathione were determined in heart, liver, and kidney. This study indicates that while there are some similarities between galactosemic and diabetic rats in these measured indices of oxidative stress (hepatic catalase activity levels and hepatic and renal levels of oxidized glutathione in both diabetic and galactosemic rats were significantly decreased when compared to normal), overall the galactosemic rat model is not closely parallel to the diabetic rat model in extra-ocular tissues. In addition, several effects of diabetes (increased hepatic glutathione peroxidase activity, increased superoxide dismutase activity in kidney and heart, decreased renal and increased cardiac catalase activity) were not mimicked in galactosemic rats, and glutathione concentration in both liver and heart was affected in opposite ways in diabetic rats and galactose- fed rats. Insulin treatment reversed/prevented the activity changes in renal and cardiac superoxide dismutase, renal and cardiac catalase, and hepatic glutathione peroxidase as well as the hepatic changes in lipid peroxidation and reduced and oxidized glutathione, and the increase in cardiac glutathione. Thus, prudence should be exercised in the use of experimentally galactosemic rats as a model for diabetes until the correspondence of the models has been more fully characterized.  相似文献   

15.
Osmotic and oxidative stress have been implicated in the pathogenesis of diabetic cataract. Nigerloxin, a fungal metabolite, has been shown to possess aldose reductase inhibitory and free radical scavenging potential, in vitro. In the present study, the beneficial influence of nigerloxin was investigated on diabetes-induced alteration in the eye lens of rats treated with streptozotocin. Groups of diabetic rats were administered nigerloxin orally (100?mg·(kg body mass)(-1)·day(-1)) for 30?days. The activity of lens polyol pathway enzymes?(aldose reductase and sorbitol dehydrogenase), lipid peroxides, and advanced glycation end products (AGEs) were increased in the diabetic animals. Levels of glutathione as well as the activity of antioxidant enzymes?(superoxide dismutase, glutathione-S-transferase, and glutathione peroxidase) were decreased in the eye lens of the diabetic animals. The administration of nigerloxin significantly decreased levels of lipid peroxides and AGEs in the lens of the diabetic rats. Increase in the activity of aldose reductase and sorbitol dehydrogenase in the lens was countered by nigerloxin treatment. The activity of glutathione and antioxidant enzyme in the lens was significantly elevated in nigerloxin-treated diabetic rats. Examination of the treated rats' eyes indicated that nigerloxin delayed cataractogenesis in the diabetic rats. The results suggest the beneficial countering of polyol pathway enzymes and potentiation of the antioxidant defense system by nigerloxin in diabetic animals, implicating its potential in ameliorating cataracts in diabetics.  相似文献   

16.
The purpose of this study was to evaluate the induction of oxidative stress in heart and erythrocytes from rats with abdominal aorta coarctation (Coa) compared with sham-operated normotensive controls (Sham). The group of Coa animals developed myocardial hypertrophy, showing heart homogenates markedly increased levels of reduced glutathione (48%), lipid peroxidation (148%) and activation of superoxide dismutase and glutathione peroxidase (189% and 37%, respectively), compared with controls. Other oxidative stress indicators were also altered in erythrocytes from Coa rats: increased protein carbonyl content (141%) and total glutathione level (349%) were determined. Inactivation of the antioxidant enzymes catalase (27%), superoxide dismutase (58%) and glutathione peroxidase (25%) was observed in erythrocytes from the Coa group. Taken jointly our results provide strong evidence for the production of oxidative stress in heart and erythrocytes from aortic coarcted rats.  相似文献   

17.
Endothelial dysfunction develops as a result of oxidative stress and is responsible for diabetic vascular complications. We investigated the effects of selenium on endothelial dysfunction and oxidative stress in type 2 diabetic rats. Male Wistar rats were divided into five groups: controls, untreated diabetics, and diabetics treated with 180, 300, 500 mcg/kg selenium each day. Diabetes was induced by a single intraperitoneal injection of low dose streptozotocin to rats fed a high fat diet. Endothelium-dependent and -independent relaxations were measured in the thoracic aorta. Nicotinamide adenine dinucleotide phosphate (NADPH) oxidase and endothelial nitric oxide synthase (eNOS) mRNA expressions were analyzed using real-time polymerase chain reaction (RT-PCR). Fasting blood glucose, lipid profile, lipid oxidation, insulin and nitric oxide were measured in blood samples. Malondialdehyde, superoxide dismutase, catalase and glutathione peroxidase levels were measured in liver samples. RT-PCR showed that selenium reversed increased NADPH oxidase expression and decreased eNOS expression to control levels. Selenium also improved the impairment of endothelium-dependent vasorelaxation in the diabetic aorta. Selenium treatment significantly decreased blood glucose, cholesterol and triglyceride levels, and enhanced the antioxidant status in diabetic rats. Our findings suggest that selenium restores a normal metabolic profile and ameliorates vascular responses and endothelial dysfunction in diabetes by regulating antioxidant enzyme and nitric oxide release.  相似文献   

18.
Increased oxidative stress and reduced nitric oxide (NO) bioactivity are key features of diabetes mellitus that eventually result in cardiovascular abnormalities. We assessed whether N-acetylcysteine (NAC), an antioxidant and glutathione precursor, could prevent the hyperglycaemia induced increase in oxidative stress, restore NO availability and prevent depression of arterial blood pressure and heart rate in vivo in experimental diabetes. Control (C) and streptozotocin-induced diabetic (D) rats were treated or not treated with NAC in drinking water for 8 weeks, initiated 1 week after induction of diabetes. At termination, plasma levels of free 15-F2t-isoprostane, a specific marker of oxygen free radical induced lipid peroxidation, was increased while the plasma total antioxidant concentration was decreased in untreated diabetic rats as compared to control rats (P<0.05). This was accompanied by a significant reduction of plasma levels of nitrate and nitrite, stable metabolites of NO, (P<0.05, D vs. C) and a reduced endothelial NO synthase protein expression in the heart and in aortic and mesenteric artery tissues. Systolic, diastolic and mean arterial blood pressures (SBP, DBP and MAP) and heart rate (HR) were reduced in diabetic rats (P<0.05 vs. C) and NAC normalised the changes that occurred in the diabetic rats. The protective effects may be attributable to restoration of NO bioavailability in the circulation.  相似文献   

19.
Lipid peroxidation and activity of antioxidant enzymes in diabetic rats   总被引:10,自引:0,他引:10  
We hypothesized that oxygen free radicals (OFRs) may be involved in pathogenesis of diabetic complications. We therefore investigated the levels of lipid peroxidation by measuring thiobarbituric acid reactive substances (TBARS) and activity of antioxidant enzymes [superoxide dismutase (SOD), glutathione peroxidase (GSH-Px) and catalase (CAT)] in tissues and blood of streptozotocin (STZ)-induced diabetic rats. The animals were divided into two groups: control and diabetic. After 10 weeks (wks) of diabetes the animals were sacrificed and liver, heart, pancreas, kidney and blood were collected for measurement of various biochemical parameters. Diabetes was associated with a significant increase in TBARS in pancreas, heart and blood. The activity of CAT increased in liver, heart and blood but decreased in kidney. GSH-Px activity increased in pancreas and kidney while SOD activity increased in liver, heart and pancreas. Our findings suggest that oxidative stress occurs in diabetic state and that oxidative damage to tissues may be a contributory factor in complications associated with diabetes.  相似文献   

20.
Increased oxidative stress and impaired antioxidant defense mechanisms are important factors in the pathogenesis and progression of diabetes mellitus and other oxidant-related diseases. This study was designed to determine whether alpha-lipoic acid, which has been shown to have substantial antioxidant properties, when administered (10 mg/kg ip) once daily for 14 days to normal and diabetic female Sprague-Dawley rats would prevent diabetes-induced changes in biomarkers of oxidative stress in liver, kidney and heart. Serum glucose concentrations, aspartate aminotransferase activity, and glycated hemoglobin levels, which were increased in diabetes, were not significantly altered by alpha-lipoic acid treatment. Normal rats treated with a high dose of alpha-lipoic acid (50 mg/kg) survived but diabetic rats on similar treatment died during the course of the experiment. The activity of glutathione peroxidase was increased in livers of normal rats treated with alpha-lipoic acid, but decreased in diabetic rats after alpha-lipoic acid treatment. Hepatic catalase activity was decreased in both normal and diabetic rats after alpha-lipoic acid treatment. Concentrations of reduced glutathione and glutathione disulfide in liver were increased after alpha-lipoic acid treatment of normal rats, but were not altered in diabetics. In kidney, glutathione peroxidase activity was elevated in diabetic rats, and in both normal and diabetic animals after alpha-lipoic acid treatment. Superoxide dismutase activity in heart was decreased in diabetic rats but normalized after treatment with alpha-lipoic acid; other cardiac enzyme activities were not influenced by either diabetes or antioxidant treatment. These results suggest that after 14 days of treatment with an appropriate pharmacological dose, alpha-lipoic acid may reduce oxidative stress in STZ-induced diabetic rats, perhaps by modulating the thiol status of the cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号