首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mediterranean mountains harbour some of Europe’s highest floristic richness. This is accounted for largely by the mesoclimatic variety in these areas, along with the co-occurrence of a small area of Eurosiberian, Boreal and Mediterranean species, and those of Tertiary Subtropical origin. Throughout the twenty-first century, we are likely to witness a climate change-related modification of the biogeographic scenario in these mountains, and there is therefore a need for accurate climate regionalisations to serve as a reference of the abundance and distribution of species and communities, particularly those of a relictic nature. This paper presents an objective mapping method focussing on climate regions in a mountain range. The procedure was tested in the Cordillera Central Mountains of the Iberian Peninsula, in the western Mediterranean, one of the ranges occupying the largest area of the Mediterranean Basin. This regionalisation is based upon multivariate analyses and upon detailed cartography employing 27 climatic variables. We used spatial interpolation of data based on geographic information. We detected high climatic diversity in the mountain range studied. We identified 13 climatic regions, all of which form a varying mosaic throughout the annual temperature and rainfall cycle. This heterogeneity results from two geographically opposed gradients. The first one is the Mediterranean-Euro-Siberian variation of the mountain range. The second gradient involves the degree of oceanicity, which is negatively related to distance from the Atlantic Ocean. The existing correlation between the climatic regions detected and the flora existing therein enables the results to be situated within the projected trends of global warming, and their biogeographic and ecological consequences to be analysed.  相似文献   

2.
祖奎玲  王志恒 《生物多样性》2022,30(5):21451-641
过去1个世纪以来, 全球气候变化显著并已成为全球生物多样性面临的重要威胁之一。如何利用有限的资源最有效地保护生物多样性已成为亟待解决的最重要科学问题之一。山地因其具有较高的生境异质性、气候多样性和较低的人类活动干扰, 已成为最重要的生物多样性避难所, 也具有较高的生态服务价值, 在生物多样性保护中扮演着重要角色。但山地更容易受到气候变化的影响, 山地地区较为剧烈的气候变化将对山地生态系统的稳定性及其多样性造成严重威胁。理解山地物种海拔分布对气候变化的响应和潜在机理, 以及气候变化带来的物种海拔分布变化的负面效应, 将为全球气候变化背景下的山地生物多样性保护提供参考依据。本文综述了全球山地地区的气候变化情况, 总结了物种海拔迁移的研究进展, 重点讨论了山地物种分布最适海拔、海拔上下限和海拔分布范围变化的研究进展及不足, 比较了不同地区和不同类群物种海拔迁移的差异性, 以及物种对气候变化响应的滞后性。从生物及非生物因素等多个角度概括了物种海拔迁移响应气候变化的潜在机理, 评估并总结了气候变化引起的物种海拔分布所产生的负面效应, 主要对物种向上迁移对高海拔地区物种多样性的影响、物种迁移带来的分布区改变导致的物种灭绝风险以及物种海拔分布变化导致的种间相互作用改变等方面进行全面探讨。最后, 展望了未来在此领域研究中应注意的问题, 提出了在未来气候变化下山地生物多样性保护需要采取的措施, 强调应重点关注对气候变化较为敏感的类群及生物多样性区域, 加强中国山地物种对气候变化响应的监测网络建设和研究力度, 重点加强监测气候变化对动植物互作关系的影响。  相似文献   

3.
Wetlands in general and mires in particular belong to the most important terrestrial carbon stocks globally. Mires (i.e. bogs, transition bogs and fens) are assumed to be especially vulnerable to climate change because they depend on specific, namely cool and humid, climatic conditions. In this paper, we use distribution data of the nine mire types to be found in Austria and habitat distribution models for four IPCC scenarios to evaluate climate change induced risks for mire ecosystems within the 21st century. We found that climatic factors substantially contribute to explain the current distribution of all nine Austrian mire ecosystem types. Summer temperature proved to be the most important predictor for the majority of mire ecosystems. Precipitation—mostly spring and summer precipitation sums—was influential for some mire ecosystem types which depend partly or entirely on ground water supply (e.g. fens). We found severe climate change induced risks for all mire ecosystems, with rain-fed bog ecosystems being most threatened. Differences between scenarios are moderate for the mid-21st century, but become more pronounced towards the end of the 21st century, with near total loss of climate space projected for some ecosystem types (bogs, quagmires) under severe climate change. Our results imply that even under minimum expected, i.e. inevitable climate change, climatic risks for mires in Austria will be considerable. Nevertheless, the pronounced differences in projected habitat loss between moderate and severe climate change scenarios indicate that limiting future warming will likely contribute to enhance long-term survival of mire ecosystems, and to reduce future greenhouse gas emissions from decomposing peat. Effectively stopping and reversing the deterioration of mire ecosystems caused by conventional threats can be regarded as a contribution to climate change mitigation. Because hydrologically intact mires are more resilient to climatic changes, this would also maintain the nature conservation value of mires, and help to reduce the severe climatic risks to which most Austrian mire ecosystems may be exposed in the 2nd half of the 21st century according to IPCC scenarios.  相似文献   

4.
Limiting the increase in global average temperature to 2 °C is the objective of international efforts aimed at avoiding dangerous climate impacts. However, the regional response of terrestrial ecosystems and the services that they provide under such a scenario are largely unknown. We focus on mountain forests in the European Alps and evaluate how a range of ecosystem services (ES) are projected to be impacted in a 2 °C warmer world, using four novel regional climate scenarios. We employ three complementary forest models to assess a wide range of ES in two climatically contrasting case study regions. Within each climate scenario we evaluate if and when ES will deviate beyond status quo boundaries that are based on current system variability. Our results suggest that the sensitivity of mountain forest ES to a 2 °C warmer world depends heavily on the current climatic conditions of a region, the strong elevation gradients within a region, and the specific ES in question. Our simulations project that large negative impacts will occur at low and intermediate elevations in initially warm‐dry regions, where relatively small climatic shifts result in negative drought‐related impacts on forest ES. In contrast, at higher elevations, and in regions that are initially cool‐wet, forest ES will be comparatively resistant to a 2 °C warmer world. We also found considerable variation in the vulnerability of forest ES to climate change, with some services such as protection against rockfall and avalanches being sensitive to 2 °C global climate change, but other services such as carbon storage being reasonably resistant. Although our results indicate a heterogeneous response of mountain forest ES to climate change, the projected substantial reduction of some forest ES in dry regions suggests that a 2 °C increase in global mean temperature cannot be seen as a universally ‘safe’ boundary for the maintenance of mountain forest ES.  相似文献   

5.
Many species have suffered reduction in habitable area due to recent climate change, but few studies evaluated how these range collapses will impact genetic diversity. Here, we modeled shifts in the species’ geographical range to evaluate how genetic diversity of Caryocar brasiliense will change as a consequence of predicted climate change in the next 50 years. A total of 135 records of species occurrence were obtained to model species’ distribution based on the current environment using MAXENT and forecasting future distribution using a combination of three coupled atmospheric–oceanic global circulation models. Genetic parameters were estimated based on the polymorphism at ten microsatellite loci for 466 individuals. Our results show that climatic suitable areas for C. brasiliense will be restricted to the southernmost distribution of savanna vegetation. Genetic diversity and the number of alleles may decrease slowly if populations persist in regions up to 0.5 of environmental suitability estimated by MAXENT, but will sharply decrease above this level. Nevertheless, deviation from mutation–drift equilibrium is significant even if a small amount of local populations is lost. More climatic suitable areas in the future will be in the most disturbed regions in Brazil, and populations that will persist there are those with higher levels of inbreeding at present. This may impose several threats to the species, including the limited capacity to cope with ongoing climatic changes by adaptation and constraints to dispersal.  相似文献   

6.
Climate change is anticipated to alter plant species distributions. Regional context, notably the spatial complexity of climatic gradients, may influence species migration potential. While high‐elevation species may benefit from steep climate gradients in mountain regions, their persistence may be threatened by limited suitable habitat as land area decreases with elevation. To untangle these apparently contradictory predictions for mountainous regions, we evaluated the climatic suitability of four coniferous forest tree species of the western United States based on species distribution modeling (SDM) and examined changes in climatically suitable areas under predicted climate change. We used forest structural information relating to tree species dominance, productivity, and demography from an extensive forest inventory system to assess the strength of inferences made with a SDM approach. We found that tree species dominance, productivity, and recruitment were highest where climatic suitability (i.e., probability of species occurrence under certain climate conditions) was high, supporting the use of predicted climatic suitability in examining species risk to climate change. By predicting changes in climatic suitability over the next century, we found that climatic suitability will likely decline, both in areas currently occupied by each tree species and in nearby unoccupied areas to which species might migrate in the future. These trends were most dramatic for high elevation species. Climatic changes predicted over the next century will dramatically reduce climatically suitable areas for high‐elevation tree species while a lower elevation species, Pinus ponderosa, will be well positioned to shift upslope across the region. Reductions in suitable area for high‐elevation species imply that even unlimited migration would be insufficient to offset predicted habitat loss, underscoring the vulnerability of these high‐elevation species to climatic changes.  相似文献   

7.
Rapid changes in global climate are likely to alter species assemblages and environmental characteristics resulting in novel ecosystems. The ability to predict characteristics of future ecosystems is crucial for environmental planning and the development of effective climate change adaptation strategies. This paper presents an approach for envisioning novel ecosystems in future climates. Focusing on riparian ecosystems, we use qualitative process models to predict likely abiotic and biotic changes in four case study systems: tropical coastal floodplains, temperate streams, high mountain streams and urban riparian zones. We concentrate on functional groups rather than individual species and consider dispersal constraints and the capacity for genetic adaptation. Our scenarios suggest that climatic changes will reduce indigenous diversity, facilitate non-indigenous invasion (especially C4 graminoids), increase fragmentation and result in simplified and less distinctive riparian ecosystems. Compared to models based on biota-environment correlations, process models built on mechanistic understanding (like Bayesian belief networks) are more likely to remain valid under novel climatic conditions. We posit that predictions based on species’ functional traits will facilitate regional comparisons and can highlight effects of climate change on ecosystem structure and function. Ecosystems that have experienced similar modification to that expected under climate change (for example, altered flow regimes of regulated rivers) can be used to help inform and evaluate predictions. By manipulating attributes of these system models (for example, magnitude of climatic changes or adaptation strategies used), implications of various scenarios can be assessed and optimal management strategies identified.  相似文献   

8.
1. A survey of c. 350 remote high altitude and high latitude lakes from 12 different mountain regions across Europe was undertaken to explore ecosystem variability, climate forcing, environmental conditions and pollution threats at a scale not previously attempted.
2. Lakes were sampled for a range of contemporary and sub-fossil organisms including planktonic crustaceans, rotifers, littoral invertebrates, chironomids, diatoms and cladocerans. Survey and cartographic data were used to determine environmental characteristics at each site. Organic pollutants and trace metal concentrations were measured in the lake sediment.
3. A number of separate studies were undertaken which examined the environmental characteristics of the surveyed lakes (climate forcing and chemical composition), distribution of biota relative to local, regional and biogeographical factors and pollution threats (acidification, heavy metals and persistent organic pollutants) to these sensitive ecosystems.
4. There is a strong regional element to the way that environmental factors combine (including climate and pollution threats) and the biota responds in mountain lakes across Europe. From a management perspective it is clear that lake classification and the development of useful typologies and assessments of reference conditions should be undertaken at regional rather than pan-European scales.
5. There are some common features across lake districts related to the timing of industrialisation, but the studies carried out on metals, organic pollutants and nitrate deposition indicate that each lake district has distinct pollution threats. Climate warming already affects most of the lake districts and there are considerable uncertainties as to how this will modify conditions in remote European mountain systems.
6. The lake district concept goes beyond a geographical construct and merits further theoretical and experimental development as an ecological concept.  相似文献   

9.
Background: High-elevation mountain systems may be particularly responsive to climate change.

Aims: Here we investigate how changes along elevation gradients in mountain systems can aid in predicting vegetation distributional changes in time, focusing on how changing climatic controls affect meso-scale transitions at the lower and upper boundaries of alpine vegetation (with forest and subnival zones, respectively) as well as micro-scale transitions among plant communities within the alpine belt. We focus on climate-related drivers, particularly in relation to climate change, but also consider how species interactions, dispersal and responses to disturbance may influence plant responses to these abiotic drivers.

Results: Empirical observations and experimental studies indicate that changing climatic controls influence both meso-scale transitions at the upper and lower boundaries of alpine vegetation and micro-scale transitions among plant communities within tundra. Micro-scale heterogeneity appears to buffer response in many cases, while interactions between climate and other changes may often accelerate change.

Conclusions: Interactions with microtopography and larger edaphic gradients have the capacity to both facilitate rapid changes and reinforce stability, and that these interactions will affect the responsiveness of vegetation to climate change at different spatial scales.  相似文献   

10.
Broad‐scale assessments of how climate change might impact mountain ecosystems, especially in areas of high biodiversity and endemism, are compromised by the lack of localised climate feedback in global circulation models. Here, we use regionally downscaled climate models to highlight how spatial variation in forecast change could impact rare plant distributions differentially across the Eastern Arc Mountains of Tanzania and Kenya, part of the Eastern Afromontane Biodiversity Hotspot. Concordant with the theory that climatic stability facilitates the accumulation of rare species, we find significant positive correlations between endemic plant richness and future climatic persistence within the dispersal‐limiting sky islands of this mountain archipelago. Further, we explore the hypothesis that mountain plants will move upslope in response to climate change and find that, conversely, some species are predicted to tend downslope, despite warmer annual conditions, driven by changes in seasonality and water availability. Importantly, two thirds of the modelled plant species are predicted to respond in different directions in different parts of their ranges, exemplifying the potential for individualistic responses of species and disjunct populations to environmental change, and the need for regional focus in climate change impact assessment. Conservation planners, and more broadly those charged with developing climate adaption policy, are advised to take caution in inferring local patterns of change from zoomed perspectives of broad‐scale models. Moreover, a preoccupation with mean annual temperature as the principal driver of ecosystem change is misguided and could compromise efforts to make conservation plans resilient to future climate change. Faced with spatially complex and inherently uncertain future conditions, sensible priorities are to restore forest connectivity and to underpin adaption strategies with knowledge of how ecosystems and people have adapted to previous episodes of rapid change.  相似文献   

11.
Continental‐scale assessments of 21st century global impacts of climate change on biodiversity have forecasted range contractions for many species. These coarse resolution studies are, however, of limited relevance for projecting risks to biodiversity in mountain systems, where pronounced microclimatic variation could allow species to persist locally, and are ill‐suited for assessment of species‐specific threat in particular regions. Here, we assess the impacts of climate change on 2632 plant species across all major European mountain ranges, using high‐resolution (ca. 100 m) species samples and data expressing four future climate scenarios. Projected habitat loss is greater for species distributed at higher elevations; depending on the climate scenario, we find 36–55% of alpine species, 31–51% of subalpine species and 19–46% of montane species lose more than 80% of their suitable habitat by 2070–2100. While our high‐resolution analyses consistently indicate marked levels of threat to cold‐adapted mountain florae across Europe, they also reveal unequal distribution of this threat across the various mountain ranges. Impacts on florae from regions projected to undergo increased warming accompanied by decreased precipitation, such as the Pyrenees and the Eastern Austrian Alps, will likely be greater than on florae in regions where the increase in temperature is less pronounced and rainfall increases concomitantly, such as in the Norwegian Scandes and the Scottish Highlands. This suggests that change in precipitation, not only warming, plays an important role in determining the potential impacts of climate change on vegetation.  相似文献   

12.
Our goal was to identify the climate change-related health risks and vulnerable populations specific to the mountainous regions of the Hindu Kush–Himalayas. We reviewed published information of the likely health consequences of climate change in mountain regions, especially the findings of a workshop for countries in the Hindu Kush–Himalaya region, organized by the World Health Organization, World Meteorological Organization, United Nations Environment Programme, and United Nations Development Programme. The main climate-related risks in the Hindu Kush–Himalaya region include the expansion of vector-borne diseases as pathogens take advantage of new habitats in altitudes that were formerly unsuitable. Diarrheal diseases could become more prevalent with changes in freshwater quality and availability. More extreme rainfall events are likely to increase the number of floods and landslides with consequent death and injuries. A unique risk is sudden floods from high glacier lakes, which cause substantial destruction and loss of life. Because glaciers are the main source of freshwater for upland regions and downstream countries, the long-term reduction in annual glacier snowmelt is expected to heighten existing water insecurity in these areas. Climate change also is bringing some benefits to mountain populations, including milder winters and longer growing seasons. Populations in mountain regions have unique combinations of vulnerabilities to climate change. The extent of the health impacts experienced will depend on the effectiveness of public health efforts to identify and implement low-cost preparedness and response measures, and on the speed at which emissions of greenhouse gas emissions can be reduced.  相似文献   

13.
Climate, climate change and tourism all interact. Part of the public discussion about climate change focusses on the tourism sector, with direct and indirect impacts being of equally high relevance. Climate and tourism are closely linked. Thus, climate is a very decisive factor in choices both of destination and of type of journey (active holidays, wellness, and city tours) in the tourism sector. However, whether choices about destinations or types of trip will alter with climate change is difficult to predict. Future climates can be simulated and projected, and the tendencies of climate parameters can be estimated using global and regional climate models. In this paper, the focus is on climate change in the mountainous regions of southwest Germany – the Black Forest. The Black Forest is one of the low mountain ranges where both winter and summer tourism are vulnerable to climate change due to its southern location; the strongest climatic changes are expected in areas covering the south and southwest of Germany. Moreover, as the choice of destination is highly dependent on good weather, a climatic assessment for tourism is essential. Thus, the aim of this study was to estimate climatic changes in mountainous regions during summer, especially for tourism and recreation. The assessment method was based on human-biometeorology as well as tourism-climatologic approaches. Regional climate simulations based on the regional climate model REMO were used for tourism-related climatic analyses. Emission scenarios A1B and B1 were considered for the time period 2021 to 2050, compared to the 30-year base period of 1971–2000, particularly for the warm period of the year, defined here as the months of March–November. In this study, we quantified the frequency, but not the means, of climate parameters. The study results show that global and regional warming is reflected in an increase in annual mean air temperature, especially in autumn. Changes in the spring show a slight negative trend, which is in line with the trend of a decrease in physiologically equivalent temperature as well as in thermal comfort conditions. Due to the rising air temperature, heat stress as well as sultry conditions are projected to become more frequent, affecting human health and recreation, especially at lower lying altitudes. The tops of the mountains and higher elevated areas still have the advantage of offering comfortable climatic conditions.  相似文献   

14.
Linares JC  Tíscar PA 《Oecologia》2011,167(3):847-859
Within-range effects of climatic change on tree growth at the sub-regional scale remain poorly understood. The aim of this research was to use climate and radial-growth data to explain how long-term climatic trends affect tree growth patterns along the southern limit of the range of Pinus nigra ssp. salzmannii (Eastern Baetic Range, southern Spain). We used regional temperature and precipitation data and measured sub-regional radial growth variation in P. nigra forests over the past two centuries. A dynamic factor analysis was applied to test the hypothesis that trees subjected to different climates have experienced contrasting long-term growth variability. We defined four representative stand types based on average temperature and precipitation to evaluate climate–growth relationships using linear mixed-effect models and multi-model selection criteria. All four stand types experienced warming and declining precipitation throughout the twentieth century. From the onset of the twentieth century, synchronised basal-area increment decline was accounted for by dynamic factor analysis and was related to drought by climate–growth models; declining basal-area increment trends proved stronger at lower elevations, whereas temperature was positively related to growth in areas with high rainfall inputs. Given the contrasting sub-regional tree-growth responses to climate change, the role of drought becomes even more complex in shaping communities and affecting selection pressure in the Mediterranean mountain forests. Potential vegetation shifts will likely occur over the dry edge of species distributions, with major impacts on ecosystem structure and function.  相似文献   

15.
Ecological theory predicts that individual survival should vary between sex and age categories due to differences in allocation of nutritional resources for growth and reproductive activities. During periods of environmental stress, such relationships may be exacerbated, and affect sex and age classes differently. We evaluated support for hypotheses about the relative roles of sex, age, and winter and summer climate on the probability of mountain goat (Oreamnos americanus) survival in coastal Alaska. Specifically, we used known-fates analyses (Program MARK) to model the effects of age, sex, and climatic variation on survival using data collected from 279 radio-marked mountain goats (118 M, 161 F) in 9 separate study areas during 1977–2008. Models including age, sex, winter snowfall, and average daily summer temperature (during Jul–Aug) best explained variation in survival probability of mountain goats. Specifically, our findings revealed that old animals (9+ yr) have lower survival than younger animals. In addition, males tended to have lower survival than females, though differences only existed among prime-aged adult (5–8 yr) and old (9+ yr) age classes. Winter climate exerted the strongest effects on mountain goat survival; summer climate, however, was significant and principally influenced survival during the following winter via indirect effects. Furthermore, old animals were more sensitive to the effects of winter conditions than young or prime-aged animals. These findings detail how climate interacts with sex and age characteristics to affect mountain goat survival. Critically, we provide baseline survival rate statistics across various age, sex, and climate scenarios. These data will assist conservation and management of mountain goats by enabling detailed, model-based demographic forecasting of human and/or climate-based population impacts. © 2011 The Wildlife Society.  相似文献   

16.
Niche conservatism (NC) describes the scenario in which species retain similar characteristics or traits over time and space, and thus has potentially important implications for understanding their biogeographic distributions. Evidence consistent with NC includes similar niche properties across geographically distant regions. We investigated whether NC was evident in stream diatom morphospecies by modeling species responses to environmental and climatic variables in a set of calibration sites (from the US) and then evaluated the models with test sets (from France, Finland, New Zealand, Antilles and La Réunion). We also examined whether diatom species showed congruency in environmental niche optima and niche breadths between the study regions, and whether species occupancy and functional traits influenced the observed patterns. We used boosted regression tree models with local environmental variables and climatic variables as predictors. We detected low NC in both environmental and climate models and a lack of consistent differences in NC between widely distributed and regionally rare species and among functional groups. For all species, diatom environmental and climatic optima varied clearly between the regions but showed some positive relationships especially for pH and total phosphorus. Diatom niche breadths were only weakly correlated between the US and the other regions. We demonstrated that diatoms showed overall relatively little NC globally, and NC was especially low for climatic variables. Collectively, these findings suggest that there may exist locally adapted lineages within the diatom morphospecies or diatoms possess some adaptation potential for differences in temperature. We argue that in diatoms, environmental and especially climate models may not be transferrable in space globally but need regional diatom data for calibration because species niches seem to differ among geographical regions.  相似文献   

17.
Correlative species distribution models have long been the predominant approach to predict species’ range responses to climate change. Recently, the use of dynamic models is increasingly advocated for because these models better represent the main processes involved in range shifts and also simulate transient dynamics. A well‐known problem with the application of these models is the lack of data for estimating necessary parameters of demographic and dispersal processes. However, what has been hardly considered so far is the fact that simulating transient dynamics potentially implies additional uncertainty arising from our ignorance of short‐term climate variability in future climatic trends. Here, we use endemic mountain plants of Austria as a case study to assess how the integration of decadal variability in future climate affects outcomes of dynamic range models as compared to projected long‐term trends and uncertainty in demographic and dispersal parameters. We do so by contrasting simulations of a so‐called hybrid model run under fluctuating climatic conditions with those based on a linear interpolation of climatic conditions between current values and those predicted for the end of the 21st century. We find that accounting for short‐term climate variability modifies model results nearly as differences in projected long‐term trends and much more than uncertainty in demographic/dispersal parameters. In particular, range loss and extinction rates are much higher when simulations are run under fluctuating conditions. These results highlight the importance of considering the appropriate temporal resolution when parameterizing and applying range‐dynamic models, and hybrid models in particular. In case of our endemic mountain plants, we hypothesize that smoothed linear time series deliver more reliable results because these long‐lived species are primarily responsive to long‐term climate averages.  相似文献   

18.
Species adapted to cold-climatic mountain environments are expected to face a high risk of range contractions, if not local extinctions under climate change. Yet, the populations of many endothermic species may not be primarily affected by physiological constraints, but indirectly by climate-induced changes of habitat characteristics. In mountain forests, where vertebrate species largely depend on vegetation composition and structure, deteriorating habitat suitability may thus be mitigated or even compensated by habitat management aiming at compositional and structural enhancement. We tested this possibility using four cold-adapted bird species with complementary habitat requirements as model organisms. Based on species data and environmental information collected in 300 1-km2 grid cells distributed across four mountain ranges in central Europe, we investigated (1) how species’ occurrence is explained by climate, landscape, and vegetation, (2) to what extent climate change and climate-induced vegetation changes will affect habitat suitability, and (3) whether these changes could be compensated by adaptive habitat management. Species presence was modelled as a function of climate, landscape and vegetation variables under current climate; moreover, vegetation-climate relationships were assessed. The models were extrapolated to the climatic conditions of 2050, assuming the moderate IPCC-scenario A1B, and changes in species’ occurrence probability were quantified. Finally, we assessed the maximum increase in occurrence probability that could be achieved by modifying one or multiple vegetation variables under altered climate conditions. Climate variables contributed significantly to explaining species occurrence, and expected climatic changes, as well as climate-induced vegetation trends, decreased the occurrence probability of all four species, particularly at the low-altitudinal margins of their distribution. These effects could be partly compensated by modifying single vegetation factors, but full compensation would only be achieved if several factors were changed in concert. The results illustrate the possibilities and limitations of adaptive species conservation management under climate change.  相似文献   

19.
Quaternary climatic fluctuations have left contrasting historical footprints on the neutral genetic diversity patterns of existing populations of different tree species. We should expect the demography, and consequently the neutral genetic structure, of taxa less tolerant to particular climatic extremes to be more sensitive to long‐term climate fluctuations. We explore this hypothesis here by sampling all six pine species found in the Iberian Peninsula (2464 individuals, 105 populations), using a common set of chloroplast microsatellite markers, and by looking at the association between neutral genetic diversity and species‐specific climatic requirements. We found large variation in neutral genetic diversity and structure among Iberian pines, with cold‐enduring mountain species (Pinus uncinata, P. sylvestris and P. nigra) showing substantially greater diversity than thermophilous taxa (P. pinea and P. halepensis). Within species, we observed a significant positive correlation between population genetic diversity and summer precipitation for some of the mountain pines. The observed pattern is consistent with the hypotheses that: (i) more thermophilous species have been subjected to stronger demographic fluctuations in the past, as a consequence of their maladaptation to recurrent glacial cold stages; and (ii) altitudinal migrations have allowed the maintenance of large effective population sizes and genetic variation in cold‐tolerant species, especially in more humid regions. In the light of these results and hypotheses, we discuss some potential genetic consequences of impending climate change.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号