首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A synthetic coumarin, 7-amino-3-phenyl coumarin (coumarin-10), was used to study the uptake of ingested xenobiotics into hemolymph. Larvae were forcefed coumarin-10 in peanut oil, and hemolymph was extracted and analyzed by fluorescence spectroscopy. Coumarin-10 entered hemolymph within 5 min, reaching a steady state of concentration within 1 h. Assayed 2 h after feeding, hemolymph titers of 1–5 ng/μl were proportional to log dose between 10 and 100 ng/mg body weight; hemolymph did not reach saturation. Fluorescence spectra of hemolymph in saline revealed that energy was readily transferred from hydrophobic residues of hemolymph proteins to coumarin-10. Ultracentrifugal density gradients revealed that 94% of absorbed coumarin-10 was bound to sedimenting proteins while 6% bound to lipophorin. Native polyacrylamide gel electrophoresis (N-PAGE) on minigels identified two major proteins responsible for binding. Though readily separated by native electrophoresis, these proteins were not fully separable by HPLC using a wide variety of columns. Gel permeation-HPLC of the sedimenting proteins from hemolymph revealed a single major peak of 480,000 Mr. When upper and lower electrophoretic bands were isolated by preparative N-PAGE, the upper band (band I) yielded subunits of 75,000 and 71,000 Mr, while the lower band (band II) yielded only one size subunit of 75,000 Mr on denaturing (SDS) PAGE. The fluorescent products bound by sedimenting proteins were identified by thin-layer chromatography and scanning fluorescence densitometry as coumarin-10 (80% of total) and a polar metabolite (20%). In addition, lipophorin-containing fractions contained an apolar metabolite (3% of total fluorescence). In vitro binding studies utilizing fluorescent energy transfer demonstrated saturation binding with a KD of 1.5 μM.  相似文献   

2.
Hexameric hemocyanin from a spiny lobster, Panulirus japonicus, comprises three major subunits (Ib, II and III) and one minor subunit (Ia), as reported in the preceding paper in this journal. It has previously been shown that the O2 equilibria of Panulirus hemocyanin can be described by a concerted model extended to three affinity states [Makino, N. (1986) Eur. J. Biochem. 154, 49-55]. In this study the equilibrium binding of O2 to the reassociated subunits (Ib, II and III) was examined at various pH in the presence or absence of Ca2+ in order to test the applicability of the three-state model to the homogeneous hexamers. The hexameric structure of the reassembled subunits was less stable than that of the native protein under the conditions examined. The model could be fitted to the O2-binding isotherms of the homohexamers composed of the subunits II or III, if the molecular dissociation of the protein was taken into account. It was postulated that the monomeric hemocyanin has the same ligand affinity as that of the hexamer in the intermediate-affinity state (S). The fitting of the model to the O2 binding of the subunit I was unsuccessful mainly because of the low cooperativity of the assembled subunits.  相似文献   

3.
Three different pigment-binding proteins of the light-harvesting complex (LHC I) of maize photosystem I (PS I) have been isolated. Absorption and fluorescence excitation spectral analyses showed that each pigment-protein can transfer absorbed energy from its carotenoid and/or chlorophyll b components to chlorophyll alpha. Their apoproteins with apparent sizes of 24 (LHC Ia), 21 (LHC Ib), and 17 (LHC Ic) kDa have been purified to homogeneity. Differences in their pigment and amino acid compositions and in their reactions with antibodies demonstrate that the two smaller pigment-proteins are not proteolytically derived from the largest one. LHC Ib's apoprotein is particularly enriched in cysteine residues. None of the three apoproteins cross-reacted with antibodies raised against the major light-harvesting chlorophyll a/b-protein of photosystem II (LHC IIb) or against the PS I core complex (CC I) subunits. Studies of the biogenesis of PS I during greening of etiolated plants showed that all of the CC I subunits accumulated to a detectable level prior to the appearance of the 17-kDa subunit of LHC I, the accumulation of which preceded those of the 24- and 21-kDa subunits of LHC I. In addition, subunit VI of CC I is shown to be differentially expressed in mesophyll and bundle sheath cells; a slightly larger form of it accumulates in mesophyll than in bundle sheath thylakoids during plastid development.  相似文献   

4.
Structural and functional diversities of the subunits of Panulirus japonicus (spiny lobster) hemocyanin were investigated. The hemocyanin mostly exists as a hexamer in the native state. It was found that the hemocyanin is composed of three major subunits (Ib, II and III) and one minor subunit (Ia), which differ in N-terminal sequence. In the dissociated state, the major subunits (Ib, II and III) showed no or very small Bohr effects. The O2 affinity of the subunit III was about three times as high as those of the other two. The subunits could be reassociated into homogeneous and heterogeneous hexamers, which exhibited the cooperativity in O2 binding. The homohexamers were similar to each other in O2 affinity and the Bohr effect, though some differences were observed in the magnitude of the cooperativity. In particular, the subunit II homohexamer exhibited a high cooperativity, which was comparable to that of the native protein. The heterohexamers showed slightly higher O2 affinities and slightly lower cooperativity, as compared with the parent homohexamers. It was concluded that there is no essential difference among the three major subunits of P. japonicus hemocyanin in the O2 binding and assembly properties.  相似文献   

5.
The protein composition of larval and adult hemolymph from the Colorado potato beetle, Leptinotarsa decemlineata, was investigated and some abundant, high molecular weight proteins were identified and characterized. Diapause protein 1, which occurs in the hemolymph of last instar larvae and short-day adults, appeared to be a storage protein. This protein dissociated into two bands due to the high pH used in nondenaturing gels. Its quaternary structure was established by chemical crosslinking. It appeared to be a hexamer. Diapause protein 1 is composed of approximately 82,000 subunits. The amino acid composition and N-terminal sequence of this protein has been determined. Specific antibodies against diapause protein 1 have been developed. Topical application of 1 microgram pyriproxyfen, a juvenile hormone analog, to last instar larvae and short-day adults suppressed the appearance of this protein in the hemolymph. Pyriproxyfen prematurely induced vitellogenin, when applied to last instar larvae. A larval specific protein was also identified in the hemolymph. Its temporary appearance in the hemolymph of last instar larvae, its subunit composition (M(r) approximately 82,000) and its suppression by pyriproxyfen suggests that this protein is a storage protein as well.  相似文献   

6.
To identify and characterize Schistosoma mansoni proteins that are recognized by infected hosts, we have used a pool of sera from infected humans to screen cDNA libraries constructed from poly(A)+ mRNA of adult S. mansoni. The deduced amino acid sequences of the three isolated clones showed a high degree of similarity to the large subunit of calcium-activated neutral proteinase (CANP) from humans and chicken. These overlapping clones, which include a nearly full-length clone with an open reading frame of 758 amino acid residues, together encode the entire large subunit of CANP. The deduced sequence of this S. mansoni protein can be divided into four domains (I-IV) that include the two domains characteristic of other large subunits of CANP: a thiol-protease domain (II) and a calcium-binding domain (IV) containing EF hand motifs. However, the schistosome protein is unique in having only three EF hand motifs in the calcium-binding domain and in having an additional EF hand motif that is shared between domains II and III. We have shown that these EF hand motifs are capable of binding 45Ca2+. Furthermore, the large subunit is S. mansoni contains an NH2-terminal sequence of 28 residues that is absent from the mammalian CANPs and has a high degree of similarity to the presumed receptor binding sequence of colicin Ia and Ib.  相似文献   

7.
Properties of newly synthesized crosslinking reagents (ACM) and their applications to proteins are studied (ACM is the abbreviation for a series of photoactivable and heterobifunctional crosslinking thiol reagents, each of which has two reactive groups, maleimide and azide). These reagents bind specifically to the sulfhydryl residues of proteins in the first reaction step. Upon photoactivation, the azide group of the coumarin ring reacts with side or main chains of the proteins, and thus intra- or intermolecular crosslinking can be elicited. In addition, the coumarin moiety of the reagents becomes highly fluorescent after photolysis. Therefore, the crosslinking products can be detected by fluorometry with high sensitivity in the pattern of sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Reaction of ACM with rabbit muscle aldolase led to extensive crosslinking between subunits of the enzyme and maximally 25% of the total subunits were found to be crosslinked to the dimer.  相似文献   

8.
The major hemolymph protein in the last larval stage of Manduca sexta is a hexameric glycoprotein, arylphorin (Mr = 450,000). Sodium dodecyl sulfate polyacrylamide gel electrophoresis of purified arylphorin reveals the presence of two subunits, A1 and A2. Both subunits are glycosylated and have apparent Mr = 77,000 and 72,000, respectively. Pronase digestion of arylphorin yielded a single major glycopeptide. 250 MHz NMR spectroscopy of arylphorin glycopeptide revealed a Man9GlcNAc2 oligosaccharide structure similar to that observed in mammalian glycoproteins. Endoglycosidase-H treatment of arylphorin was employed to remove covalently linked carbohydrate residues. The carbohydrate removal lowered the apparent Mr of subunits A1 and A2 to 72,000 and 69,000, respectively, indicating that the difference in arylphorin subunit size is not due to levels of glycosylation. Immunoblotting experiments with anti-arylphorin antiserum and Bombyx mori storage proteins indicated cross reactivity with the corresponding arylphorin of this insect. Preparation of subunit A2 monospecific antibodies, followed by immunoblotting of arylphorin showed a close immunological relationship between subunits A1 and A2.  相似文献   

9.
Abstract: A panel of monoclonal antibodies (MAbs) was produced against mouse brain proteins that bind to the tail domain of the neurofilament (NF) heavy (200-kDa) subunit (NF-H) in vitro. An in vivo association of the MAb ligands with NFs was confirmed by examining reactivity of the MAbs with immunoprecipitated NF-H complexes. Using this method we demonstrated association of the ligands of three of the MAbs with NFs. In contrast, glial fibrillary acidic protein and an unknown 97-kDa brain protein were not associated with NFs by this criterion. An 80-kDa doublet that coimmunoprecipitated with NF-H complexes, recognized by MAb 223, was shown by immunocytochemistry and immunoblotting to be synapsin Ia and Ib. Using a complementary approach, we confirmed an association of synapsin with NFs by demonstrating that immunoprecipitated synapsin I complexes contained NF-H and NF medium (160-kDa) subunits. MAbs 63 and 105 recognized a more complex set of proteins that had predominantly synaptic localizations. These data suggest that NFs may provide important support for attachment and/or transport of synaptic proteins in brain.  相似文献   

10.
The interaction of L ‐lactate and divalent cations with Carcinus maenas hemocyanin has been probed by electrospray ionization mass spectrometry under conditions preserving noncovalent interactions (native ESI‐MS). C. maenas native hemocyanin in the hemolymph occurs mainly as dodecamers and to a lesser extent as hexamers. A progressive acidification with formic acid after alkaline dissociation resulted in the preferential recruitment of the two lightest subunits into light dodecamers, a molecular complex absent from native hemolymph, in addition to regular dodecamers and hexamers. Addition of L ‐lactic acid also induced the recruitment of these subunits, even at alkaline pH. A dodecamer‐specific subunit is needed to enable aggregation over the hexameric state. Experiments with EDTA suggested the existence of different binding sites and association constants for divalent cations within hexameric structures and at the interface between two hexamers. L ‐lactic acid specific interaction with the lightest subunits was not inhibited by removal of the divalent cations. Proteins 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

11.
Summary Protein I, one of the major outer membrane proteins of E. coli in most K12 strains is represented by two very similar polypeptides Ia and Ib. Sequential mutations (involving selections for phage resistance) can lead to loss of proteins Ia and Ib. Among revertants of such Ia- Ib- mutants clones exist that instead of Ia or Ib produce a third species of protein I, polypeptide Ic.Ichihara and Mizushima [J. Biochem. 83, 1095–1100 (1978)] have shown that proteins Ia and Ib exhibit differences in primary structure. Here evidence is presented indicating that protein Ic also is not identical in primary structure with Ia or Ib. Thus, 3 very similar structural genes appear to exist for the protein I species known to date, and that for Ic normally is silent. Introduction of a functional Ic locus into a Ia+ Ib+ strain caused expression of all three proteins with a reduced rate of synthesis of protein Ia.  相似文献   

12.
Outer membrane materials prepared from three independently isolated spontaneous Escherichia coli tolF mutants contained no detectable protein Ia. The loss of this protein was nearly completely compensated for by an increase in other major outer membrane proteins, Ib and II. Thus, the major outer membrane proteins accounted for 40% of the total cell envelope protein in both tol+ and tolF strains. No changes were found in the levels of inner membrane proteins prepared from tolF strains when compared with similar preparations from the tol+ strain. Phage-resistant mutants were selected starting with a tolF strain by using either phage TuIb or phage PA2. These phage-resistant tolF strains contained neither protein Ia nor protein Ib. The mutation leading to the loss of protein Ib in these strains is independent of the tolF mutation and is located near malP on the E. coli genetic map.  相似文献   

13.
Two extra-cellular endoxylanases (Xyl Ia and Ib) were purified to homogeneity from the newly isolated thermophilic fungus, Myceliophthora sp. IMI 387099. Xyl Ia and Ib, having a molecular mass of approximately 53 kDa and pI of 5.2 and 4.8, respectively, were optimally active at 75 degrees C and at pH 6.0. They were stable at pH 9.2 at 60 degrees C for 2 h, but less stable at pH 6.0 and above 50 degrees C. Mg+2, Zn+2, Ca+2, Co+2 and DTT increased their activity by 1.5-3.0-folds, while SDS and NBS completely inhibited their activity. Both xylanases were active on pNPX and pNPC, but their activity on pNPC was three times higher than that on pNPX. Xyl Ia was more active than Xyl Ib on pNP-alpha-L-Arap, while the latter preferred pNP-alpha-L-Araf. Both xylanases showed two to four times higher activity on rye and wheat arabinoxylans than on birchwood xylan, but Xyl Ib was more active than Xyl Ia on oat spelt xylan. Wheat insoluble pentosan was a good substrate for Xyl Ia, while Xyl Ib preferred wheat soluble arabinoxylan. Xyl Ia had lower Km and higher kcat/Km ratios than Xyl Ib towards all three xylans tested. Both xylanases degraded X4-X6 in an endo-fashion and catalysed hydrolysis and trans-xylosylation reactions. HPLC and LC/MS analysis showed that Xyl Ia and Ib released the unsubstituted X2-X6 as well as mono and di-methyl glucuronic acid substituted X3 and X2 from arabinoxylans.  相似文献   

14.
We have explored the dynamics of intermediate filament assembly and subunit exchange using fluorescently labeled neurofilament proteins and a fluorescence resonance energy transfer assay. Neurofilaments (NFs) are assembled from three highly phosphorylated proteins with molecular masses of 180 (NF-H), 130 (NF-M), and 66 kD (NF-L) of which NF-L forms the structural core. The core component, NF-L, was stoichiometrically labeled at cysteine 321 with fluorescein, coumarin, or biotin-maleimide to produce assembly-competent fluorescent or biotinylated derivatives, respectively. Using coumarin-labeled NF-L as fluorescence donor and fluorescein-labeled NF-L as the fluorescence acceptor, assembly of NF filaments was induced by rapidly raising the NaCl concentration to 170 mM, and the kinetics was followed by the decrease in the donor fluorescence. Assembly of NF-L subunits into filaments does not require nucleotide binding or hydrolysis but is strongly dependent on ionic strength, pH, and temperature. The critical concentration of NF-L, that concentration that remains unassembled at equilibrium with fully formed filaments, is 38 micrograms/ml or 0.6 microM. Under physiological salt conditions NF-L filaments also undergo extensive subunit exchange. Kinetic analysis and evaluation of several possible mechanisms indicate that subunit exchange is preceded by dissociation of subunits from the filament and generation of a kinetically active pool of soluble subunits. Given the concentration of NF-L found in nerve cells and the possibility of regulating this pool, these results provide the first information that intermediate filaments are dynamic structures and that NF-L within the NF complex is in dynamic equilibrium with a small but kinetically active pool of unassembled NF-L units.  相似文献   

15.
During the course of the transformation of 1,3-dichloro-2-propanol (DCP) into (R)-3-chloro-1,2-propanediol [(R)-MCP] with the cell extract of Corynebacterium sp. strain N-1074, epichlorohydrin (ECH) was transiently formed. The cell extract was fractionated into two DCP-dechlorinating activities (fractions Ia and Ib) and two ECH-hydrolyzing activities (fractions IIa and IIb) by TSKgel DEAE-5PW column chromatography. Fractions Ia and Ib catalyzed the interconversion of DCP to ECH, and fractions IIa and IIb catalyzed the transformation of ECH into MCP. Fractions Ia and IIa showed only low enantioselectivity for each reaction, whereas fractions Ib and IIb exhibited considerable enantioselectivity, yielding R-rich ECH and MCP, respectively. Enzymes Ia and Ib were isolated from fractions Ia and Ib, respectively. Enzyme Ia had a molecular mass of about 108 kDa and consisted of four subunits identical in molecular mass (about 28 kDa). Enzyme Ib was a protein of 115 kDa, composed of two different polypeptides (about 35 and 32 kDa). The specific activity of enzyme Ib for DCP was about 30-fold higher than that of enzyme Ia. Both enzymes catalyzed the transformation of several halohydrins into the corresponding epoxides with liberation of halides and its reverse reaction. Their substrate specificities and immunological properties differed from each other. Enzyme Ia seemed to be halohydrin hydrogen-halide-lyase which was already purified from Escherichia coli carrying a gene from Corynebacterium sp. strain N-1074.  相似文献   

16.
Hemolymph proteins of a soft tick, Ornithodoros moubata, were analyzed immunochemically and biochemically. The components of tick hemolymph proteins were shown to be totally different from the host (rabbit) serum proteins by polyacrylamide gel electrophoresis with sodium dodecyl sulfate and Coomassie blue or silver stain. However, in the hemolymph of ticks engorged from rabbits immunoglobulin G was detected by immunoblotting analysis with goat anti-rabbit immunoglobulin G. The concentration of rabbit Immunoglobulin G in tick hemolymph changed with the physiological stages after a blood meal. Immunoglobulin G was isolated from tick hemolymph by affinity chromatography on a Protein A-Sepharose 4B column. Analysis of the isolated immunoglobulin G from tick hemolymph with sodium dodecyl sulfate-polyacrylamide gel electrophoresis and Ouchterlony double diffusion test showed it to be composed of the same subunits as heavy and light chains of host (rabbit) immunoglobulin G. Tracer experiments showed that 125I-labeled heavy and light chains of immunoglobulin G were detected in an intact form in hemolymph from ticks that sucked 125I-labeled rabbit immunoglobulin G through an artificial membrane. These facts suggested that the host rabbit immunoglobulin G ingested in the tick midgut passed through the gut wall without digestion. By solid-phase enzyme immunoassay, immunoglobulin in the hemolymph was shown to retain its antibody activity.  相似文献   

17.
18.
Heterotrimeric guanine-nucleotide-binding regulatory proteins (G proteins) have been classified into several subtypes on the basis of the properties of their alpha subunits, though a notable multiplicity of gamma subunits has also been demonstrated. To investigate whether each subtype of alpha subunit is associated with a particular gamma subunit, various oligomeric G proteins, purified from bovine tissues, were subjected to gel electrophoresis in a Tricine buffer system. All G proteins examined were shown to have more than two kinds of gamma subunit. Of the brain G proteins, GoA, GoB, and Gi1 contain the same set of three gamma subunits, but Gi2 contains only two of these subunits. Lung Gi1 and Gi2 and spleen Gi2 and Gi3 had similar sets of two gamma subunits, one of which was distinct from the gamma subunits of brain G proteins. These observations indicate that each subtype of alpha subunit is associated with a variety of beta gamma subunits, and that the combinations differ among cells. For analyses of the structural diversity of the gamma subunits, beta gamma subunits were purified from the total G proteins of each tissue and subjected to reverse-phase HPLC under denaturing conditions, where none of the beta subunits were eluted from the column. Three distinct gamma subunits were isolated in this way from brain beta gamma subunits. In contrast, lung and spleen beta gamma subunits contained at least five gamma subunits, the elution positions and electrophoretic mobilities of which were indistinguishable between the two tissues. Among several gamma subunits, two subspecies appeared to be common to the three tissues. In fact, in each case, the partial amino acid sequence of the most abundant gamma subunit in each tissue was identical, and the sequences coincided exactly with that of 'gamma 6' [Robishaw, J. D., Kalman, V. K., Moomaw, C. R. & Slaughter, C. A. (1989) J. Biol. Chem. 264, 15758-15761]. Fast-atom-bombardment mass spectrometry analysis indicated that this abundant gamma subunit in lung and spleen was geranylgeranylated and carboxymethylated at the C-terminus, as was 'gamma 6' from brain. In addition to abundant gamma subunits, other tissue-specific gamma subunits were also shown to be geranylgeranylated by gas-chromatography-coupled mass spectrometry analysis of Raney nickel-treated gamma subunits. These results suggest that most gamma subunits associated with many different subtypes of alpha subunit are geranylgeranylated in a variety of tissues, with the single exception being the retina where the G protein transducin has a farnesylated gamma subunit.  相似文献   

19.
Plasmid DNA of six Escherichia fergusonii colicinogenic strains (three producers of colicin E1, two of Ib and one of Ia) was isolated and the colicin-encoding regions of the corresponding Col plasmids were sequenced. Two new variants of colicin E1, one of colicin Ib, and one of colicin Ia were identified as well as new variants of the colicin E1 and colicin Ib immunity proteins and the colicin E1 lysis polypeptide. The recombinant Escherichia coli producer harboring pColE1 from E. fergusonii strain EF36 (pColE1-EF36) was found to be only partially immune to E1 colicins produced by two other E. fergusonii strains suggesting that pColE1-EF36 may represent an ancestor ColE1 plasmid.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号