首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Small autonomously folding proteins are of interest as model systems to study protein folding, as the same molecule can be used for both experimental and computational approaches. The question remains as to how well these minimized peptide model systems represent larger native proteins. For example, is the core of a minimized protein tolerant to mutation like larger proteins are? Also, do minimized proteins use special strategies for specifying and stabilizing their folded structure? Here we examine these questions in the 35‐residue autonomously folding villin headpiece subdomain (VHP subdomain). Specifically, we focus on a cluster of three conserved phenylalanine (F) residues F47, F51, and F58, that form most of the hydrophobic core. These three residues are oriented such that they may provide stabilizing aromatic–aromatic interactions that could be critical for specifying the fold. Circular dichroism and 1D‐NMR spectroscopy show that point mutations that individually replace any of these three residues with leucine were destabilized, but retained the native VHP subdomain fold. In pair‐wise replacements, the double mutant that retains F58 can adopt the native fold, while the two double mutants that lack F58 cannot. The folding of the double mutant that retains F58 demonstrates that aromatic–aromatic interactions within the aromatic cluster are not essential for specifying the VHP subdomain fold. The ability of the VHP subdomain to tolerate mutations within its hydrophobic core indicates that the information specifying the three dimensional structure is distributed throughout the sequence, as observed in larger proteins. Thus, the VHP subdomain is a legitimate model for larger, native proteins.  相似文献   

2.
Villin headpiece is a small autonomously folding protein that has emerged as a model system for understanding the fundamental tenets governing protein folding. In this communication, we employ NMR and X-ray crystallography to characterize a point mutant, H41F, which retains actin-binding activity, is more thermostable but, interestingly, does not exhibit the partially folded intermediate observed of either wild-type or other similar point mutants.  相似文献   

3.
The villin headpiece (HP67) is a 67 residue, monomeric protein derived from the C-terminal domain of villin. Wild-type HP67 (WT HP67) is the smallest fragment of villin that retains strong in vitro actin-binding activity. WT HP67 is made up of two subdomains, which form a tightly packed interface. The C-terminal subdomain of WT HP67, denoted HP35, is rich in helical structure, folds in isolation, and has been widely used as a model system for folding studies. In contrast, very little is known about the folding of the intact villin headpiece domain. Here, NMR, CD and H/2H amide exchange measurements are used to follow the pH, thermal and urea-induced unfolding of WT HP67 and a mutant (HP67 H41Y) in which a buried conserved histidine in the N-terminal subdomain, His41, has been mutated to Tyr. Although most small proteins display two-state equilibrium unfolding, the results presented here demonstrate that unfolding of the villin headpiece is a multistate process. The presence of a folded N-terminal subdomain is shown to stabilize the C-terminal subdomain, increasing the midpoints of the thermal and urea-induced unfolding transitions and increasing protection factors for H/2H exchange. Histidine 41 has been shown to act as a pH-dependent switch in wild-type HP67: the N-terminal subdomain is unfolded when His41 is protonated, while the C-terminal subdomain remains folded irrespective of the protonation state of His41. Mutation of His41 to Tyr eliminates the segmental pH-dependent unfolding of the headpiece. The mutation stabilizes both domains, but folding is still multistate, indicating that His41 is not solely responsible for the unusual equilibrium unfolding behavior of villin headpiece domain.  相似文献   

4.
The thermostable 36‐residue subdomain of the villin headpiece (HP36) is the smallest known cooperatively folding protein. Although the folding and internal dynamics of HP36 and close variants have been extensively studied, there has not been a comprehensive investigation of side‐chain motion in this protein. Here, the fast motion of methyl‐bearing amino acid side chains is explored over a range of temperatures using site‐resolved solution nuclear magnetic resonance deuterium relaxation. The squared generalized order parameters of methyl groups extensively spatially segregate according to motional classes. This has not been observed before in any protein studied using this methodology. The class segregation is preserved from 275 to 305 K. Motions detected in Helix 3 suggest a fast timescale of conformational heterogeneity that has not been previously observed but is consistent with a range of folding and dynamics studies. Finally, a comparison between the order parameters in solution with previous results based on solid‐state nuclear magnetic resonance deuterium line shape analysis of HP36 in partially hydrated powders shows a clear disagreement for half of the sites. This result has significant implications for the interpretation of data derived from a variety of approaches that rely on partially hydrated protein samples.  相似文献   

5.
HP36, the helical subdomain of villin headpiece, contains a hydrophobic core composed of three phenylalanine residues (Phe47, Phe51, and Phe58). Hydrophobic effects and electrostatic interactions were shown to be the critical factors in stabilizing this core and the global structure. To assess the interactions among Phe47, Phe51, and Phe58 residues and investigate how they affect the folding stability, we implanted 4‐fluorophenylalanine (Z) and 4‐methylphenylalanine (X) into the hydrophobic core of HP36. We chemically synthesized HP36 and its seven variants including four single mutants whose Phe51 or Phe58 was replaced with Z or X, and three double mutants whose Phe51 and Phe58 were both substituted. Circular dichroism and nuclear magnetic resonance measurements show that the variants exhibit a native HP36 like fold, of which F51Z and three double mutants are more stable than the wild type. Molecular modeling provided detailed interaction energy within the phenylalanine residues, revealing that electrostatic interactions dominate the stability modulation upon the introduction of 4‐fluorophenylalanine and 4‐methylphenylalanine. Our results show that these two non‐natural amino acids can successfully tune the interactions in a relatively compact hydrophobic core and the folding stability without inducing dramatic steric effects. Such an approach may be applied to other folded motifs or proteins. © 2015 Wiley Periodicals, Inc. Biopolymers 103: 627–637, 2015.  相似文献   

6.
Villin headpiece (HP67) is a small, autonomously-folding domain that has become a model system for understanding the fundamental tenets governing protein folding. In this communication, we explore the role that Leu61 plays in the structure and stability of the construct. Deletion of Leu61 results in a completely unfolded protein that cannot be expressed in Escherichia coli. Omission of only the aliphatic leucine side chain (HP67 L61G) perturbed neither the backbone conformation nor the orientation of local hydrophobic side chains. As a result, a large, solvent-exposed hydrophobic pocket, a negative replica of the leucine side-chain, was created on the surface. The loss of the hydrophobic interface between leucine 61 and the hydrophobic pocket destabilized the construct by ~3.3 kcal/mol. Insertion of a single glycine residue immediately before Leu61 (HP67 L61[GL]) was also highly destabilizing and had the effect of altering the backbone conformation (α-helix to π-helix) in order to precisely preserve the wild-type position and conformation of all hydrophobic residues, including Leu61. In addition to demonstrating that the hydrophobic side-chain of Leu61 is critically important for the stability of villin headpiece, our results are consistent with the notion that the precise interactions present within the hydrophobic core, rather than the hydrogen bonds that define the secondary structure, specify a protein's fold.  相似文献   

7.
(15)N spin relaxation experiments were used to measure the temperature-dependence of protein backbone conformational fluctuations in the thermostable helical subdomain, HP36, of the F-actin-binding headpiece domain of chicken villin. HP36 is the smallest domain of a naturally occurring protein that folds cooperatively to a compact native state. Spin-lattice, spin-spin, and heteronuclear nuclear Overhauser effect relaxation data for backbone amide (15)N spins were collected at five temperatures in the range of 275-305 K. The data were analyzed using a model-free formalism to determine generalized order parameters, S, that describe the distribution of N-H bond vector orientations in a molecular reference frame. A novel parameter, Lambda=dln(1-S)/dln T is introduced to characterize the temperature-dependence of S. An average value of Lambda=4.5 is obtained for residues in helical conformations in HP36. This value of Lambda is not reproduced by model potential energy functions commonly used to parameterize S. The maximum entropy principle was used to derive a new model potential function that reproduces both S and Lambda. Contributions to the entropy, S(r), and heat capacity, C(r)(p), from reorientational conformational fluctuations were analyzed using this potential energy function. Values of S(r) show a qualitative dependence on S similar to that obtained for the diffusion-in-a-cone model; however, quantitative differences of up to 0.5k, in which k is the Boltzmann constant, are observed. Values of C(r)(p) approach zero for small values of S and approach k for large values of S; the largest values of C(r)(p) are predicted to occur for intermediate values of S. The results suggest that backbone dynamics, as probed by relaxation measurements, make very little contribution to the heat capacity difference between folded and unfolded states for HP36.  相似文献   

8.
The contribution of interactions involving the imidazole ring of His41 to the pH-dependent stability of the villin headpiece (HP67) N-terminal subdomain has been investigated by nuclear magnetic resonance (NMR) spin relaxation. NMR-derived backbone N-H order parameters (S2) for wild-type (WT) HP67 and H41Y HP67 indicate that reduced conformational flexibility of the N-terminal subdomain in WT HP67 is due to intramolecular interactions with the His41 imidazole ring. These interactions, together with desolvation effects, contribute to significantly depress the pKa of the buried imidazole ring in the native state. 15N R1rho relaxation dispersion data indicate that WT HP67 populates a partially folded intermediate state that is 10.9 kJ mol(-1) higher in free energy than the native state under non-denaturing conditions at neutral pH. The partially folded intermediate is characterized as having an unfolded N-terminal subdomain while the C-terminal subdomain retains a native-like fold. Although the majority of the residues in the N-terminal subdomain sample a random-coil distribution of conformations, deviations of backbone amide 1H and 15N chemical shifts from canonical random-coil values for residues within 5A of the His41 imidazole ring indicate that a significant degree of residual structure is maintained in the partially folded ensemble. The pH-dependence of exchange broadening is consistent with a linear three-state exchange model whereby unfolding of the N-terminal subdomain is coupled to titration of His41 in the partially folded intermediate with a pKa,I=5.69+/-0.07. Although maintenance of residual interactions with the imidazole ring in the unfolded N-terminal subdomain appears to reduce pKa,I compared to model histidine compounds, protonation of His41 disrupts these interactions and reduces the difference in free energy between the native state and partially folded intermediate under acidic conditions. In addition, chemical shift changes for residues Lys70-Phe76 in the C-terminal subdomain suggest that the HP67 actin binding site is disrupted upon unfolding of the N-terminal subdomain, providing a potential mechanism for regulating the villin-dependent bundling of actin filaments.  相似文献   

9.
10.
Thermostable villin headpiece protein (HP67) consists of the N‐terminal subdomain (residues 10–41) and the autonomously folding C‐terminal subdomain (residues 42–76) which pack against each other to form a structure with a unified hydrophobic core. The X‐ray structures of the isolated C‐terminal subdomain (HP36) and its counterpart in HP67 are very similar for the hydrophobic core residues. However, fine rearrangements of the free energy landscape are expected to occur because of the interactions between the two subdomains. We detect and characterize these changes by comparing the µs‐ms time scale dynamics of the methyl‐bearing side chains in isolated HP36 and in HP67. Specifically, we probe three hydrophobic side chains at the interface of the two subdomains (L42, V50, and L75) as well as at two residues far from the interface (L61 and L69). Solid‐state deuteron NMR techniques are combined with computational modeling for the detailed characterization of motional modes in terms of their kinetic and thermodynamic parameters. The effect of interdomain interactions on side chain dynamics is seen for all residues but L75. Thus, changes in dynamics because of subdomain interactions are not confined to the site of perturbation. One of the main results is a two‐ to threefold increase in the value of the activation energies for the rotameric mode of motions in HP67 compared with HP36. Detailed analysis of configurational entropies and heat capacities complement the kinetic view of the degree of the disorder in the folded state.  相似文献   

11.
Headpiece (HP) is a 76-residue F-actin-binding module at the C terminus of many cytoskeletal proteins. Its 35-residue C-terminal subdomain is one of the smallest known motifs capable of autonomously adopting a stable, folded structure in the absence of any disulfide bridges, metal ligands, or unnatural amino acids. We report the three-dimensional solution structures of the C-terminal headpiece subdomains of human villin (HVcHP) and human advillin (HAcHP), determined by two-dimensional 1H-NMR. They represent the second and third structures of such C-terminal headpiece subdomains to be elucidated so far. A comparison with the structure of the chicken villin C-terminal subdomain reveals a high structural conservation. Both C-terminal subdomains bind specifically to F-actin. Mutagenesis is used to demonstrate the involvement of Trp 64 in the F-actin-binding surface. The latter residue is part of a conserved structural feature, in which the surface-exposed indole ring is stacked on the proline and lysine side chain embedded in a PXWK sequence motif. On the basis of the structural and mutational data concerning Trp 64 reported here, the results of a cysteine-scanning mutagenesis study of full headpiece, and a phage display mutational study of the 69-74 fragment, we propose a modification of the model, elaborated by Vardar and coworkers, for the binding of headpiece to F-actin.  相似文献   

12.
This paper explores the dependence of the molecular dynamics (MD) trajectory of a protein molecule on the titration state assigned to the molecule. Four 100-ps MD trajectories of bovine pancreatic trypsin inhibitor (BPTI) were generated, starting from two different structures, each of which was held in two different charge states. The two starting structures were the X-ray crystal structure and one of the solution structures determined by NMR, and the charge states differed only in the ionization state of N terminus. Although it is evident that the MD simulations were too short to sample fully the equilibrium distribution of structures in each case, standard Poisson-Boltzmann titration state analysis of the resulting configurations shows general agreement between the overall titration behavior of the protein and the charge state assumed during MD simulation: at pH 7, the total net charge of the protein resulting from the titration analysis is consistently lower for the protein with the N terminus assumed to be neutral than for the protein with the N terminus assumed to be charged. For most of the ionizable residues, the differences in the calculated pKaS among the four trajectories are statistically negligible and remain in good agreement with the data obtained by crystal structure titration and by experiment. The exceptions include the N terminus, which responds directly to the change of its imposed charge; the C terminus, which in the NMR structure interacts strongly with the former; and a few other residues (Arg 1, Glu 7, Tyr 35, and Arg 42) whose pKaS reflect the initial structure and the limited trajectory lengths. This study illustrates the importance of the careful assignment of protonation states at the start of MD simulations and points to the need for simulation methods that allow for the variation of the protonation state in the calculation of equilibrium properties.  相似文献   

13.
Torshin IY  Harrison RW 《Proteins》2001,43(4):353-364
Electrostatic interactions are important for protein folding. At low resolution, the electrostatic field of the whole molecule can be described in terms of charge center(s). To study electrostatic effects, the centers of positive and negative charge were calculated for 20 small proteins of known structure, for which hydrogen exchange cores had been determined experimentally. Two observations seem to be important. First, in all 20 proteins studied 30-100% of the residues forming hydrogen exchange core(s) were clustered around the charge centers. Moreover, in each protein more than half of the core sequences are located near the centers of charge. Second, the general architecture of all-alpha proteins from the set seems to be stabilized by interactions of residues surrounding the charge centers. In most of the alpha-beta proteins, either or both of the centers are located near a pair of consecutive strands, and this is even more characteristic for alpha/Beta and all-beta structures. Consecutive strands are very probable sites of early folding events. These two points lead to the conclusion that charge centers, defined solely from the structure of the folded protein may indicate the location of a protein's hydrogen exchange/folding core. In addition, almost all the proteins contain well-conserved continuous hydrophobic sequences of three or more residues located in the vicinity of the charge centers. These hydrophobic sequences may be primary nucleation sites for protein folding. The results suggest the following scheme for the order of events in folding: local hydrophobic nucleation, electrostatic collapse of the core, global hydrophobic collapse, and slow annealing to the native state. This analysis emphasizes the importance of treating electrostatics during protein-folding simulations.  相似文献   

14.
The 36-residue helical subdomain of the villin headpiece, HP36, is one of the smallest cooperatively folded proteins, folding on the microsecond time scale. The domain is an extraordinarily popular model system for both experimental and computational studies of protein folding. The structure of HP36 has been determined using X-ray crystallography and NMR spectroscopy, with the resulting structures exhibiting differences in helix packing, van der Waals contacts, and hydrogen bonding. It is important to determine the solution structure of HP36 with as much accuracy as possible since this structure is widely used as a reference for simulations and experiments. We complement the existing data by using all-atom molecular dynamics simulations with explicit solvent to evaluate which of the experimental models is the better representation of HP36 in solution. After simulation for 50 ns initiated with the NMR structure, we observed that the protein spontaneously adopts structures with a backbone conformation, core packing, and C-capping motif on the third helix that are more consistent with the crystal structure. We also examined hydrogen bonding and side chain packing interactions between D44 and R55 and between F47 and R55, respectively, which were observed in the crystal structure but not in the NMR-based solution structure. Simulations showed large fluctuations in the distance between D44 and R55, while the distance between F47 and R55 remained stable, suggesting the formation of a cation-pi interaction between those residues. Experimental double mutant cycles confirmed that the F47-R55 pair has a larger energetic coupling than the D44-R55 interaction. Overall, these combined experimental and computational studies show that the X-ray crystal structure is the better reference structure for HP36 in solution at neutral pH. Our analysis also shows how detailed molecular dynamics simulations combined with experimental validation can help bridge the gap between NMR and crystallographic methods.  相似文献   

15.
The self-association of two model transmembrane helical peptides, differing in their surface topography, was compared in mixed micelles containing 3-([3-cholamidopropyl]dimethylammonio)-1-propanesulfonate (CHAPS) and dimyristoylphosphatidylcholine (DMPC). One peptide, Ac-KKL24KK-amide (L24), has large, rotationally mobile leucine side chains and a relatively rough surface. The other peptide, Ac-KKLLLLLLAALLALLAALLALLLLLLKK-amide (L18A6), has a patch of small alanines on one side of the helix that forms a smooth surface. The aggregation state of the peptides was sampled by chemical cross-linking with bis-sulfosuccinimidyl suberate (B53). A monomer-aggregate association constant was obtained from the cross-linking results in the range of 2 × 105 M–1 to 3 × 105 M–1 for both peptides. Kinetics of formation of cross-linked dimers indicated that the ratio of dimerization constants for L18A6 to L24 was between 10 and 20. This suggests that the alanine patch contributes about 1.5 Kcal/mol more stabilization free energy to dimer formation of L18A6 compared to L24.  相似文献   

16.
The three-dimensional optimization of the electrostatic interactions between the charged amino acid residues and the peptide partial charges was studied by Monte-Carlo simulations on a set of 127 nonhomologous protein structures with known atomic coordinates. It was shown that this type of interaction is very well optimized for all proteins in the data set, which suggests that they are a valuable driving force, at least for the native side-chain conformations. Similar to the optimization of the charge-charge interactions (Spassov VZ, Karshikoff AD, Ladenstein R, 1995, Protein Sci 4:1516-1527), the optimization effect was found more pronounced for enzymes than for proteins without enzymatic function. The asymmetry in the interactions of acidic and basic groups with the peptide dipoles was analyzed and a hypothesis was proposed that the properties of peptide dipoles are a factor contributing to the natural selection of the basic amino acids in the chemical composition of proteins.  相似文献   

17.
Intermediates along a protein's folding pathway can play an important role in its biology. Previous kinetics studies have revealed an early folding intermediate for T4 lysozyme, a small, well-characterized protein composed of an N-terminal and a C-terminal subdomain. Pulse-labeling hydrogen exchange studies suggest that residues from both subdomains contribute to the structure of this intermediate. On the other hand, equilibrium native state hydrogen experiments have revealed a high-energy, partially unfolded form of the protein that has an unstructured N-terminal subdomain and a structured C-terminal subdomain. To resolve this discrepancy between kinetics and equilibrium data, we performed detailed kinetics analyses of the folding and unfolding pathways of T4 lysozyme, as well as several point mutants and large-scale variants. The data support the argument for the presence of two distinct intermediates, one present on each side of the rate-limiting transition state barrier. The effects of circular permutation and site-specific mutations in the wild-type and circular permutant background, as well as a fragment containing just the C-terminal subdomain, support a model for the unfolding intermediate with an unfolded N-terminal and a folded C-terminal subdomain. Our results suggest that the partially unfolded form identified by native state hydrogen exchange resides on the folded side of the rate-limiting transition state and is, therefore, under most conditions, a "hidden" intermediate.  相似文献   

18.
Yan Z  Wang J  Wang W 《Proteins》2008,72(1):150-162
Folding and dimerization of an ionic polyalanine-based peptide chain (EAK16-IV) are simulated with nonspecific interactions. It is found that there is a competition between two kinds of structural motifs under different strengths of electrostatic interactions. The dominance of hairpin-like structures would be realized with a strong electrostatic interaction both thermodynamically and kinetically, showing the importance of the electrostatic interaction on the formation of hairpin-like structures. Simulations on the dimerization with strong electrostatic interaction are also carried out. It is found that the concentration contributes essentially to the shape of the dimers. These studies demonstrate that the strong interactions and kinetic factors might be important for the ordered amyloid aggregates.  相似文献   

19.
Intrinsically disordered proteins that exist as unordered monomeric structures in aqueous solution at pH 7 but fold into four‐helix bundles upon binding to recognized polypeptide targets have been designed. NMR and CD spectra of the monomeric polypeptides show the hallmarks of unordered structures, whereas in the bound state they are highly helical. Analytical ultracentrifugation data shows that the polypeptides bind to their targets to form exclusively heterodimers at neutral pH. To demonstrate the relationship between binding, folding, and function, a catalytic site for ester hydrolysis was introduced into an unordered and largely inactive monomer, but that was structured and catalytically active in the presence of a specific polypeptide target. Electrostatic interactions between surface‐exposed residues inhibited the binding and folding of the monomers at pH 7. Charge–charge repulsion between ionizable amino acids was thus found to be sufficient to disrupt binding between polypeptide chains despite their inherent propensities for structure formation and may be involved in the folding and function of inherently disordered proteins in biology. Copyright © 2013 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

20.
Protein folding conditions were established for human immunodeficiency virus integrase (IN) obtained from purified bacterial inclusion bodies. IN was denatured by 6 M guanidine.HCl-5 mM dithiothreitol, purified by gel filtration, and precipitated by ammonium sulfate. The reversible solvation of precipitated IN by 6 M guanidine.HCl allowed for wide variation of protein concentration in the folding reaction. A 6-fold dilution of denatured IN by 1 M NaCl buffer followed by dialysis produced enzymatically active IN capable of 3' OH end processing, strand transfer, and disintegration using various human immunodeficiency virus-1 (HIV-1) long terminal repeat DNA substrates. The specific activities of folded IN preparations for these enzymatic reactions were comparable to those of soluble IN purified directly from bacteria. The subunit composition and enzymatic activities of IN were affected by the folding conditions. Standard folding conditions were defined in which monomers and protein aggregates sedimenting as dimers and tetramers wree produced. These protein aggregates were enzymatically active, whereas monomers had reduced strand transfer activity. Temperature modifications of the folding conditions permitted formation of mainly monomers. Upon assaying, these monomers were efficient for strand transfer and disintegration, but the oligomeric state of IN under the conditions of the assay is determinate. Our results suggest that monomers of the multidomain HIV-1 IN are folded correctly for various catalytic activities, but the conditions for specific oligomerization in the absence of catalytic activity are undefined.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号