首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have studied hydrotropism and its interaction with gravitropism in agravitropic roots of a pea mutant and normal roots of peas (Pisum sativum L.) and maize (Zea mays L.). The interaction between hydrotropism and gravitropism in normal roots of peas or maize were also examined by nullifying the gravitropic response on a clinostat and by changing the stimulus-angle for gravistimulation. Depending on the intensity of both hydrostimulation and gravistimulation, hydrotropism and gravitropism of seedling roots strongly interact with one another. When the gravitropic response was reduced, either genetically or physiologically, the hydrotropic response of roots became more unequivocal. Also, roots more sensitive to gravity appear to require a greater moisture gradient for the induction of hydrotropism. Positive hydrotropism of roots occurred due to a differential growth in the elongation zone; the elongation was much more inhibited on the moistened side than on the dry side of the roots. It was suggested that the site of sensory perception for hydrotropism resides in the root cap, as does the sensory site for gravitropism. Furthermore, an auxin inhibitor, 2,3,5-triiodobenzoic acid (TIBA), and a calcium chelator, ethyleneglycol-bis-(-aminoethylether)-N,N,N,N- tetraacetic acid (EGTA), inhibited both hydrotropism and gravitropism in roots. These results suggest that the two tropisms share a common mechanism in the signal transduction step.  相似文献   

2.
Gravitropism in roots has been proposed to depend on a downward redistribution of calcium across the root cap. However, because of the many calcium-binding sites in the apoplast, redistribution might not result in a physiologically effective change in the apoplasmic calcium activity. To test whether there is such a change, we measured the effect of gravistimulation on the calcium activity of statocyte cell walls with calcium-specific microelectrodes. Such a measurement must be made on a tissue with gravity sensing cells at the surface. To obtain such a tissue, decapped maize roots (Zea mays L. cv. Golden Cross Bantam) were grown for 31 h to regenerate gravitropic sensitivity, but not root caps. The calcium activity in the apoplasm surrounding the gravity-sensing cells could then be measured. The initial pCa was 2.60 ± 0.28 (approx 2.5 mM). The calcium activity on the upper side of the root tip remained constant for 10 min after gravistimulation, then decreased 1.7-fold. On the lower side, after a similar lag the calcium activity increased 1.6-fold. Control roots, which were decapped but measured before recovering gravisensitivity (19 h), showed no change in calcium activity. To test whether this gradient is necessary for gravitropic curvature, we eliminated the calcium activity gradient during gravitropism by applying a mobile calcium-binding site (di-nitro-BAPTA; 1,2-bis(2-amino-5-nitro-phenoxy)ethane-N,N,N,N-tetraacetic acid) to the root cap; this treatment eliminated gravicurvature. A calcium gradient may be formed by proton-induced calcium desorption if there is a proton gradient. Preventing the formation of apoplastic pH gradients, using 10 and 50 mM 2-(N-morpholino)ethanesulfonic acid (Mes) buffer or 10 mM fusicoccin to stimulate proton excretion maximally, did not inhibit curvature; therefore the calcium gradient is not a secondary effect of a proton gradient. We have found a distinct and rapid differential in the apoplasmic calcium activity between the upper and lower sides of gravistimulated maize root tips which is necessary for gravitropism.Abbreviations BAPTA 1,2-bis(2-aminophenoxy)ethane-N,N,N,N-tetraacetic acid - FC fusicoccin - Mes 2-(N-morpholino)ethanesulfonic acid The authors thank Phyllis Woolwine for drawing Fig. 1, Dr. Sarbjit Virk for assistance with total calcium measurements, Dr. Paul Sampson for statistical advice, and Michael Newton for developing the EM algorithm to analyze the time-series data. This work was supported by NASA grant NAGW-1394 and by a NASA Research Associateship to T.B. through NASA grant NAGW-70.  相似文献   

3.
Because both abscisic acid (ABA) and auxin (IAA) have been suggested as possible chemical mediators of differential growth during root gravitropism, we compared with redistribution of label from applied 3H-IAA and 3H-ABA during maize root gravitropism and examined the relative basipetal movement of 3H-IAA and 3H-ABA applied to the caps of vertical roots. Lateral movement of 3H-ABA across the tips of vertical roots was non-polar and about 2-fold greater than lateral movement of 3H-IAA (also non-polar). The greater movement of ABA was not due to enhanced uptake since the uptake of 3H-IAA was greater than that of 3H-ABA. Basipetal movement of label from 3H-IAA or 3H-ABA applied to the root cap was determined by measuring radioactivity in successive 1 mm sections behind the tip 90 minutes after application. ABA remained largely in the first mm (point of application) whereas IAA was concentrated in the region 2–4 mm from the tip with substantial levels found 7–8 mm from the tip. Pretreatment with inhibitors of polar auxin transport decreased both gravicurvature and the basipetal movement of IAA. When roots were placed horizontally, the movement of 3H-IAA from top to bottom across the cap was enhanced relative to movement from bottom to top whereas the pattern of movement of label from 3H-ABA was unaffected. These results are consistent with the hypothesis that IAA plays a role in root gravitropism but contrary to the idea that gravi-induced asymmetric distribution of ABA contributes to the response.  相似文献   

4.
The movement of calcium across the elongation zone of gravistimulatedprimary roots of maize (Zea mays L.) was measured using 45Ca2$.Radioactive calcium was applied to one side of the elongationzone about 4 mm back from the root tip and the distributionof radioactivity across the root in the region of applicationwas determined using scintillation spectrometry. The movementof 45Ca2$ across the elongation zone was non-polar in verticallyoriented roots. In gravistimulated roots the movement of labelwas polarized with about twice as much label moving from topto bottom as from bottom to top. A variety of treatments whichinterfere with gravitropism was found to eliminate the polarmovement of 45Ca2$ across the elongation zone. In maize cultivarswhich require light for gravitropic competency, dark grown rootsexhibited neither gravitropism nor polar movement of 45Ca2$across the elongation zone. Upon illumination the roots developedboth gravitropic competency and gravity-induced polar movementof 45Ca2$ across the elongation zone. Similarly, roots of light-grownseedlings lost both gravitropic competency and 45Ca2$ transportpolarity upon transfer to the dark. The results indicate a closecorrelation between calcium movement and gravitropism in primaryroots of maize. (Received July 20, 1985; Accepted September 25, 1985)  相似文献   

5.
Gravity-Induced Polar Transport of Calcium across Root Tips of Maize   总被引:13,自引:8,他引:5       下载免费PDF全文
Calcium movement across primary roots of maize (Zea mays, L.) was determined by application of 45Ca2+ to one side of the root and collection of radioactivity in an agar receiver block on the opposite side. Ca movement across the root tip was found to be at least 20 times greater than movement across the elongation zone. The rapid movement of Ca across the tip was severely inhibited in roots from which the root cap had been removed. Ca movement across the tip was also strongly retarded in roots pretreated with 2,4-dinitrophenol or potassium cyanide. Orientation of roots horizontally had no effect on Ca movement across the elongation zone but caused a strong asymmetry in the pattern of Ca movement across the tip. In gravistimulated roots, the movement of Ca from top to bottom increased while movement from bottom to top decreased. The data indicate that gravistimulation induces polar movement of Ca toward the lower side of the root cap. An earlier report (Lee, Mulkey, Evans 1983 Science 220: 1375-1376) from this laboratory showed that artificial establishment of calcium gradients at the root tip can cause gravitropic-like curvature. Together, the two studies indicate that Ca plays a key role in linking gravistimulation to the gravitropic growth response in roots.  相似文献   

6.
The effect of Ca on the polar movement of [3H]indoleacetic acid ([3H] IAA) in gravistimulated roots was examined using 3-day-old seedlings of maize (Zea mays L.). Transport of label was measured by placing an agar donor block containing [3H]IAA on one side of the elongation zone and measuring movement of label across the root into an agar receiver block on the opposite side. In vertically oriented roots, movement of label across the elongation zone into the receiver was slight and was not enhanced by incorporating 10 millimolar CaCl2 into the receiver block. In horizontally oriented roots, movement of label across the root was readily detectable and movement to a receiver on the bottom was about 3-fold greater than movement in the opposite direction. This polarity was abolished in roots from which the caps were removed prior to gravistimulation. When CaCl2 was incorporated into the receivers, movement of label across horizontally oriented intact roots was increased about 3-fold in both the downward and upward direction. The ability of Ca to enhance the movement of label from [3H]IAA increased with increasing Ca concentration in the receiver up to 5 to 10 millimolar CaCl2. With the inclusion of CaCl2 in the receiver blocks, gravity-induced polar movement of label into receiver blocks from applied [3H]IAA was detectable within 30 minutes, and asymmetric distribution of label within the tissue was detectable within 20 minutes. The results indicate that gravistimulation induces a physiological asymmetry in the auxin transport system of maize roots and that Ca increases the total transport of auxin across the root.  相似文献   

7.
There is general agreement that during root gravitropism some sort of growth-modifying signal moves from the cap to the elongation zone and that this signal ultimately induces the curvature that leads to reorientation of the root. However, there is disagreement regarding both the nature of the signal and the pathway of its movement from the root cap to the elongation zone. We examined the pathway of movement by testing gravitropism in primary roots of maize (Zea mays L.) from which narrow (0.5 mm) rings of epidermal and cortical tissue were surgically removed from various positions within the elongation zone. When roots were girdled in the apical part of the elongation zone gravitropic curvature occurred apical to the girdle but not basal to the girdle. Filling the girdle with agar allowed curvature basal to the girdle to occur. Shallow girdles, in which only two or three cell layers (epidermis plus one or two cortical cell layers) were removed, prevented or greatly delayed gravitropic curvature basal to the girdle. The results indicate that the gravitropic signal moves basipetally through the outermost cell layers, perhaps through the epidermis itself.  相似文献   

8.
Role of cytokinin in the regulation of root gravitropism   总被引:9,自引:0,他引:9  
Aloni R  Langhans M  Aloni E  Ullrich CI 《Planta》2004,220(1):177-182
The models explaining root gravitropism propose that the growth response of plants to gravity is regulated by asymmetric distribution of auxin (indole-3-acetic acid, IAA). Since cytokinin has a negative regulatory role in root growth, we suspected that it might function as an inhibitor of tropic root elongation during gravity response. Therefore, we examined the free-bioactive-cytokinin-dependent ARR5::GUS expression pattern in root tips of transformants of Arabidopsis thaliana (L.) Heynh., visualized high cytokinin concentrations in the root cap with specific monoclonal antibodies, and complemented the analyses by external application of cytokinin. Our findings show that mainly the statocytes of the cap produce cytokinin, which may contribute to the regulation of root gravitropism. The homogenous symmetric expression of the cytokinin-responsive promoter in vertical root caps rapidly changed within less than 30 min of gravistimulation into an asymmetrical activation pattern, visualized as a lateral, distinctly stained, concentrated spot on the new lower root side of the cap cells. This asymmetric cytokinin distribution obviously caused initiation of a downward curvature near the root apex during the early rapid phase of gravity response, by inhibiting elongation at the lower side and promoting growth at the upper side of the distal elongation zone closely behind the root cap. Exogenous cytokinin applied to vertical roots induced root bending towards the application site, confirming the suspected inhibitory effect of cytokinin in root gravitropism. Our results suggest that the early root graviresponse is controlled by cytokinin. We conclude that both cytokinin and auxin are key hormones that regulate root gravitropism.Electronic Supplementary Material Supplementary material is available in the online version of this article at http://dx.doi.org/10.1007/s00425-004-1381-8  相似文献   

9.
Björkman T  Cleland RE 《Planta》1988,176(4):513-518
In order to determine the role of the epidermis and cortex in gravitropic curvature of seedling roots of maize (Zea mays L. cv. Merit), the cortex on the two opposite flanks was removed from the meristem through the growing zone; gravitropic curvature was measured with the roots oriented horizontally with the cut flanks either on the upper and lower side, or on the lateral sides as a wound control. Curvature was slower in both these treatments (53° in 5 h) than in intact roots (82°), but there was no difference between the two orientations in extent and rate of curvature, nor in the latent time, showing that epidermis and cortex were not the site of action of the growth-regulating signal. The amount of cortex removed made no difference in the extent of curvature. Curvature was eliminated when the endodermis was damaged, raising the possibility that the endodermis or the stele-cortex interface controls gravitropic curvature in roots. The elongation rate of roots from which just the epidermis had been peeled was reduced by 0.01 mM auxin (indole-3-acetic acid) from 0.42 to 0.27 mm h-1, contradicting the hypothesis that only the epidermis responds to changes in auxin activity during gravistimulation. These observations indicate that gravitropic curvature in maize roots is not driven by differential cortical cell enlargement, and that movement of growth regulator(s) from the tip to the elongating zone is unlikely to occur in the cortex.Abbreviations df degrees of freedom - IAA indole-3-acetic acid  相似文献   

10.
M. Jacobs  R. Hertel 《Planta》1978,142(1):1-10
An auxin binding sive, with characteristics different from the previously described auxin binding sites I and II in maize coleoptiles, is reported in homogenates of zucchini (Cucurbita pepo L. cv. Black Beauty) hypocotyls. Evidence from differential centrifugation and sucrose and metrizamide density gradients indicates that the site is localized on the plasma membrane. The site has a KD of 1–2×10–6 M for indole acetic acid and has a pH optimum of 5.0. Binding specificity measured with several auxins, weak auxins, and anti-auxins generally parallels the activities of the same compounds as inhibitors of auxin transport. 1-N-naphthylphthalamic acid and 2,3,5-triiodobenzoic acid (2,3,5-TIBA), both auxin transport inhibitors in vivo, increase specific auxin binding to this site. 3,4,5-TIBA, which can partially reverse 2,3,5-TIBA's transport inhibition when the two substances are added together in vivo, partially reverses 2,3,5-TIBA's increase in specific auxin binding to the plasma membrane site when added with 2,3,5-TIBA in vitro. Preliminary investigations indicate that a similar plasma membrane site exists in maize (Zea mays L.) coleoptiles. It is suggested that different conformations of this site may function during active auxin transport.Abbreviations IAA indole-3-acetic acid - NPA 1-N-naphthylphthalamie acid - 2,3,5-TIBA 2,3,5-triiodobenzoic acid - 3,4,5-TIBA 3,4,5-triiodobenzoic acid - 1-NAA 1-naphthaleneacetic acid - 2-NAA 2-naphthaleneacetic acid - 2,4-D 2,4-dichlorophenoxyacetic acid - DTE dithioerythritol - MOPS N-morpholino-3-propansulfonic acid - CCO cytochrome c oxidase - CCR NADH: cytochrome c reductase - glu I glucan synthetase I - ER endoplasmic reticulum  相似文献   

11.
Agar blocks that contacted the upper sides of tips of horizontally-orientedroots of Zea mays contain significantly less calcium (Ca) thanblocks that contacted the lower sides of such roots. This gravity-inducedgradient of Ca forms prior to the onset of gravicurvature, anddoes not form across tips of vertically-oriented roots or rootsof agravitropic mutants. These results indicate that (1) Cacan be collected from mucilage of graviresponding roots, (2)gravity induces a downward movement of endogenous Ca in mucilageoverlying the root tip, (3) this gravity-induced gradient ofCa does not form across tips of agravitropic roots, and (4)formation of a Ca gradient is not a consequence of gravicurvature.These results are consistent with gravity-induced movement ofCa being a trigger for subsequent redistribution of growth effectors(e.g. auxin) that induce differential growth and gravicurvature. Atomic absorption, calcium, corn, gravitropism (root), Zea mays  相似文献   

12.
There is evidence that the cap is the initial site of lateral auxin redistribution during the gravitropic response of roots. We tested this further by comparing asymmetric auxin redistribution across the tips of gravistimulated intact roots, decapped roots, isolated root caps and isolated apical sections taken from decapped roots. Gravistimulation caused asymmetric (downward) auxin movement across the tips of intact roots and isolated root caps but not across the tips of decapped roots or across isolated apical root segments. Naphthylphthalamic acid and pyrenoylbenzoic acid, inhibitors of polar auxin transport, inhibited asymmetric auxin redistribution across gravistimulated isolated root caps and across the tips of gravistimulated intact roots. For intact roots there was a positive correlation between the extent of inhibition of assymmetric auxin redistribution by polar auxin transport inhibitors and the extent of inhibition of asymmetric calcium chelating agent, ethylene glycol-bis(-aminoethyl ether)-N,N,N,N-tetraacetic acid, also caused parallel inhibition of asymmetric auxin redistribution and gravitropic curvature and this effect was reversed by subsequent treatment with calcium. The results support the hypothesis that the cap is a site of early development of auxin asymmetry in gravistimulated roots and that calcium plays an important role in the development of lateral auxin redistribution.  相似文献   

13.
When cucumber seeds are germinated horizontally, an outgrowth (peg) develops on the lower side of the transition zone between the hypocotyl and the root for pulling the cotyledons and plumule out of the seed coat. We previously suggested that gravistimulation suppresses peg formation on the upper side of the transition zone when placed in a horizontal position. In the gravistimulated transition zone, auxin and the mRNAs of auxin-inducible genes are more abundant in the lower side than in the upper side. Here, using fluorescent differential display, we identified Cucumis sativus glycine-rich protein1(CsGRP1) as a gene whose mRNA accumulated more abundantly on the upper side than on the lower side of the transition zone in response to gravistimulation. Auxin starvation increased CsGRP1 mRNA in segments of the transition zone, and inhibition of polar auxin transport with 2,3,5-triiodobenzoic acid (TIBA) prevented the asymmetric accumulation of CsGRP1 mRNA. These results suggest that gravistimulation increases not only the expression of auxin-inducible genes on the lower side of the transition zone, but also the expression of auxin-repressed genes, such as CsGRP1, on the upper side of cucumber seedlings. In the hypocotyls of 3-day-old seedlings, neither gravistimulation nor changes in auxin level influenced the accumulation of CsGRP1 mRNA. These results suggest that the transition zone responds to gravistimulation in a specific manner by an asymmetric expression of CsGRP1 gene during regulation of peg formation.  相似文献   

14.
Root hydrotropism of an agravitropic pea mutant, ageotropum   总被引:3,自引:0,他引:3  
We have partially characterized root hydrotropism of an agravitropic pea mutant, ageotropum (from Pisum sativum L. cv. Weibull's Weitor), without interference of gravitropism. Lowering the atmospheric air humidity inhibited root elongation and caused root curvature toward the moisture-saturated substrate in ageotropum pea. Removal of root tips approximately 1.5 mm in length blocked the hydrotropic response. A computer-assisted image analysis showed that the hydrotropic curvature in the roots of ageotropum pea was chiefly due to a greater inhibition of elongation on the humid side than the dry side of the roots. Similarly, gravitropic curvature of Alaska pea roots resulted from inhibition of elongation on the lower side of the horizontally placed roots, while the upper side of the roots maintained a normal growth rate. Gravitropic bending of Alaska pea roots was apparent 30 min after stimulation, whereas differential growth as well as curvature in positive root hydrotropism of ageotropum pea became visible 4–5 h after the continuous hydrostimulation. Application of 2,3,5-triiodobenzoic acid or ethyleneglycol-bis-( β -aminoethylether)-N,N,N',N'-tetraacetic acid was inhibitory to both root hydrotropism of ageotropum pea and root gravitropism of Alaska pea. Some mutual response mechanism for both hydrotropism and gravitropism may exist in roots, although the stimulusperception mechanisms differ from one another.  相似文献   

15.
The velocity of transport and shape of a pulse of radioactive indole-3-acetic acid (IAA) applied to a section of maize (Zea mays L.) coleoptile depends strongly on the concentration of nonradioactive auxin in which the section has been incubated before, during, and after the radioactive pulse. A pulse of [3H]IAA disperses slowly in sections incubated in buffer (pH 6) alone; but when 0.5–5 M IAA is included, the pulse achieves its maximum velocity of about 2 cm h-1. At still higher IAA concentrations in the medium, a transition occurs from a discrete, downwardly migrating pulse to a slowly advancing profile. Specificity of IAA in the latter effect is indicated by the observation that benzoic acid, which is taken up to an even greater extent than IAA, does not inhibit movement of [3H]IAA. These results fully substantiate the hypothesis that auxin transport consists of a saturable flux of auxin anions (A-) in parallel with a nonsaturable flux of undissociated IAA (HA), with both fluxes operating down their respective concentration gradients. When the anion site saturates, the movement of [3H]IAA is nonpolar and dominated by the diffusion of HA. Saturating polar transport also results in greater cellular accumulation of auxin, indicating that the same site mediates the cellular efflux of A-. The transport inhibitors napthylphthalamic acid and 2,3,5-triiodobenzoic acid specifically block the polar A- component of auxin transport without affecting the nonsaturable component. The transport can be saturated at any point during its passage through the section, indicating that the carriers are distributed throughout the tissue, most likely in the plasmalemma of each cell.Abbreviations A- auxin anion - HA undissociated auxin - IAA indole-3-acetic acid - NPA N-1-napthylphthalamic acid - TIBA 2,3,5-triiodobenzoic acid  相似文献   

16.
The actin cytoskeleton has been implicated in regulating plant gravitropism. However, its precise role in this process remains uncertain. We have shown previously that disruption of the actin cytoskeleton with Latrunculin B (Lat B) strongly promoted gravitropism in maize roots. These effects were most evident on a clinostat as curvature that would exceed 90 degrees despite short periods of horizontal stimulation. To probe further the cellular mechanisms underlying these enhanced gravity responses, we extended our studies to roots of Arabidopsis. Similar to our observations in other plant species, Lat B enhanced the response of Arabidopsis roots to gravity. Lat B (100 nm) and a stimulation time of 5-10 min were sufficient to induce enhanced bending responses during clinorotation. Lat B (100 nm) disrupted the fine actin filament network in different regions of the root and altered the dynamics of amyloplasts in the columella but did not inhibit the gravity-induced alkalinization of the columella cytoplasm. However, the duration of the alkalinization response during continuous gravistimulation was extended in Lat B-treated roots. Indirect visualization of auxin redistribution using the DR5:beta-glucuronidase (DR5:GUS) auxin-responsive reporter showed that the enhanced curvature of Lat B-treated roots during clinorotation was accompanied by a persistent lateral auxin gradient. Blocking the gravity-induced alkalinization of the columella cytoplasm with caged protons reduced Lat B-induced curvature and the development of the lateral auxin gradient. Our data indicate that the actin cytoskeleton is unnecessary for the initial perception of gravity but likely acts to downregulate gravitropism by continuously resetting the gravitropic-signaling system.  相似文献   

17.
How roots perceive and respond to gravity   总被引:12,自引:0,他引:12  
Graviperception by plant roots is believed to occur via the sedimentation of amyloplasts in columella cells of the root cap. This physical stimulus results in an accumulation of calcium on the lower side of the cap, which in turn induces gravicurvature. In this paper we present a model for root gravitropism integrating gravity-induced changes in electrical potential, cytochemical localization of calcium in cells of gravistimulated roots, and the interdependence of calcium and auxin movement. Key features of the model are that 1) gravity-induced redistribution of calcium is an early event in the transduction mechanism, and 2) apoplastic movement of calcium through the root-cap mucilage may be an important component of the pathway for calcium movement.  相似文献   

18.
We tested the involvement of ethylene in maize (Zea mays L.) root gravitropism by measuring the kinetics of curvature and lateral auxin movement in roots treated with ethylene, inhibitors of ethylene synthesis, or inhibitors of ethylene action. In the presence of ethylene the latent period of gravitropic curvature appeared to be increased somewhat. However, ethylene-treated roots continued to curve after control roots had reached their final angle of curvature. Consequently, maximum curvature in the presence of ethylene was much greater in ethylene-treated roots than in controls. Inhibitors of ethylene biosynthesis or action had effects on the kinetics of curvature opposite to that of ethylene, i.e. the latent period appeared to be shortened somewhat while total curvature was reduced relative to that of controls. Label from applied 3H-indole-3-acetic acid was preferentially transported toward the lower side of stimulated roots. In parallel with effects on curvature, ethylene treatment delayed the development of gravity-induced asymmetric auxin movement across the root but extended its duration once initiated. The auxin transport inhibitor, 1-N-naphthylphthalamic acid reduced both gravitropic curvature and the effect of ethylene on curvature. Since neither ethylene nor inhibitors of ethylene biosynthesis or action prevented curvature, we conclude that ethylene does not mediate the primary differential growth response causing curvature. Because ethylene affects curvature and auxin transport in parallel, we suggest that ethylene modifies curvature by affecting gravity-induced lateral transport of auxin, perhaps by interfering with adaptation of the auxin transport system to the gravistimulus.  相似文献   

19.
The curvature of roots in response to gravity is attributed to the development of a differential concentration gradient of IAA in the top and bottom of the elongation region of roots. The development of the IAA gradient has been attributed to the redistribution of IAA from the stele to cortical tissues in the elongation region. The gravistimulated redistribution of IAA was investigated by applying [3H]IAA to the cut surface of 5 mm apical primary root segments. The movement of label from the stele-associated [3H]IAA into the root, tip, root cap, and cortical tissues on the top and bottom of the elongation region was determined in vertically growing roots and gravistimulated roots. Label from the stele moved into the region of cell differentiation (root tip) prior to accumulating in the elongation region. Little label was observed in the root cap. Gravistimulation did not increase the amount of label moving from the stele; but gravistimulation did increase the amount of label accumulating in cortical tissues on the lower side of the elongation region, and decreased the amount of label accumulating in cortical tissues on the upper side of the elongation region. Removal of the cap prior to or immediately following gravity stimulation rendered the roots partially insensitive to gravity and also prevented gravity-induced asymmetric redistribution of label. However, removal of the root cap following 30 min of gravistimulation did not alter root curvature or the establishment of an IAA asymmetry across the region of root elongation. These results suggest that a signal originating in the root cap directs auxin redistribution in tissues behind the root cap, leading to the development of an asymmetry of IAA concentration in the elongation region that in turn causes the differential growth rate in the elongation region of a graviresponding root.  相似文献   

20.
Nancy Kerk  L. Feldman 《Protoplasma》1994,183(1-4):100-106
Summary Using roots of maize, we tested the hypothesis that the origin and maintenance of the quiescent center (QC) are a consequence of polar auxin supply. Exposing roots to the polar auxin transport inhibitor 2,3,5-triiodobenzoic acid (TIBA), or to low temperature (4 °C, with subsequent return to 24 °C), enhances mitotic frequency within the QC. In both treatments, the QC most typically is activated at its distal face, and the protoderm/dermatogen undergoes several periclinal divisions. As a result, the root body penetrates and ruptures the root cap junction and the characteristic closed apical organization changes to open. A QC persists during these changes in apical organization, but it is diminished in size. The data from the TIBA-treated roots suggest a role for auxin in the origin and maintenance of the QC, and further, that alterations in QC dimensions are a consequence of polar auxin supply. We hypothesize that the root cap, and specifically the root cap initials, are important in regulating polar auxin movements towards the root apex, and hence are important in determining the status of the QC.Abbreviations QC quiescent center - TIBA 2,3,5-triiodobenzoic acid Dedicated to the memory of Professor John G. Torrey  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号