首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Efficient production of germline transgenic chickens using lentiviral vectors   总被引:16,自引:0,他引:16  
An effective method for genetic modification of chickens has yet to be developed. An efficient technology, enabling production of transgenic birds at high frequency and with reliable expression of transgenes, will have many applications, both in basic research and in biotechnology. We investigated the efficiency with which lentiviral vectors could transduce the chicken germ line and examined the expression of introduced reporter transgenes. Ten founder cockerels transmitted the vector to between 4% and 45% of their offspring and stable transmission to the G2 generation was demonstrated. Analysis of expression of reporter gene constructs in several transgenic lines showed a conserved expression profile between individuals that was maintained after transmission through the germ line. These data demonstrate that lentiviral vectors can be used to generate transgenic lines with an efficiency in the order of 100-fold higher than any previously published method, with no detectable silencing of transgene expression between generations.  相似文献   

2.
A lentiviral construct for an enhanced green fluorescent protein (eGFP) driven by a chicken beta-actin promoter, cytomegalovirus enhancer, and intronic sequences from rabbit beta-globin (CAG) was used to produce transgenic lines of rats for evaluation of the usefulness of this approach in gene function studies. Fertilized eggs were collected from inbred Dahl S and outbred Sprague-Dawley rats, and approximately 100 pl of concentrated virus were microinjected into the perivitrelline space of one-cell embryos. Of 121 embryos injected, 60 pups (49.6%) were born. Transgenic rates averaged 22% in Dahl S and 14% in Sprague-Dawley rats. Copy number ranged from one to four in the founders, and the inheritance of the transgene in a subsequent F(1) population was 48.2%. The small number of insertion sites enabled us to derive inbred transgenic lines with a single copy of the transgene within one generation. Sequencing of each transgene insertion site revealed that they inserted as single copies with a preference for the introns of genes. The CAG promoter drove high levels of eGFP expression in brain, kidney, heart, and vasculature, making it very suitable for exploring the cardiovascular function of newly discovered genes. The pattern of eGFP expression was similar across five different F(1) transgenic lines, indicating that the expression of the transgene was independent of its chromosomal position. Thus lentiviral transgenesis provides a powerful tool for the production of transgenic inbred rats and will enhance the usefulness of this species in gene discovery and target validation studies.  相似文献   

3.
Traditional methods of transgene delivery in livestock are inefficient. Recently, human immunodeficiency virus (HIV-1) based lentiviral vectors have been shown to offer an efficient transgene delivery system. We now extend this method by demonstrating efficient generation of transgenic pigs using an equine infectious anaemia virus derived vector. We used this vector to deliver a green fluorescent protein expressing transgene; 31% of injected/transferred eggs resulted in a transgenic founder animal and 95% of founder animals displayed green fluorescence. This compares favourably with results using HIV-1 based vectors, and is substantially more efficient than the standard pronuclear microinjection method, indicating that lentiviral transgene delivery may be a general tool with which to efficiently generate transgenic mammals.  相似文献   

4.

Background

Low efficiency of gene transfer and silence of transgene expression are the critical factors hampering the development of transgenic livestock. Recently, transfer of recombinant lentivirus has been demonstrated to be an efficient transgene delivery method in various animals. However, the lentiviral transgenesis and the methylation status of transgene in sheep have not been well addressed.

Methodology/Principle Findings

EGFP transgenic sheep were generated by injecting recombinant lentivirus into zygotes. Of the 13 lambs born, 8 carried the EGFP transgene, and its chromosomal integration was identified in all tested tissues. Western blotting showed that GFP was expressed in all transgenic founders and their various tissues. Analysis of CpG methylation status of CMV promoter by bisulfate sequencing unraveled remarkable variation of methylation levels in transgenic sheep. The average methylation levels ranged from 37.6% to 79.1% in the transgenic individuals and 34.7% to 83% in the tested tissues. Correlative analysis of methylation status with GFP expression revealed that the GFP expression level was inversely correlated with methylation density. The similar phenomenon was also observed in tested tissues. Transgene integration determined by Southern blotting presented multiple integrants ranging from 2 to 6 copies in the genome of transgenic sheep.

Conclusions/Significance

Injection of lentiviral transgene into zygotes could be a promising efficient gene delivery system to generate transgenic sheep and achieved widespread transgene expression. The promoter of integrants transferred by lentiviral vector was subjected to dramatic alteration of methylation status and the transgene expression level was inversely correlative with promoter methylation density. Our work illustrated for the first time that generation of transgenic sheep by injecting recombinant lentivirus into zygote could be an efficient tool to improve sheep performance by genetic modification.  相似文献   

5.
The use of genetically modified germ cells is an ideal system to induce transgenesis in birds; the primordial germ cell (PGC) is the most promising candidate for this system. In the present study, we confirmed the practical application of this system using lentivirus-transduced chicken gonadal PGCs (gPGCs). Embryonic gonads were collected from 5.5-d old Korean Oge chickens (black feathers). The gPGC population was enriched (magnetic-activated cell sorting technique) and then they were transduced with a lentiviral vector expressing enhanced green fluorescent protein (eGFP), under the control of the Rous sarcoma virus (RSV) promoter. Subsequently, the eGFP-transduced PGCs were transplanted into blood vessels of 2.5-d-old embryonic White Leghorn (white feathers). Among 21 germline chimeric chickens, one male produced transgenic offspring (G1 generation), as demonstrated by testcross and genetic analysis. A homozygous line was produced and maintained through the G3 generation. Based on serum biochemistry, there were no significant physiological differences between G3 homozygotes and non-transgenic chickens. However, since eGFP transgene expression in G3 chickens varied among tissues, it was further characterized by Western blotting and ELISA. Furthermore, there were indications that DNA methylation may have affected tissue-specific expression of transgenes in chickens. In conclusion, the PGC-mediated approach used may be an efficient tool for avian transgenesis, and transgenic chickens could provide a useful model for investigating regulation of gene expression.  相似文献   

6.
Genetically modified domestic animals have many potential applications ranging from basic research to production agriculture. One of the goals in transgenic animal production schemes is to reliably predict the expression pattern of the foreign gene. Establishing a method to screen genetically modified embryos for transgene expression before transfer to surrogates may improve the likelihood of producing offspring with the desired expression pattern. In order to determine how transgene expression may be regulated in the early embryo, we generated porcine embryos from two distinct genetically modified cell lines by using the nuclear transfer (NT) technique. Both cell lines expressed the enhanced green fluorescent protein (eGFP); the first was a fibroblast cell line derived from the skin of a newborn pig that expressed eGFP, whereas the second was a fetal derived fibroblast cell line into which the eGFP gene was introduced by a retroviral vector. The reconstructed embryos were activated by electrical pulses and cultured in NCSU23. Although the in vitro developmental ability of each group of NT embryos was not different, the eGFP expression pattern was different. All embryos produced from the transduced fetal cell line fluoresced, but only 26% of the embryos generated from the newborn cell line fluoresced, and among those that did express eGFP, more than half had a mosaic expression pattern. This was unexpected because the fetal cell line was not clonally selected, and each cell had potentially different sites of integration. Embryos generated from the newborn cell line were surgically transferred to five surrogate gilts. One gilt delivered four female piglets, all of which expressed eGFP, and all had microsatellites identical to the donor. Here we demonstrate that transgene expression in all the blastomeres of an NT embryo is not uniform. In addition, transgene expression in a genetically manipulated embryo may not be an accurate indicator of expression in the resulting offspring.  相似文献   

7.
Generation of transgenic cattle by lentiviral gene transfer into oocytes   总被引:14,自引:0,他引:14  
The potential benefits of transgenic cattle range from the production of large quantities of pharmaceutically relevant proteins to agricultural improvement. However, the production of transgenic cattle is presently time-consuming and expensive because of the inefficiency of the classical DNA microinjection technique. Here, we report the use of lentiviruses for the efficient generation of transgenic cattle. Initial attempts to produce transgenic cattle by lentiviral infection of preimplantation embryos were not successful. In contrast, infection of bovine oocytes with lentiviral vectors carrying an enhanced green fluorescent protein (eGFP) expression cassette followed by in vitro fertilization resulted in the birth of transgenic calves. Furthermore, all of the calves generated by infection of oocytes were transgenic, and 100% of these animals expressed eGFP as detected by in vivo imaging and Western blotting. In addition, a transgenic calf was produced by infection of fetal fibroblasts followed by nuclear transfer into enucleated oocytes. Taken together, after adjusting lentiviral transgenesis to cattle, unprecedented high transgenesis and expression rates were achieved.  相似文献   

8.
Lentiviral transgenesis is now recognized as an extremely efficient and cost-effective method to produce transgenic animals. Transgenes delivered by lentiviral vectors exhibited inheritable expression in many species including those which are refractory to genetic modification such as non-human primates. However, epigenetic modification was frequently observed in lentiviral integrants, and transgene expression found to be inversely correlated with methylation density. Recent data showed that about one-third lentiviral integrants exhibited hypermethylation and low expression, but did not demonstrate whether those integrants with high expression could remain constant expression and hypomethylated during long term germline transmission. In this study, using lentiviral eGFP transgenic mice as the experimental animals, lentiviral eGFP expression levels and its integrant numbers in genome were quantitatively analyzed by fluorescent quantitative polymerase-chain reaction (FQ-PCR), using the house-keeping gene ribosomal protein S18 (Rps18) and the single copy gene fatty acid binding protein of the intestine (Fabpi) as the internal controls respectively. The methylation densities of the integrants were quantitatively analyzed by bisulfite sequencing. We found that the lentiviral integrants with high expression exhibited a relative constant expression level per integrant over at least seven generations. Besides, the individuals containing these integrants exhibited eGFP expression levels which were positively and almost linearly correlated with the integrant numbers in their genomes, suggesting that no remarkable position effect on transgene expression of the integrants analyzed was observed. In addition, over seven generations the methylation density of these integrants did not increase, but rather decreased remarkably, indicating that these high expressing integrants were not subjected to de novo methylation during at least seven generations of germline transmission. Taken together, these data suggested that transgenic lines with long term stable expression and no position effect can be established by lentiviral transgenesis.  相似文献   

9.
Lentiviral technology is a powerful tool for the creation of stable transgenic animals. However, uncertainties have remained whether constitutive promoters resist long-term silencing. We used concentrated HIV-1 based lentiviral vectors to create stable transgenic BALB/c mice by perivitelline injection. In our vectors eGFP expression was driven by the human EF1α promoter. The established transgenic animals were analyzed for eGFP expression by in vivo fluorescence imaging, PCR, histology and flow-cytometry. eGFP expression showed even distribution without mosaicism; however, tissue-dependent differences of eGFP expression were observed. Up to the sixth generation only one newborn showed eGFP inactivation. eGFP + transgenic bone marrow cells efficiently provided long-term haemopoietic repopulation in radiation chimeras, regenerating all bone marrow-derived lineages with eGFP + cells with distinct eGFP expression profiles. The established eGFP + BALB/c mouse strain is expected to be extremely useful in various immunological experiments.  相似文献   

10.
Previously we successfully produced a group of EGFP-expressing founder transgenic pigs by a newly developed efficient and simple pig transgenesis method based on cytoplasmic injection of piggyBac plasmids. In this study, we investigated the growth and reproduction performance and characterized the transgene insertion, transmission, and expression patterns in transgenic pigs generated by piggyBac transposition. Results showed that transgene has no injurious effect on the growth and reproduction of transgenic pigs. Multiple copies of monogenic EGFP transgene were inserted at noncoding sequences of host genome, and passed from founder transgenic pigs to their transgenic offspring in segregation or linkage manner. The EGFP transgene was ubiquitously expressed in transgenic pigs, and its expression intensity was associated with transgene copy number but not related to its promoter DNA methylation level. To the best of our knowledge, this is first study that fully described the growth and reproduction performance, transgene insertion, expression, and transmission profiles in transgenic pigs produced by piggyBac system. It not only demonstrates that piggyBac transposition-mediated gene transfer is an effective and favorable approach for pig transgenesis, but also provides scientific information for understanding the transgene insertion, expression and transmission patterns in transgenic animals produced by piggyBac transposition.  相似文献   

11.
Several strategies have been used to generate transgenic birds. The most successful method so far has been the injection of lentiviral vectors into the subgerminal cavity of a newly laid egg. We report here a new, easy and effective way to produce transgenic quails through direct injection of a lentiviral vector, containing an enhanced-green fluorescent protein (eGFP) transgene, into the blood vessels of quail embryos at Hamburger-Hamilton stage 13–15 (HH13–15). A total of 80 embryos were injected and 48 G0 chimeras (60%) were hatched. Most injected embryo organs and tissues of hatched quails were positive for eGFP. In five out of 21 mature G0 male quails, the semen was eGFP-positive, as detected by polymerase chain reaction (PCR), indicating transgenic germ line chimeras. Testcross and genetic analyses revealed that the G0 quail produced transgenic G1 offspring; of 46 G1 hatchlings, 6 were transgenic (6/46, 13.0%). We also compared this new method with the conventional transgenesis using stage X subgerminal cavity injection. Total 240 quail embryos were injected by subgerminal cavity injection, of which 34 (14.1%) were hatched, significantly lower than the new method. From these hatched quails semen samples were collected from 19 sexually matured males and tested for the transgene by PCR. The transgene was present in three G0 male quails and only 4/236 G1 offspring (1.7%) were transgenic. In conclusion, we developed a novel bird transgenic method by injection of lentiviral vector into embryonic blood vessel at HH 13–15 stage, which result in significant higher transgenic efficiency than the conventional subgerminal cavity injection.  相似文献   

12.
Safe and efficient gene transfer systems are the basis of gene therapy applications. Non-integrating lentiviral (NIL) vectors are among the most promising candidates for gene transfer tools, because they exhibit high transfer efficiency in both dividing and non-dividing cells and do not present a risk of insertional mutagenesis. However, non-integrating lentiviral vectors cannot introduce stable exogenous gene expression to dividing cells, thereby limiting their application. Here, we report the design of a non-integrating lentiviral vector that contains the minimal scaffold/matrix attachment region (S/MAR) sequence (SNIL), and this SNIL vector is able to retain episomal transgene expression in dividing cells. Using SNIL vectors, we detected the expression of the eGFP gene for 61 days in SNIL-transduced stable CHO cells, either with selection or not. In the NIL group without the S/MAR sequence, however, the transduced cells died under selection for the transient expression of NIL vectors. Furthermore, Southern blot assays demonstrated that the SNIL vectors were retained extrachromosomally in the CHO cells. In conclusion, the minimal S/MAR sequence retained the non-integrating lentiviral vectors in dividing cells, which indicates that SNIL vectors have the potential for use as a gene transfer tool.  相似文献   

13.
Ubiquitous GFP expression in transgenic chickens using a lentiviral vector   总被引:9,自引:0,他引:9  
We report the first ubiquitous green fluorescent protein expression in chicks using a lentiviral vector approach, with eGFP under the control of the phosphoglycerol kinase promoter. Several demonstrations of germline transmission in chicks have been reported previously, using markers that produce tissue-specific, but not ubiquitous, expression. Using embryos sired by a heterozygous male, we demonstrate germline transmission in the embryonic tissue that expresses eGFP uniformly, and that can be used in tissue transplants and processed by in situ hybridization and immunocytochemistry. Transgenic tissue is identifiable by both fluorescence microscopy and immunolabeling, resulting in a permanent marker identifying transgenic cells following processing of the tissue. Stable integration of the transgene has allowed breeding of homozygous males and females that will be used to produce transgenic embryos in 100% of eggs laid upon reaching sexual maturity. These results demonstrate that a transgenic approach in the chick model system is viable and useful even though a relatively long generation time is required. The transgenic chick model will benefit studies on embryonic development, as well as providing the pharmaceutical industry with an economical bioreactor.  相似文献   

14.
Lentiviral vectors are now recognised as an efficient transgene delivery system which can result in greater than 90% of founder animals carrying the transgene. Vector injection into the perivitelline space has emerged as the standard delivery method but is limited by the need for high-titre lentivirus vector preparations. Based on a modified perivitelline injection method we demonstrate that transgenic animals can be generated from low-titre virus vector preparations further simplifying lentiviral transgenesis. Repeat injection of 107 TU/ml vector preparation resulted in 23% of embryos carrying the transgene compare to 1% from a single injection. Embryos exposed to repeat injection of vector developed to blastocyst with the same efficiency as non-injected embryos and produced transgenic mice capable of transmitting the transgene through the germline  相似文献   

15.
16.
We have analyzed the inheritance and expression of a line of transgenic salmon harboring the antifreeze protein gene from the winter flounder. The genomic clone 2A-7 coding for a major liver-type antifreeze protein gene (wflAFP-6) was integrated into the salmon genome. From a transgenic founder (# 1469), an F3 generation was produced. In this study, southern blot analysis showed that only one copy of the antifreeze protein transgene was integrated into a unique site in F3 transgenic fish. The integration site was cloned and characterized. Northern analysis indicated that the antifreeze protein mRNA was only expressed in the liver and showed seasonal variation. All of the F3 offspring contained similar levels of the antifreeze protein precursor protein in the sera and the sera of these offspring showed a characteristic hexagonal ice crystal pattern indicating the presence of antifreeze activity. In addition, the antifreeze protein precursor protein level was found to vary with the season, being highest in the month of November and lowest in May. This study had demonstrated a tissue-specific and stable expression of the antifreeze protein transgene in the F3 generation of the transgenic salmon 1469 line.  相似文献   

17.
Small fish are a popular laboratory model for studying gene expression and function by transgenesis. If, however, the transgenes are not readily detectable by visual inspection, a large number of embryos must be injected, raised and screened to identify positive founder fish. Here, we describe a strategy to efficiently generate and preselect transgenic lines harbouring any transgene of interest. Co-injection of a selectable reporter construct (e.g., GFP), together with the transgene of interest on a separate plasmid using the I-SceI meganuclease approach, results in co-distribution of the two plasmids. The quality of GFP expression within the F0 generation therefore reflects the quality of injection and allows efficient and reliable selection of founder fish that are also positive for the second transgene of interest. In our experience, a large fraction (up to 50%) of GFP-positive fish will also be transgenic for the second transgene, thus providing a rapid (within 3-4 months) and efficient way to establish transgenic lines for any gene of interest in medaka and zebrafish.  相似文献   

18.
In this report we describe an easy, highly efficient transgenesis method for Xenopus. The method is very simple; a commercially available meganuclease, I-SceI, is incubated with a transgene construct carrying its recognition sites, and is subsequently microinjected into fertilized eggs. Approximately 30% (in Xenopus tropicalis) or 20% (in Xenopus laevis) of injected embryos exhibit non-mosaic, promoter-dependent transgene expression, and transgenes from the founder animals are transmitted to offspring. The method is compatible with mRNA or antisense morpholino oligonucleotide injection, and these secondary reagents can be introduced simultaneously or sequentially with a transgene to test their interaction. This high-throughput transgenic technique will be a powerful tool for studying the complex wiring of regulatory networks at the genome-wide level, as well as for facilitating genetic studies in the rapidly breeding diploid frog, X. tropicalis.  相似文献   

19.
Hematopoietic Stem Cell (HSC) targeted gene transfer is an attractive treatment option for a number of hematopoietic disorders caused by single gene defects. However, extensive methylation of promoter sequences results in silencing of therapeutic gene expression. The choice of an appropriate promoter is therefore crucial for reproducible, stable and long-term transgene expression in clinical gene therapy. Recent studies suggest efficient and stable expression of transgenes from the ubiquitous chromatin opening element (UCOE) derived from the human HNRPA2B1-CBX3 locus can be achieved in murine HSC. Here, we compared the use of HNRPA2B1-CBX3 UCOE (A2UCOE)-mediated transgene regulation to two other frequently used promoters namely EF1α and PGK in human fetal liver-derived HSC (hflHSC). Efficient transduction of hflHSC with a lentiviral vector containing an HNRPA2B1-CBX3 UCOE-eGFP (A2UCOE-eGFP) cassette was achieved at higher levels than that obtained with umbilical cord blood derived HSC (3.1x; p<0.001). While hflHSC were readily transduced with all three test vectors (A2UCOE-eGFP, PGK-eGFP and EF1α-eGFP), only the A2-UCOE construct demonstrated sustained transgene expression in vitro over 24 days (p<0.001). In contrast, within 10 days in culture a rapid decline in transgene expression in both PGK-eGFP and EF1α-eGFP transduced hflHSC was seen. Subsequently, injection of transduced cells into immunodeficient mice (NOD/SCID/Il2rg -/-) demonstrated sustained eGFP expression for the A2UCOE-eGFP group up to 10 months post transplantation whereas PGK-eGFP and EF1α-eGFP transduced hflHSC showed a 5.1 and 22.2 fold reduction respectively over the same time period. We conclude that the A2UCOE allows a more efficient and stable expression in hflHSC to be achieved than either the PGK or EF1α promoters and at lower vector copy number per cell.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号