首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Magnetotactic bacteria (MTB) mineralize nanosized magnetite or greigite crystals within cells and thus play an important role in the biogeochemical process. Despite decades of research, knowledge of MTB distribution and ecology, notably in areas subjected to oil industry activities, is still limited. In the present study, we investigated the presence of MTB in the Gulf of Fos, French Mediterranean coast, which is subjected to intensive oil industry activities. Microcosms containing sediments/water (1:2, v/v) from several sampling sites were monitored over several weeks. The presence of MTB was revealed in five of eight sites. Diverse and numerous MTB were revealed particularly from one site (named CAR), whilst temporal variations of a homogenous magnetotactic cocci population was shown within the LAV site microcosm over a 4-month period. Phylogenetic analysis revealed that they belonged to Alphaproteobacteria, and a novel genus from the LAV site was evidenced. Among the physicochemical parameters measured, a correlation was shown between the variation of MTB abundance in microcosms and the redox state of sulphur compounds.  相似文献   

2.
Aims The relationship between biodiversity and ecological stability is a long-standing issue in ecology. Current diversity–stability studies, which have largely focused on species diversity, often report an increase in the stability of aggregate community properties with increasing species diversity. Few studies have examined the linkage between phylogenetic diversity, another important dimension of biodiversity, and stability. By taking species evolutionary history into account, phylogenetic diversity may better capture the diversity of traits and niches of species in a community than species diversity and better relate to temporal stability. In this study, we investigated whether phylogenetic diversity could affect temporal stability of community biomass independent of species diversity.Methods We performed an experiment in laboratory microcosms with a pool of 12 bacterivorous ciliated protist species. To eliminate the possibility of species diversity effects confounding with phylogenetic diversity effects, we assembled communities that had the same number of species but varied in the level of phylogenetic diversity. Weekly disturbance, in the form of short-term temperature shock, was imposed on each microcosm and species abundances were monitored over time. We examined the relationship between temporal stability of community biomass and phylogenetic diversity and evaluated the role of several stabilizing mechanisms for explaining the influence of phylogenetic diversity on temporal stability.Important findings Our results showed that increasing phylogenetic diversity promoted temporal stability of community biomass. Both total community biomass and summed variances showed a U-shaped relationship with phylogenetic diversity, driven by the presence of large, competitively superior species that attained large biomass and high temporal variation in their biomass in both low and high phylogenetic diversity communities. Communities without these species showed patterns consistent with the reduced strength of competition and increasingly asynchronous species responses to environmental changes under higher phylogenetic diversity, two mechanisms that can drive positive diversity–stability relationships. These results support the utility of species phylogenetic knowledge for predicting ecosystem functions and their stability.  相似文献   

3.
This study used phylogenetic probes in hybridization analysis to (i) determine in situ microbial community structures in regions of a shallow sand aquifer that were oxygen depleted and fuel contaminated (FC) or aerobic and noncontaminated (NC) and (ii) examine alterations in microbial community structures resulting from exposure to toluene and/or electron acceptor supplementation (nitrate). The latter objective was addressed by using the NC and FC aquifer materials for anaerobic microcosm studies in which phylogenetic probe analysis was complemented by microbial activity assays. Domain probe analysis of the aquifer samples showed that the communities were predominantly Bacteria; Eucarya and Archaea were not detectable. At the phylum and subclass levels, the FC and NC aquifer material had similar relative abundance distributions of 43 to 65% beta- and gamma-Proteobacteria (B+G), 31 to 35% alpha-Proteobacteria (ALF), 15 to 18% sulfate-reducing bacteria, and 5 to 10% high G+C gram positive bacteria. Compared to that of the NC region, the community structure of the FC material differed mainly in an increased abundance of B+G relative to that of ALF. The microcosm communities were like those of the field samples in that they were predominantly Bacteria (83 to 101%) and lacked detectable Archaea but differed in that a small fraction (2 to 8%) of Eucarya was detected regardless of the treatment applied. The latter result was hypothesized to reflect enrichment of anaerobic protozoa. Addition of nitrate and/or toluene stimulated microbial activity in the microcosms, but only supplementation of toluene alone significantly altered community structures. For the NC material, the dominant subclass shifted from B+G to ALF, while in the FC microcosms 55 to 65% of the Bacteria community was no longer identifiable by the phylum or subclass probes used. The latter result suggested that toluene exposure fostered the proliferation of phylotype(s) that were otherwise minor constituents of the FC aquifer community. These studies demonstrated that alterations in aquifer microbial communities resulting from specific anthropogenic perturbances can be inferred from microcosm studies integrating chemical and phylogenetic probe analysis and in the case of hydrocarbon contamination may facilitate the identification of organisms important for in situ biodegradation processes. Further work integrating and coordinating microcosm and field experiments is needed to explore how differences in scale, substrate complexity, and other hydrogeological conditions may affect patterns observed in these systems.  相似文献   

4.
Understanding how microbial genotypes are arrayed in space is crucial for identifying local factors that may influence the spatial distribution of genetic diversity. In this study we investigated variation in 16S rDNA sequences and rep-PCR fingerprints of Streptomyces stains isolated from prairie soil among three locations and four soil depths. Substantial variation in Streptomyces OTU (operational taxonomic unit) and BOX-PCR fingerprint diversity was found among locations within a limited spatial area (1 m2). Further, phylogenetic lineages at each location were distinct. However, there was little variation in genetic diversity among isolates from different soil depths and similar phylogenetic lineages were found at each depth. Some clones were found at a localized scale while other clones had a relatively widespread distribution. There was poor correspondence between 16S rDNA groupings and rep-PCR fingerprint groupings. The finding of distinct phylogenetic lineages and the variation in spatial distribution of clones suggests that selection pressures may vary over the soil landscape.  相似文献   

5.
6.
Twelve replicate 150-l laboratory microcosms were developed using whole water samples and natural benthic communities from Narragansett Bay, Rhode Island (USA). The microcosms were scaled to the bay in terms of salinity, temperature, light input, volume pelagic community to area of benthic community, density of macrofauna, turbulent mixing, and flushing time. The microcosms were self maintaining during a six month study period with over 35 species of phytoplankton and 30 species of macro-invertebrates. Some 25 species of meroplankton entered the microcosms and sucessfully colonized the benthic communities. Zooplankton were present in all life stages. After an initial study of replication among the 12 tanks, the microcosms were perturbed with 3 levels of treated urban sewage for a three month period. Three microcosms were maintained at each level with 3 tanks remaining as controls. At the end of 3 months, the sewage input was terminated and the response of the systems was followed for an additional 2 months. Both time series data and multivariate statistical analysis of over 10 different parameters indicated that the replication of the microcosms was adequate to show the effects of experimental treatments. Control microcosms were generally within the range of variation expected in Narragansett Bay. Moreover, the results suggested that the microcosms responded to the gradient of sewage input in a manner similar to that of the bay. During the two month period after the sewage was discontinued, all of the microcosms became increasingly similar, though the tanks that had been subjected to higher levels of sewage remained distinct. It was apparent throughout the study that comparisons of microcosms and natural systems must account for the large variation characteristic of each. For this, and other reasons, multivariate statistical techniques appear to provide a powerful tool for experimental ecosystem analysis.  相似文献   

7.
Both magnetic collection and "race track" purification techniques were highly effective for selective enrichment of magnetotactic bacteria (MTB) from complex communities, as suggested by amplified ribosomal DNA restriction analysis and denaturing gradient gel electrophoresis combined with sequence analysis of 16S rRNA genes. Using these purification methods, the occurrence and diversity of MTB in microcosms from various marine and freshwater environments were assayed by using a combined microscopic, molecular, and cultivation approach. Most microcosms were dominated by magnetotactic cocci. Consistently, the majority of retrieved 16S RNA sequences were affiliated with a distinct cluster in the Alphaproteobacteria. Within this lineage the levels of sequence divergence were <1 to 11%, indicating genus-level diversity between magnetotactic cocci from various microcosms, as well as between MTB from different stages of succession of the same microcosms. The community composition in microscosms underwent drastic succession during incubation, and significant heterogeneities were observed between microcosms from the same environmental sources. A novel magnetotactic rod (MHB-1) was detected in a sediment sample from a lake in northern Germany by fluorescence in situ hybridization. MHB-1 falls into the Nitrospira phylum, displaying 91% 16S rRNA sequence similarity to "Magnetobacterium bavaricum." In extensive cultivation attempts, we failed to isolate MHB-1, as well as most other MTB present in our samples. However, although magnetotactic spirilla were not frequently observed in the enrichments, 10 novel isolates of the genus Magnetospirillum which had not routinely been isolated in pure culture before were obtained.  相似文献   

8.
Perchlorate contamination is a concern because of the increasing frequency of its detection in soils and groundwater and its presumed inhibitory effect on human thyroid hormone production. Although significant perchlorate contamination occurs in the vadose (unsaturated) zone, little is known about perchlorate biodegradation potential by indigenous microorganisms in these soils. We measured the effects of electron donor (acetate and hydrogen) and nitrate addition on perchlorate reduction rates and microbial community composition in microcosm incubations of vadose soil. Acetate and hydrogen addition enhanced perchlorate reduction, and a longer lag period was observed for hydrogen (41 days) than for acetate (14 days). Initially, nitrate suppressed perchlorate reduction, but once perchlorate started to be degraded, the process was stimulated by nitrate. Changes in the bacterial community composition were observed in microcosms enriched with perchlorate and either acetate or hydrogen. Denaturing gradient gel electrophoresis analysis and partial sequencing of 16S rRNA genes recovered from these microcosms indicated that formerly reported perchlorate-reducing bacteria were present in the soil and that microbial community compositions were different between acetate- and hydrogen-amended microcosms. These results indicate that there is potential for perchlorate bioremediation by native microbial communities in vadose soil.  相似文献   

9.
Future climate changes are predicted to not only increase global temperatures but also alter temporal variation in temperature. As thermal tolerances form an important component of a species’ niche, changes to the temperature regime have the capacity to negatively impact species, and therefore, the diversity of the communities they inhabit. In this study, we used protist microcosms to assess how mean temperature, as well as temporal variation in temperature, affected diversity. Communities consisted of seven species in a multitrophic food web. Each ecosystem was inoculated with the same abundances of each species at the start of the experiment, and species densities, Hill''s numbers (based on Shannon diversity), the number of extinctions, and the probability the microcosm contained predators were all calculated at the end of the experiment. To assess how mean temperature and temperature fluctuations affect stability, we also measured population densities through time. We found that increased temporal variation in temperature increased final densities, increased Hill''s numbers (at low mean temperatures), decreased rates of extinctions, and increased the probability that predators survived till the end of the experiment. Mean temperatures did not significantly affect either the number of extinctions or the probability of predators, but did reduce the positive effect of increased temporal variation in temperature on overall diversity. Our results indicate that climatic changes have the potential to impact the composition of ecological communities by altering multiple components of temperature regimes. However, given that some climate forecasts are predicting increased mean temperatures and reduced variability, our finding that increased mean temperature and reduced temporal variation are both generally associated with negative consequences is somewhat concerning.  相似文献   

10.
Perchlorate contamination is a concern because of the increasing frequency of its detection in soils and groundwater and its presumed inhibitory effect on human thyroid hormone production. Although significant perchlorate contamination occurs in the vadose (unsaturated) zone, little is known about perchlorate biodegradation potential by indigenous microorganisms in these soils. We measured the effects of electron donor (acetate and hydrogen) and nitrate addition on perchlorate reduction rates and microbial community composition in microcosm incubations of vadose soil. Acetate and hydrogen addition enhanced perchlorate reduction, and a longer lag period was observed for hydrogen (41 days) than for acetate (14 days). Initially, nitrate suppressed perchlorate reduction, but once perchlorate started to be degraded, the process was stimulated by nitrate. Changes in the bacterial community composition were observed in microcosms enriched with perchlorate and either acetate or hydrogen. Denaturing gradient gel electrophoresis analysis and partial sequencing of 16S rRNA genes recovered from these microcosms indicated that formerly reported perchlorate-reducing bacteria were present in the soil and that microbial community compositions were different between acetate- and hydrogen-amended microcosms. These results indicate that there is potential for perchlorate bioremediation by native microbial communities in vadose soil.  相似文献   

11.
Hydraena is the largest genus within the water beetle family Hydraenidae, with ca. 1000 species distributed worldwide. Within this large genus some monophyletic groups of species are recognised, among them the "Haenydra" lineage, including ca. 90 species distributed in the western Palaearctic from the Iberian peninsula to Iran. Species of "Haenydra" have often very restricted distributions, and are typical of clean small rivers and streams. We obtained ca. 2.5Kb of mitochondrial and nuclear protein-code and ribosomal markers of 101 specimens of 69 species of "Haenydra", and used Bayesian and Maximum Likelihood phylogenetic methods to reconstruct their phylogeny and diversification history. We found a derived phylogenetic position of the "Haenydra" lineage within the genus Hydraena, as sister to the species of the Hydraenabisulcata group. Within "Haenydra" three main lineages were recognised, with poorly resolved relationships among them: the Hydraena iberica, Hydraena gracilis and Hydraena dentipes lineages, the former restricted to the Iberian peninsula but the latter two distributed through the whole north-Mediterranean area. A Bayesian relaxed molecular clock approach using a combined mitochondrial rate of 2% divergence per MY estimated the origin of "Haenydra" in the Tortonian, ca. 8Mya, and the main diversification and the origin of most extant species in the Pliocene and Pleistocene. We did not found evidence of a phylogenetic connection between the western and eastern species that could be traced to the Messinian salinity crisis, with dispersal only at small geographical scales (e.g. the colonisation of Corsica and Sardinia from NW Italy and SW France). The H. gracilis and H. iberica lineages were estimated to have diversified under a pure birth model with a speciation rate of 0.64 and 0.23 species/MY respectively, while the H. dentipes lineage was estimated to have a decreasing diversification rate with time, with an average rate of 0.29 sp/MY.  相似文献   

12.
Phototrophic biofilms were cultivated simultaneously using the same inoculum in three identical flow-lane microcosms located in different laboratories. The growth rates of the biofilms were similar in the different microcosms, but denaturing gradient gel electrophoresis (DGGE) analysis of both 16S and 18S rRNA gene fragments showed that the communities developed differently in terms of species richness and community composition. One microcosm was dominated by Microcoleus and Phormidium species, the second microcosm was dominated by Synechocystis and Phormidium species, and the third microcosm was dominated by Microcoleus- and Planktothrix- affiliated species. No clear effect of light intensity on the cyanobacterial community composition was observed. In addition, DGGE profiles obtained from the cultivated biofilms showed a low resemblance with the profiles derived from the inoculum. These findings demonstrate that validation of reproducibility is essential for the use of microcosm systems in microbial ecology studies.  相似文献   

13.
Crude oil is a complex mixture of different hydrocarbons. While diverse bacterial communities can degrade oil, the specific roles of individual members within such communities remain unclear. To identify the key bacterial taxa involved in aerobic degradation of specific hydrocarbons, microcosm experiments were established using seawater from Stanford le Hope, Thames estuary, UK, adjacent to a major oil refinery. In all microcosms, hydrocarbon degradation was significant within 10 weeks, ranging from > 99% of low-molecular-weight alkanes (C(10)-C(18)), 41-84% of high-molecular-weight alkanes (C(20)-C(32)) and pristane, and 32-88% of polycyclic aromatic hydrocarbons (PAHs). Analysis of 16S rRNA sequences from clone libraries and denaturing gradient gel electrophoresis (DGGE) indicated that, except when incubated with fluorene, PAH-degrading communities were dominated by Cycloclasticus. Moreover, PAH-degrading communities were distinct from those in microcosms containing alkanes. Degradation of the branched alkane, pristane, was carried out almost exclusively by Alcanivorax. Bacteria related to Thalassolituus oleivorans (99-100% identity) were the dominant known alkane degraders in n-alkane (C(12)-C(32)) microcosms, while Roseobacter-related bacteria were also consistently found in these microcosms. However, in contrast to previous studies, Thalassolituus, rather than Alcanivorax, was dominant in crude oil-enriched microcosms. The communities in n-decane microcosms differed from those in microcosms supplemented with less volatile alkanes, with a phylogenetically distinct species of Thalassolituus out-competing T. oleivorans. These data suggest that the diversity and importance of the genus Thalassolituus is greater than previously established. Overall, these experiments demonstrate how degradation of different petroleum hydrocarbons is partitioned between different bacterial taxa, which together as a community can remediate petroleum hydrocarbon-impacted estuarine environments.  相似文献   

14.
Watershed liming effects on the forest floor N cycle   总被引:3,自引:3,他引:0  
The forest floor was expected to play a major role in determining the total ecosystem response to watershed liming because of its high concentration of nutrients and its high level of activity. Net N mineralization and net nitrification were estimated in a field survey using the buried-bag approach. In a laboratory incubation experiment, forest floor humus was mixed with 6 doses of lime to determine the sensitivity of N mineralization and nitrification to lime dose. Forest floor microcosms with and without live tree roots were used to calculate a N budget for the system.The pH of the forest floor increased from 3.6 to 4.9 in the Oe and to 4.0 in the Oa two years after liming. The extractable ammonium pool in both the field survey and microcosm study was substantially smaller after liming and was probably a result of the 36% to 55% lower net N mineralization rate in limed plots than in reference plots. The laboratory incubation results agreed with the field survey results and further demonstrated that at higher lime doses (pH 5 to 6), N mineralization increased above controls. Net nitrification in limed humus in both the buried bags and laboratory incubation was as much as three times higher than controls, which could explain why nitrate leaching in limed microcosms was greater than in control microcosms. However, nitrate leaching from microcosms with live. roots was not affected by liming, suggesting that roots in the forest floor may prevent excess nitrate leaching. Reductions in N mineralization had no effect on N leaching or N uptake, but reduced the extractable ammonium pool.  相似文献   

15.
Nelson CE  Carlson CA 《PloS one》2011,6(3):e18320
Nutrient enrichment of high-elevation freshwater ecosystems by atmospheric deposition is increasing worldwide, and bacteria are a key conduit for the metabolism of organic matter in these oligotrophic environments. We conducted two distinct in situ microcosm experiments in a high-elevation lake (Emerald Lake, Sierra Nevada, California, USA) to evaluate responses in bacterioplankton growth, carbon utilization, and community structure to short-term enrichment by nitrate and phosphate. The first experiment, conducted just following ice-off, employed dark dilution culture to directly assess the impact of nutrients on bacterioplankton growth and consumption of terrigenous dissolved organic matter during snowmelt. The second experiment, conducted in transparent microcosms during autumn overturn, examined how bacterioplankton in unmanipulated microbial communities responded to nutrients concomitant with increasing phytoplankton-derived organic matter. In both experiments, phosphate enrichment (but not nitrate) caused significant increases in bacterioplankton growth, changed particulate organic stoichiometry, and induced shifts in bacterial community composition, including consistent declines in the relative abundance of Actinobacteria. The dark dilution culture showed a significant increase in dissolved organic carbon removal in response to phosphate enrichment. In transparent microcosms nutrient enrichment had no effect on concentrations of chlorophyll, carbon, or the fluorescence characteristics of dissolved organic matter, suggesting that bacterioplankton responses were independent of phytoplankton responses. These results demonstrate that bacterioplankton communities in unproductive high-elevation habitats can rapidly alter their taxonomic composition and metabolism in response to short-term phosphate enrichment. Our results reinforce the key role that phosphorus plays in oligotrophic lake ecosystems, clarify the nature of bacterioplankton nutrient limitation, and emphasize that evaluation of eutrophication in these habitats should incorporate heterotrophic microbial communities and processes.  相似文献   

16.
Both magnetic collection and “race track” purification techniques were highly effective for selective enrichment of magnetotactic bacteria (MTB) from complex communities, as suggested by amplified ribosomal DNA restriction analysis and denaturing gradient gel electrophoresis combined with sequence analysis of 16S rRNA genes. Using these purification methods, the occurrence and diversity of MTB in microcosms from various marine and freshwater environments were assayed by using a combined microscopic, molecular, and cultivation approach. Most microcosms were dominated by magnetotactic cocci. Consistently, the majority of retrieved 16S RNA sequences were affiliated with a distinct cluster in the Alphaproteobacteria. Within this lineage the levels of sequence divergence were <1 to 11%, indicating genus-level diversity between magnetotactic cocci from various microcosms, as well as between MTB from different stages of succession of the same microcosms. The community composition in microscosms underwent drastic succession during incubation, and significant heterogeneities were observed between microcosms from the same environmental sources. A novel magnetotactic rod (MHB-1) was detected in a sediment sample from a lake in northern Germany by fluorescence in situ hybridization. MHB-1 falls into the Nitrospira phylum, displaying 91% 16S rRNA sequence similarity to “Magnetobacterium bavaricum.” In extensive cultivation attempts, we failed to isolate MHB-1, as well as most other MTB present in our samples. However, although magnetotactic spirilla were not frequently observed in the enrichments, 10 novel isolates of the genus Magnetospirillum which had not routinely been isolated in pure culture before were obtained.  相似文献   

17.
The Internal Transcribed Spacer (ITS) regions of ribosomal DNA are widely used as markers for phylogenetic analyses and environmental sampling from a variety of organisms including fungi, plants, and animals. In theory, concerted evolution homogenizes multicopy genes so that little or no variation exists within populations or individuals. However, contrary to theory, ITS variation has been confirmed in populations and individuals from a diverse range of eukaryotes. The presence of intraspecific and intra-individual variation in multicopy genes has important implications for ecological and phylogenetic studies, yet relatively little is known about natural variation of these genes, particularly at the community level. In this study, we examined intraspecific and intra-sporocarp ITS variation by DNA sequencing from sporocarps and pooled roots from 68 species of ectomycorrhizal fungi collected at a single site in a Quercus woodland. We detected ITS variation in 27 species, roughly 40% of the taxa examined. Although intraspecific ITS variation was generally low (0.16–2.85%, mean = 0.74%), it was widespread within this fungal community. We detected ITS variation in both sporocarps and ectomycorrhizal roots, and variation was present within species of Ascomycota and Basidiomycota, two distantly related lineages within the Fungi. We discuss the implications of such widespread ITS variability with special reference to DNA-based environmental sampling from diverse fungal communities. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

18.
The potential of using nitrate as a terminal electron acceptor to stimulate anaerobic degradation of mixtures of monochlorophenols (MCPs) or dichlorophenols (DCPs) was evaluated. Contaminated and non-contaminated soils were added to water saturated anaerobic microcosms supplemented with 1 mM or 5 mM nitrate. Denitrification and dechlorination activity were present in three diverse soil types and were maintained upon refeeding both nitrate and the appropriate chlorophenol. However, dechlorination activity could only be serially transferred in enrichments with an added electron donor such as acetate. Dehalogenation activity in enrichments from four of the primary microcosms showed at least five different dechlorination reactions, each mediated by different microbial communities. Three of these are distinct ortho-dechlorinating paths; two are meta-dechlorinating and one is the para-dechlorination of 3,4-DCP. Simultaneous dechlorination and denitrification was observed and both activities could be maintained in microcosms but only in the presence of low nitrate concentrations. Dechlorination and denitrification were mediated by two separate microbial communities; one that dechlorinates without use of nitrate and one that denitrifies while oxidizing the dechlorinated aromatic ring. There was no evidence that dechlorination is mediated by the denitrifying community, however the maintenance of a denitrification potential using low (< 1 mM) nitrate concentrations may be useful for completing the food chain by stimulating the mineralization of phenol and benzoate.  相似文献   

19.
Soil bacterial communities typically exhibit a distribution pattern in which most bacterial species are present in low abundance. Due to the relatively small size of most culture-independent sequencing surveys, a detailed phylogenetic analysis of rare members of the community is lacking. To gain access to the rarely sampled soil biosphere, we analyzed a data set of 13,001 near-full-length 16S rRNA gene clones derived from an undisturbed tall grass prairie soil in central Oklahoma. Rare members of the soil bacterial community (empirically defined at two different abundance cutoffs) represented 18.1 to 37.1% of the total number of clones in the data set and were, on average, less similar to their closest relatives in public databases when compared to more abundant members of the community. Detailed phylogenetic analyses indicated that members of the soil rare biosphere either belonged to novel bacterial lineages (members of five novel bacterial phyla identified in the data set, as well as members of multiple novel lineages within previously described phyla or candidate phyla), to lineages that are prevalent in other environments but rarely encountered in soil, or were close relatives to more abundant taxa in the data set. While a fraction of the rare community was closely related to more abundant taxonomic groups in the data set, a significant portion of the rare biosphere represented evolutionarily distinct lineages at various taxonomic cutoffs. We reason that these novelty and uniqueness patterns provide clues regarding the origins and potential ecological roles of members of the soil's rare biosphere.  相似文献   

20.
The Kingman coalescent and its developments are often considered among the most important advances in population genetics of the last decades. Demographic inference based on coalescent theory has been used to reconstruct the population dynamics and evolutionary history of several species, including Mycobacterium tuberculosis (MTB), an important human pathogen causing tuberculosis. One key assumption of the Kingman coalescent is that the number of descendants of different individuals does not vary strongly, and violating this assumption could lead to severe biases caused by model misspecification. Individual lineages of MTB are expected to vary strongly in reproductive success because 1) MTB is potentially under constant selection due to the pressure of the host immune system and of antibiotic treatment, 2) MTB undergoes repeated population bottlenecks when it transmits from one host to the next, and 3) some hosts show much higher transmission rates compared with the average (superspreaders).Here, we used an approximate Bayesian computation approach to test whether multiple-merger coalescents (MMC), a class of models that allow for large variation in reproductive success among lineages, are more appropriate models to study MTB populations. We considered 11 publicly available whole-genome sequence data sets sampled from local MTB populations and outbreaks and found that MMC had a better fit compared with the Kingman coalescent for 10 of the 11 data sets. These results indicate that the null model for analyzing MTB outbreaks should be reassessed and that past findings based on the Kingman coalescent need to be revisited.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号