首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In multicellular plant organs, cell shape formation depends on molecular switches to transduce developmental or environmental signals and to coordinate cell‐to‐cell communication. Plants have a specific subfamily of the Rho GT Pase family, usually called Rho of Plants(ROP), which serve as a critical signal transducer involved in many cellular processes. In the last decade, important advances in the ROP‐mediated regulation of plant cell morphogenesis have been made by using Arabidopsis thaliana leaf and cotyledon pavement cells.Especially, the auxin‐ROP signaling networks have been demonstrated to control interdigitated growth of pavement cells to form jigsaw‐puzzle shapes. Here, we review findings related to the discovery of this novel auxin‐signaling mechanism at the cell surface. This signaling pathway is to a large extent independent of the well‐known Transport Inhibitor Response(TIR)–Auxin Signaling F‐Box(AFB) pathway, and instead requires Auxin Binding Protein 1(ABP1) interaction with the plasma membrane‐localized, transmembrane kinase(TMK) receptor‐like kinase to regulate ROP proteins. Once activated, ROP influences cytoskeletal organization and inhibits endocytosis of the auxin transporter PIN1. The present review focuses on ROP signaling and its self‐organizing feature allowing ROP proteins to serve as a bustling signal decoder and integrator for plant cell morphogenesis.  相似文献   

2.
ROPs:植物细胞内多种信号通路的分子开关   总被引:1,自引:0,他引:1  
植物RHO相关蛋白GTPases(RHO-related GTPases of plants, ROPs)是广泛存在于植物中的一类信号转导G蛋白(又称GTP结合蛋白),其通过结合GDP或GTP在非活性和活性状态间进行切换,进而在细胞极性控制、形态发育、激素水平调控、逆境反应等诸多植物生命活动的信号转导过程中扮演重要的分子开关角色。本文对ROP蛋白的结构域及基于蛋白质结构分类进行了介绍,并对拟南芥、玉米、水稻和大麦中的ROP家族蛋白质进行了系统进化分析。分析结果表明,这些植物中的ROP蛋白根据蛋白质结构域组成可分为Ⅰ类(typeⅠ)和Ⅱ类(typeⅡ)两种类型,而根据蛋白质序列的保守性可将其在植物中的ROP蛋白划分为4个进化枝。本综述不但对ROP蛋白作为分子开关在细胞内调控各种信号通路的机制进行了叙述,还对ROP在花粉管、根毛及植物表皮铺盖细胞极性发育,以及其他抗逆反应中的具体作用和机制及研究进展进行了阐述。本文还对ROP蛋白在ABA、IAA、BR等植物激素信号传导过程中的调控作用及研究进展进行了阐述。本文对植物ROP蛋白研究过程中尚未解决的问题,例如不同的ROP蛋白在同一个信号通路中的作用为何如此不同,以及ROP是如何协调不同的信号通路以共同调控一个植物发育或者生理过程等问题进行了总结,并在此基础上对未来的研究方向进行了展望。  相似文献   

3.
In a crowded environment, establishing interactions between different molecular partners can take a long time. Biological membranes have solved this issue, as they simultaneously are fluid and possess compartmentalized domains. This nanoscale organization of the membrane is often based on weak, local, and multivalent interactions between lipids and proteins. However, from local interactions at the nanoscale, different functional properties emerge at the higher scale, and these are critical to regulate and integrate cellular signaling. Rho of Plant (ROP) proteins are small guanosine triphosphate hydrolase enzymes (GTPases) involved in hormonal, biotic, and abiotic signaling, as well as fundamental cell biological properties such as polarity, vesicular trafficking, and cytoskeleton dynamics. Association with the membrane is essential for ROP function, as well as their precise targeting within micrometer-sized polar domains (i.e. microdomains) and nanometer-sized clusters (i.e. nanodomains). Here, we review our current knowledge about the formation and the maintenance of the ROP domains in membranes. Furthermore, we propose a model for ROP membrane targeting and discuss how the nanoscale organization of ROPs in membranes could determine signaling parameters like signal specificity, amplification, and integration.

The nanoscale organization of Rho of Plant proteins creates emergent properties that determine cellular signaling.  相似文献   

4.
RAC/ROP GTPases are a family of plant-specific signaling molecules solely representing the Ras and Rho family of Ras-related G proteins in plants. RAC/ROPs potentially interact with cell surface-associated signal perception apparatus for a broad range of extracellular stimuli, including hormones, pathogen elicitors and abiotic stress, and mediate diverse cellular pathways in response to these signals. They are also known to interact with multiple effectors, affecting cellular and biochemical systems that regulate actin dynamics, reactive oxygen species production, proteolysis, and gene expression. RAC/ROPs are, thus, ideally suited as integrators for multiple signals and as coordinators of diverse cellular pathways to control growth, differentiation, development and defense responses. Recent findings that suggest how RAC/ROP signaling activity is regulated and how functional specificity can be achieved are discussed here.  相似文献   

5.
Auxin and abscisic acid (ABA) are major plant hormones that act together to modulate numerous aspects of plant growth and development, including seed germination, primary root elongation, and lateral root formation. In this study, we analyzed the loss-of-function mutants of two closely related ROP (Rho of plants) GTPases, ROP9 and ROP10, and found that these ROP GTPases differentially regulate the auxin and ABA responses. rop9 and rop10 mutations enhanced the ABA-induced suppression of seed germination, primary root growth, and lateral root formation and the expression of ABA-responsive genes, whereas rop9 but not rop10 suppressed auxin-induced root phenotypes and auxin-responsive gene expression. These results suggest that both ROP9 and ROP10 function as negative regulators of ABA signaling, and that ROP9, but not ROP10, functions as a positive regulator of auxin signaling. Previously, ROPinteractive CRIB motif-containing protein 1 (RIC1) was reported to participate in auxin and ABA responses, and to have a similar effect as ROP9 and ROP10 on gene expression, root development, and seed germination. Because RIC proteins mediate ROP GTPase signaling, our results suggest that ROP9 and ROP10 GTPases function upstream of RIC1 in auxin- and ABA-regulated root development and seed germination.  相似文献   

6.
7.
Mitogen‐activated protein kinase (MPK) cascades are conserved mechanisms of signal transduction across eukaryotes. Despite the importance of MPK proteins in signaling events, specific roles for many Arabidopsis MPK proteins remain unknown. Multiple studies have suggested roles for MPK signaling in a variety of auxin‐related processes. To identify MPK proteins with roles in auxin response, we screened mpk insertional alleles and identified mpk1‐1 as a mutant that displays hypersensitivity in auxin‐responsive cell expansion assays. Further, mutants defective in the upstream MAP kinase kinase MKK3 also display hypersensitivity in auxin‐responsive cell expansion assays, suggesting that this MPK cascade affects auxin‐influenced cell expansion. We found that MPK1 interacts with and phosphorylates ROP BINDING PROTEIN KINASE 1 (RBK1), a protein kinase that interacts with members of the Rho‐like GTPases from Plants (ROP) small GTPase family. Similar to mpk1‐1 and mkk3‐1 mutants, rbk1 insertional mutants display auxin hypersensitivity, consistent with a possible role for RBK1 downstream of MPK1 in influencing auxin‐responsive cell expansion. We found that RBK1 directly phosphorylates ROP4 and ROP6, supporting the possibility that RBK1 effects on auxin‐responsive cell expansion are mediated through phosphorylation‐dependent modulation of ROP activity. Our data suggest a MKK3 ? MPK1 ? RBK1 phosphorylation cascade that may provide a dynamic module for altering cell expansion.  相似文献   

8.
9.
10.
Nagawa S  Xu T  Lin D  Dhonukshe P  Zhang X  Friml J  Scheres B  Fu Y  Yang Z 《PLoS biology》2012,10(4):e1001299
Cell polarization via asymmetrical distribution of structures or molecules is essential for diverse cellular functions and development of organisms, but how polarity is developmentally controlled has been poorly understood. In plants, the asymmetrical distribution of the PIN-FORMED (PIN) proteins involved in the cellular efflux of the quintessential phytohormone auxin plays a central role in developmental patterning, morphogenesis, and differential growth. Recently we showed that auxin promotes cell interdigitation by activating the Rho family ROP GTPases in leaf epidermal pavement cells. Here we found that auxin activation of the ROP2 signaling pathway regulates the asymmetric distribution of PIN1 by inhibiting its endocytosis. ROP2 inhibits PIN1 endocytosis via the accumulation of cortical actin microfilaments induced by the ROP2 effector protein RIC4. Our findings suggest a link between the developmental auxin signal and polar PIN1 distribution via Rho-dependent cytoskeletal reorganization and reveal the conservation of a design principle for cell polarization that is based on Rho GTPase-mediated inhibition of endocytosis.  相似文献   

11.
Structure and function of Rho-type molecular switches in plants.   总被引:5,自引:0,他引:5  
Molecular switches of the Rho family, in concert with their associated regulators and effectors are well known as important control elements of vital signaling pathways in eucaryotic organisms. Yet, this knowledge has so far been established mainly from animal and fungal studies. However, during the recent years, the Rho switch has gone increasingly green as well, and it turned out that the homologous system in plants holds some distinctive features regarding structures, functions and molecular mechanisms for signal transduction. In this review, we give an overview about the structural characteristics of the Rho proteins of plants, termed ROP, highlighting some exciting differences to their animal and fungal counterparts. We further address the unique regulators and effectors of the ROPs and discuss the structural basis for the function and interaction of those proteins in ROP controlled reaction cascades. We finally intend to stimulate the demand for future three-dimensional structures that advance our understanding of the ROP switch in plants.  相似文献   

12.
ROP/RAC GTPase signaling   总被引:5,自引:0,他引:5  
ROP/RAC GTPases are versatile signaling molecules in plants. Recent studies of ROP/RAC regulators and effectors have generated new insights into the molecular basis of their functional versatility. Significant progress has also been made in our understanding of the mechanism for the localization of ROP/RAC signaling to specific domains of the plasma membrane.  相似文献   

13.
Phosphorus, an essential macroelement for plant growth and development, is a major limiting factor for sustainable crop yield. The Rho of plant (ROP) GTPase is involved in regulating multiple signal transduction processes in plants, but potentially including the phosphate deficiency signaling pathway remains unknown. Here, we identified that the rop6 mutant exhibited a dramatic tolerant phenotype under Pi-deficient conditions, with higher phosphate accumulation and lower anthocyanin content. In contrast, the rop6 mutant was more sensitive to arsenate (As(V)) toxicity, the analog of Pi. Immunoblot analysis displayed that the ROP6 protein was rapidly degraded through ubiquitin/26S proteasome pathway under Pi-deficient conditions. In addition, pull-down assay using GST-RIC1 demonstrated that the ROP6 activity was decreased obviously under Pi-deficient conditions. Strikingly, protein–protein interaction and two-voltage clamping assays demonstrated that ROP6 physically interacted with and inhibited the key phosphate uptake transporters PHT1;1 and PHT1;4 in vitro and in vivo. Moreover, genetic analysis showed that ROP6 functioned upstream of PHT1;1 and PHT1;4. Thus, we conclude that GTPase ROP6 modulates the uptake of phosphate by inhibiting the activities of PHT1;1 and PHT1;4 in Arabidopsis.  相似文献   

14.
ROPs/RACs are the only known signaling Ras superfamily small GTPases in plants. As such they have been suggested to function as central regulators of diverse signaling cascades. The ROP/RAC signaling networks are largely unknown, however, because only few of their effector proteins have been identified. In a paper that was published in the June 5, 2007 issue of Current Biology we described the identification of a novel ROP/RAC effector designated ICR1 (Interactor of Constitutive active ROPs 1). We demonstrated that ICR1 functions as a scaffold that interacts with diverse but specific group of proteins including SEC3 subunit of the exocyst vesicle tethering complex. ICR1-SEC3 complexes can interact with ROPs in vivo and are thereby recruited to the plasma membrane. ICR1 knockdown or silencing leads to cell deformation and loss of the root stem cells population, and ectopic expression of ICR1 phenocopies activated ROPs/RACs. ICR1 presents a new paradigm in ROP/RAC signaling and integrates mechanisms regulating cell form and pattern formation at the whole plant level.Key words: Rho, auxin, root development, vesicle trafficking, RAC, ROP, polarity, Arabidopsis, exocyst  相似文献   

15.
The small GTPase proteins are components of the intracellular signaling system, alternating between active (membrane-bound and GTP-loaded) and inactive (GDP-loaded and cytosolic) states. In the inactive state, the proteins are soluble in the cytoplasm. To compensate for the energetic penalty of extraction of the hydrophobic moiety from the membrane phase, the inactive state is stabilized via formation of a complex with the RhoGDI proteins that provide a hydrophobic pocket for the binding of the hydrophobic moieties. The signals delivered by the Rho subfamily involve a specific, short, highly exposed α-helix (Rho-insert), located close to the GDP binding site. Upon simulating the complex in solution, we observed that the Rho-insert domain of Cdc42 can assume two basic orientations. One is the canonical one, as detected in both crystals and NMR spectra of concentrated protein solutions. The second orientation appears only in the RhoGDI-Cdc42 complex where the GER moiety of Cdc42 is properly inserted into the specific binding site of RhoGDI. Any impairment of the GER-RhoGDI interactions, such as insertion of specific mutations in the hydrophobic binding site, abolished the coupling between the proteins and the Rho-insert domain, preserving its canonical orientation as in the crystalline structure. The noncanonical conformation of the Rho-insert domain is not a simulation artifact, as it appears in crystals of plant Rho proteins (ROP4, ROP5, and ROP7). In accord with the notion that the Rho-insert domain participates in downstream signaling, we propose that the deformation of the Rho-insert is part of the signal transmissions.  相似文献   

16.
Toxoplasma gondii replicates within a specialized vacuole surrounded by the parasitophorous vacuole membrane (PVM). The PVM forms intimate interactions with host mitochondria and endoplasmic reticulum (ER) in a process termed PVM-organelle association. In this study we identify a likely mediator of this process, the parasite protein ROP2. ROP2, which is localized to the PVM, is secreted from anterior organelles termed rhoptries during parasite invasion into host cells. The NH(2)-terminal domain of ROP2 (ROP2hc) within the PVM is exposed to the host cell cytosol, and has characteristics of a mitochondrial targeting signal. In in vitro assays, ROP2hc is partially translocated into the mitochondrial outer membrane and behaves like an integral membrane protein. Although ROP2hc does not translocate across the ER membrane, it does exhibit carbonate-resistant binding to this organelle. In vivo, ROP2hc expressed as a soluble fragment in the cytosol of uninfected cells associates with both mitochondria and ER. The 30-amino acid (aa) NH(2)-terminal sequence of ROP2hc, when fused to green fluorescent protein (GFP), is sufficient for mitochondrial targeting. Deletion of the 30-aa NH(2)-terminal signal from ROP2hc results in robust localization of the truncated protein to the ER. These results demonstrate a new mechanism for tight association of different membrane-bound organelles within the cell cytoplasm.  相似文献   

17.
18.
In the leaf epidermis, intricately lobed pavement cells use Rho of plants (ROP) small GTPases to integrate actin and microtubule organization with trafficking through the secretory pathway. Cell signaling occurs because guanine nucleotide exchange factors (GEFs) promote ROP activation and their interactions with effector proteins that direct the cell growth machineries. In Arabidopsis, SPIKE1 (SPK1) is the lone DOCK family GEF. SPK1 promotes polarized growth and cell-cell adhesion in the leaf epidermis; however, its mode of action in cells is not known. Vertebrate DOCK proteins are deployed at the plasma membrane. Likewise, current models place SPK1 activity and/or active ROP at the plant plasma membrane and invoke the localized patterning of the cortical cytoskeleton as the mechanism for shape control. In this paper, we find that SPK1 is a peripheral membrane protein that accumulates at, and promotes the formation of, a specialized domain of the endoplasmic reticulum (ER) termed the ER exit site (ERES). SPK1 signals are generated from a distributed network of ERES point sources and maintain the homeostasis of the early secretory pathway. The ERES is the location for cargo export from the ER. Our findings open up unexpected areas of plant G protein biology and redefine the ERES as a subcellular location for signal integration during morphogenesis.  相似文献   

19.
Li Z  Liu D 《FEBS letters》2012,586(9):1253-1258
ROPs constitute a family of plant-specific, RHO-like small GTPases that serve as molecular switches in a wide range of signaling pathways. The activities of ROPs are regulated by guanine nucleotide exchange factors (GEFs). ROP11, a member of the ROP GTPase family in Arabidopsis, is a negative regulator of multiple ABA responses. In this study, we show that ROPGEF1 and ROPGEF4 interact with ROP11 on plasma membranes in guard cells. Furthermore, our analyses of ROPGEF1/4 knockout mutants and overexpressing lines suggested that ROPGEF1 and ROPGEF4 are specific regulators of ROP11 function in ABA-mediated stomatal closure.  相似文献   

20.
Retinopathy of prematurity (ROP) is a vascular vitreoretinopathy that affects infants with short gestational age and low birth-weight. The condition is a multifactorial disease and is clinically similar to familial exudative vitreoretinopathy (FEVR), which is a bilateral hereditary eye disorder affecting full-term infants. Both of them are characterized by the abnormal vessel growth in the vitreous that can lead to vitreoretinal traction, retinal detachment and other complications resulting in blindness. Despite the recent advances in diagnosis and treatment, ROP remains a major cause of childhood blindness in developed countries. The etiology of pathogenesis of advanced ROP is currently unknown. In the past, many causative factors such as length of time exposed to supplemental oxygen, excessive ambient light exposure and hypoxia have been suggested but evidence for these as independent risk factors in recent years is not compelling. It is not clear why ROP in a subset of infants with low birth-weight progresses to a severe stage (retinal detachment) despite timely intervention whereas in other infants with similar clinical characteristics ROP regresses spontaneously. Recent research with candidate gene approach, higher concordance rate in monozygotic twins and other clinical and experimental animal studies, suggest a strong genetic predisposition to ROP besides environmental factors such as prematurity. Three genes, which are involved in the Wnt signaling pathway, are mutated in both FEVR and in a small percentage of ROP disorder. However, none of the genetic factors identified thus far in ROP, account for a substantial number of patient population. Future studies involving genomics, bioinformatics and proteomics may provide a better understanding of the pathophysiology and management of ROP.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号